
COMET Approach for UML
Overview

Chapter 6

Designing Concurrent, Distributed, and Real‐Time Applica9ons with UML
Hassan Gomaa (2001)

COMET

  Concurrent Object Modeling and
architectural design mEThod
  Textbook: Designing Concurrent,

Distributed, and Real-Time Applications
with UML (Hassan Gomaa)

Modeling Language vs Method

  Select Best Approach to Blueprints

Modeling Language Evolution

UML diagramming

UML design example

(e.g. IEEE 1471 architectural description standard)

View vs Viewpoint:
IEEE 1471 Architectural Standard

UML Modeling Environment
(Example)

SysML extends UML

SysML vs UML
  SysML has advantages over UML for specifying systems and systems-

of-systems:
  Expresses systems engineering semantics with more accuracy,

adding two new diagram types for requirements management and
performance analysis (Requirement diagrams and Parametric
diagrams).

  Easier to learn than UML with less diagram types (9 vs. 13) and
total constructs.

  Facilitates automated verification and validation (V&V) and gap
analysis.

  Model management constructs support the specification of models,
views, and viewpoints and are architecturally aligned with IEEE-
Std-1471-2000 (IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems).

  http://www.sysmlforum.com/FAQ.htm

SysML Diagram Taxonomy

SysML Diagram

Structure
Diagram Behavior

Diagram

Use Case
Diagram

Activity
Diagram Assembly

Diagram

Sequence
Diagram

Interaction
Overview
Diagram

State Machine
Diagram

Timing
Diagram

Parametric
Diagram Requirement

Diagram

Class
Diagram

Modified from UML 2
New diagram type

As-is from UML 2
Diagram category

As of v0.90

What is COMET?

  COMET is a design method for UML
supporting OO systems
  Concurrent
  Distributed
  Real-Time

  Concurrent Object Modeling and
architectural design mEThod

  Compatible with USDP (Unified Software
Development Process)

COMET Software Lifecycle
(6.1)

  A highly iterative process
  Focuses on the use case concept

  Functional requirements are recorded in
terms of actors and their use of the
system, collected into use cases.

  A use case is a series of interactions
between one or more actors and the
system

COMET Software Lifecycle
(6.1)

Waterfall Model

COMET Modeling (6.1.1-2)

  Requirements Modeling
  Use cases are generated, and serve as the

requirements for the system.
  Throwaway prototypes can help to clarify the

requirements.
  Analysis Modeling

  Static Models
 Class Diagrams show the classes of the problem domain.

  Dynamic Models
 Show the problem domain objects participating in use

cases.

COMET Modeling (cont.;
6.1.3)

  Design Modeling
  Software architecture is designed
  Problem Domain (Analysis Mode) is

mapped to Solution Domain (Design
Model)

  Subsystems are identified and structured
  Emphasis is on designing distributed

subsystems as configurable components that
communicate with each other via messaging.

Sequential vs Concurrent
Systems

  Sequential system design
  Emphasis is on the object-oriented concepts of

information hiding , classes, and inheritance

  Concurrent system design
  Concurrent tasking concepts (e.g. real-time,

client/server, distributed applications) have to
be taken into account, in addition to Object
Oriented concepts.

Incremental Prototyping
(6.1.4-5)

  After modeling, the software
subsystems are incrementally
constructed and integrated into
incremental prototypes.

  A phased, iterative approach
  Build and test a little at a time.

  If significant problems are testing, a
return to the modeling phases is in
order.

Incremental Software
Construction (6.1.4)

  Incremental Software Construction
consists of
  Detailed design
  Coding
  Unit testing

Incremental Software
Integration (6.1.5)

  During incremental software testing, the
integration testing of each software is
performed

  Integration test for the increment
  based on the use cases selected
  developed for each use case
  Is type of white box testing (between object

interfaces)
  Yields incremental prototype, formed by a

software increment
 Verified, integrated, then reiterated (see Fig. 6.1)

System Testing (6.1.6)

  When the incremental prototype is to be
turned over to the customer, it must
first undergo system testing.

