PROBLEM:

A linear time-invariant discrete-time system is described by the difference equation

$$
y[n]=x[n]-2 x[n-1]+3 x[n-2]-4 x[n-3]+2 x[n-4] .
$$

(a) Draw a block diagram that represents this system in terms of unit-delay elements, coefficient multipliers, and adders as in Figure 5.13 in the SP First.
(b) Determine the impulse response $h[n]$ for this system.
(c) Use convolution to determine the output due to the input

$$
x[n]=\delta[n]-\delta[n-1]+\delta[n-2]= \begin{cases}1 & n=0,1,2 \\ 0 & \text { otherwise }\end{cases}
$$

Plot the output sequence $y[n]$ for $-3 \leq n \leq 10$.

$$
y[n]=x[n]-2 x[n-1]+3 x[n-2]-4 x[n-3]+2 x[n-4]
$$

a) The block diagram for $y[n]$ is as follows.

b) The impulse response for $y[n]$ can be found by using $x[n]=\delta[n]$ which results in

$$
y[n]=h[n]=\delta[n]-2 \delta[n-1]+3 \delta[n-2]-4 \delta[n-3]+2 \delta[n-4]
$$

c) $y[n]$ can be tabulated as follows.

Plotting $y[n]$ gives

