
EXERCISE 5.1: Determine the output of a *centralized averager*

Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

 $y[n] = \frac{1}{3}(x[n+1] + x[n] + x[n-1])$ for the input in Fig. 5-2. Is this filter causal or noncausal? What is the support of the output for this input? How would

the plot of the output compare to Fig. 5-3? McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7.

$$y[0] = \frac{1}{3}(x[1] + x[0] + x[-1]) = \frac{1}{3}(4 + 2 + 0) = 2$$

$$y[-1] = \frac{1}{3}(x[0] + x[-1] + x[-2]) = \frac{1}{3}(2 + 0 + 0) = \frac{2}{3}$$

$$y[-2] = 0$$

$$y[1] = \frac{1}{3}(x[2] + x[1] + x[0]) = \frac{1}{3}(6 + 4 + 2) = 4$$

Make a table:

n \	≤-2	-1	0	1	2	3	4	5	6	27
XIn]	0	0	2	4	6	4	2	0	0	0
yin7	0	2/3	2	4	14/3	4	2	2/3	0	0

since yin) starts before xin) => NOT causal SUPPORT IS: