PROBLEM:

This problem is concerned with finding the output of an FIR filter for a given input signal. A linear timeinvariant system is described by the difference equation

$$
y[n]=\sum_{k=0}^{4}(5-k) x[n-k]
$$

(a) Determine the filter coefficients $\left\{b_{k}\right\}$ of this FIR filter.
(b) Find the impulse response, $h[n]$, for this FIR filter. The impulse response is a discrete-time signal, so make a (stem) plot of $h[n]$ versus n.
(c) Use the above difference equation to compute the output $y[n]$ when the input is

$$
x[n]= \begin{cases}0 & n<0 \\ 10 & 0 \leq n \leq 5 \\ 1 & 6 \leq n \leq 10 \\ 0 & n \geq 11\end{cases}
$$

Make a plot of both $x[n]$ and $y[n]$ vs. n. (Hint: you might find it useful to check your results with Matlab's conv () function.)
(a) $\frac{h}{0} \frac{5-h}{5}$
$\left[b_{k}\right]=\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\right]$

1	4
2	3
3	2
4	1

(c)

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
n=0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array} \\
& h[n] \begin{array}{lllll}
5 & 4 & 3 & 2 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
50 & 40 & 30 & 20 & 10
\end{array} \\
& \begin{array}{lllll}
50 & 40 & 30 & 20 & 10
\end{array} \\
& \begin{array}{lllll}
50 & 40 & 30 & 20 & 10
\end{array} \\
& \begin{array}{lllll}
50 & 40 & 30 & 20 & 10
\end{array} \\
& \begin{array}{lllll}
50 & 40 & 30 & 20 & 10
\end{array} \\
& \begin{array}{lllll}
50 & 40 & 30 & 20 & 10
\end{array} \\
& \begin{array}{lllll}
5 & 4 & 3 & 2 & 1
\end{array} \\
& \begin{array}{lllll}
5 & 4 & 3 & 2 & 1
\end{array} \\
& \begin{array}{lllll}
5 & 4 & 3 & 2
\end{array} \\
& \begin{array}{lllll}
5 & 4 & 3 & 2
\end{array} \\
& \begin{array}{llllllllllllll}
50 & 90 & 120 & 140 & 150 & 150 & 4 & 3 & 69 & 2 & 2 & 1 \\
\hline
\end{array}
\end{aligned}
$$

(c)

```
\(\begin{array}{lllllllllllllllll}n=0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}\)
\(h[n] \begin{array}{llllll}5 & 4 & 3 & 2 & 1\end{array}\)
```



```
    \(\begin{array}{lllll}50 & 40 & 30 & 20 & 10\end{array}\)
        \(\begin{array}{lllll}50 & 40 & 30 & 20 & 10\end{array}\)
        \(\begin{array}{lllll}50 & 40 & 30 & 20 & 10\end{array}\)
        \(\begin{array}{lllll}50 & 40 & 30 & 20 & 10\end{array}\)
            \(\begin{array}{lllll}50 & 40 & 30 & 20 & 10\end{array}\)
            \(\begin{array}{lllll}50 & 40 & 30 & 20 & 10\end{array}\)
            \(\begin{array}{lllll}5 & 4 & 3 & 2\end{array}\)
        \(\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\)
        \(\begin{array}{lllll}5 & 4 & 3 & 2\end{array}\)
        \(\begin{array}{lllll}5 & 4 & 3 & 2\end{array}\)
        \(\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\)
```

 \(\begin{array}{llllllllllllllll}50 & 90 & 120 & 140 & 150 & 150 & 105 & 69 & 42 & 24 & 15 & 10 & 6 & 3 & 1\end{array}=y[n]\)