  The use cases of the requirements
model are tested black box, ensuring
the software meets specifications.

Unified Software Development
Process (USDP) (6.2.1)

  The first book to describe the process was titled The
Unified Software Development Process
 (ISBN 0-201-57169-2) and published in 1999 by Ivar

Jacobson, Grady Booch and James Rumbaugh.
  RUP is trademark name for IBM
  Workflows, after domain modeling and ending in

deployment
 Requirements
 Analysis
 Design
 Implementation
 Test

Unified Process Generic
Phases

Generic Workflows per phase
(Iterative Development)

COMET vs. USDP (6.2.1)

  Directly compatible with COMET
  The first three phases even have same

names

  USDP’s Testing phase is broken into
COMET’s Incremental Integration and
System Testing phases
  These activities should be performed by

separate teams.
  Incremental Integration -> Development Team
  System Testing -> Testing Team

Spiral Model

COMET in Spiral Method
Quadrant III (6.2.2)

  Objective identification (I)
  Risk analysis (II)
  Product development (III)

  Requirements Modeling
  Analysis Modeling
  Design Modeling

  Cycle planning (IV)

Modeling Activities in COMET

  COMET defines the modeling phases
thus:
  Requirements: defining the function of the

system.
  Analysis: Decomposing the the problem for

better understanding.
  Design: Synthesizing the solution into a

complete system.

Requirements Modeling Activities
(6.3.1)

  Emphasis on functional requirements of
the system defined in terms of actors
and use cases
  Define actors/stakeholder needs
  Define black-box use cases for analysis

Analysis Modeling Activities
(6.3.2)

  Emphasis is on understanding the
problem in terms of domain objects and
messages between them only*
  Static Modeling
  Object Structuring
  Finite State Machine Modeling
  Dynamic Modeling

  * Important note: Other design issues deferred to design phase, e.g.
active/passive, sync/async, operation invoked

Static Modeling/Analysis
model (6.3.2a)

  Discussed in Chapter 8
  Define problem-specific static model*

  Structural view
 Classes defined in terms of attributes

  Emphasis on info modeling of real-world classes in the
problem domain

 Relationships between classes defined

  * Important note: Operations are defined in the
design model

Object Structuring/Analysis
Model (6.3.3b)
  Discussed in Chapter 9
  Determine the objects that participate in each use

case, e.g.
 Entity
 Interface
 Control
 Application logic

  After objects determined, dynamic relationships are
determined in dynamic model

Finite State Machine Modeling

  Discussed in Chapter 10
  State-dependent system properties

defined
  Using hierarchical state-charts
  Each state-dependent object determined is

defined in terms of its constituent
statechart

Dynamic modeling/Analysis
model (6.3.3c)

  Discussed in Chapter 11
  The use cases are refined to show the

interaction among the participating objects
  For state-dependent use cases, the interaction

among state-dependent control objects and
statecharts they execute are made explicit

  Collaboration diagrams or sequence diagrams
are developed

Design Modeling Activities
(6.3.3)

  Consolidate object collaboration
diagrams.

  Decide the subsystems and their
relationships.

  Decide the distribution of subsystems.
  Characterize the objects as active

(tasks) or passive.
  Structure subsystems into concurrent

tasks.

Design Modeling Activities (cont.;
6.3.3)

  Solution domain is considered
  Analysis model is mapped to concurrent

design model
  Determine if messages should be

asynchronous or synchronous.
  Determine the class interfaces.

  Including information that will be hidden

  Develop a detailed design of the software.
  Task synchronization and communication
  Internal design of the concurrent tasks

Design activities (Chp 12)
(6.3.3)

  Consolidate and define
  Object collaboration model
  Interfaces
  Software architecture
  Subsystems

Design activities (Chp 13)
(6.3.3)

  Make decisions about how to structure the
distributed application into distributed
subsystems, in which subsystems are design
as configurable components
  For distributed apps, design the dist software

architecture by decomposing the system into dist
subsystems and defining the message
communication interfaces between the
subsystems.

Design activities (Chp 14)
(6.3.3)

  Make decisions about the characteristics
of objects (e.g. active/passive)
  During task structuring, tasks are

structured using the task structuring
criteria, and task interfaces are defined

  Make decisions about the characteristics
of messages (e.g. sync/async)

Design activities (Chp 15)
(6.3.3)

  Make decisions about class interfaces.
  For each subsystem

  Design the information hiding classes (passive
classes

  Design the operations of each class
  Identify the parameters of each operation

Design activities (Chp 16)
(6.3.3)

  Develop the detailed software design,
addressing detailed issues concerning
task synchronization and
communication, and the internal design
of concurrent tasks

Structuring Criteria - Analysis
and Design

  Certain stages in the analysis and design
process structuring criteria is used*
  Object structuring – determine objects in system
  Subsystem structuring – determine subsystems
  Concurrent task structuring criteria – determine

tasks (active objects)

  * UML stereotypes are used throughout to
clearly show use of structuring criteria

COMET in a Nutshell (6.4.1-2)

1.  Develop Requirements Model
1. Develop use case model

1.  Develop use case diagrams depicting the actors and use cases, and
define the relationships between them. Packages may be used to group
functional areas.

2.  Document each use case with a use case description (i.e. a narrative
description of the use case)

2.  Develop Analysis Model
1. Develop static model of problem domain using classes,

relationships, and attributes
1.  Develop a static model class diagrams showing the physical

classes in the problem and their relationships.
2.  Develop a system context model class diagrams showing the

external I/O of the system (e.g. Sensors and actuators).
3.  Develop a static model of the entity, or data-oriented, classes in

the problem.
4.  Define all classes in the class dictionary, which describes classes

and attributes.

COMET in a Nutshell (cont;
6.4.2)

2.  Optionally structure the system into classes and
objects.

3.  Develop a dynamic model. For each use case:
1. Determine the objects that participate in the use case.
2. Develop and analyze interaction diagram (collaboration or

sequence) showing sequence of object interactions
3. Develop a statechart for each state-dependent object in a

collaboration. Determine event consistency (I/O)
4. Develop message sequence descriptions for each

interaction diagram.

COMET in a Nutshell (cont ;
6.4.3)

3.  Develop Design Model
1.  Synthesize artifacts from the analysis model to

produce an initial software architecture. If
problems identified, iterate through step 2 again

1.  Synthesize state-charts
2.  Synthesize a collaboration model
3.  Synthesize a static model

2.  Design overall software architecture
3.  Design distributed component-based architecture
4.  Design concurrent task architecture for each

subsystem

COMET in a Nutshell (cont ;
6.4.3)

4.  Design the concurrent task architecture for
each subsystem

1.  Structure subsystems into concurrent tasks.
2.  Define the tasks and their interfaces.
3.  Develop concurrent collaboration diagrams for

each subsystem.
4.  Document the design of each task in a task

behavior specification.
5.  Analyze the real-time performance of the

design. (Iterate steps 3.3 and 3.4, if needed)
6.  Design the classes in each subsystem.

COMET in a Nutshell (cont ;
6.4.3)

7.  Develop the detailed design of each
subsystem.

1. Design the internals of composite tasks.
2. Design the details of task synchronization.
3. Design the connector classes for inter-class

communication.
4. Design and document each task’s internal event

sequencing logic.

8.  Analyze the performance of the real-time
design for each subsystem in greater detail
(Iterate steps 3.4-3.7, if needed)

Summary (6.5)

  COMET is a software design lifecycle and
methodology.

  COMET is highly iterative
  The basic phases of COMET are:

  Requirements Modeling
  Analysis Modeling
  Design Modeling
  Incremental Software Construction
  Incremental Software Design
  System Testing

Thank you

  COMET overview concluded
  Q&A welcome

