
COMET Approach for UML 
Overview 

Chapter 6 

Designing Concurrent, Distributed, and Real‐Time Applica9ons with UML 
Hassan Gomaa (2001) 



COMET 

  Concurrent Object Modeling and 
architectural design mEThod 
  Textbook: Designing Concurrent, 

Distributed, and Real-Time Applications 
with UML (Hassan Gomaa) 



Modeling Language vs Method 

  Select Best Approach to Blueprints  



Modeling Language Evolution 



UML diagramming 



UML design example 

(e.g. IEEE 1471 architectural description standard) 



View vs Viewpoint: 
IEEE 1471 Architectural Standard 



UML Modeling Environment 
(Example) 



SysML extends UML 



SysML vs UML 
  SysML has advantages over UML for specifying systems and systems-

of-systems:  
  Expresses systems engineering semantics with more accuracy, 

adding two new diagram types for requirements management and 
performance analysis (Requirement diagrams and Parametric 
diagrams).  

  Easier to learn than UML with less diagram types (9 vs. 13) and 
total constructs.  

  Facilitates automated verification and validation (V&V) and gap 
analysis.  

  Model management constructs support the specification of models, 
views, and viewpoints and are architecturally aligned with IEEE-
Std-1471-2000 (IEEE Recommended Practice for Architectural 
Description of Software-Intensive Systems).  

  http://www.sysmlforum.com/FAQ.htm 



SysML Diagram Taxonomy 

SysML Diagram 

Structure 
Diagram Behavior 

Diagram 

Use Case 
Diagram 

Activity 
Diagram Assembly 

Diagram 

Sequence 
Diagram 

Interaction 
Overview 
Diagram 

State Machine 
Diagram 

Timing 
Diagram 

Parametric 
Diagram Requirement 

Diagram 

Class 
Diagram 

Modified from UML 2 
New diagram type 

As-is from UML 2 
Diagram category 

As of v0.90 



What is COMET? 

  COMET is a design method for UML 
supporting OO systems  
  Concurrent 
  Distributed 
  Real-Time 

  Concurrent Object Modeling and 
architectural design mEThod 

  Compatible with USDP (Unified Software 
Development Process) 



COMET Software Lifecycle 
(6.1) 

  A highly iterative process 
  Focuses on the use case concept 

  Functional requirements are recorded in 
terms of actors and their use of the 
system, collected into use cases. 

  A use case is a series of interactions 
between one or more actors and the 
system 



COMET Software Lifecycle 
(6.1) 



Waterfall Model 



COMET Modeling (6.1.1-2) 

  Requirements Modeling 
  Use cases are generated, and serve as the 

requirements for the system. 
  Throwaway prototypes can help to clarify the 

requirements. 
  Analysis Modeling 

  Static Models 
 Class Diagrams show the classes of the problem domain. 

  Dynamic Models 
 Show the problem domain objects participating in use 

cases. 



COMET Modeling (cont.; 
6.1.3) 

  Design Modeling 
  Software architecture is designed 
  Problem Domain (Analysis Mode) is 

mapped to Solution Domain (Design 
Model) 

  Subsystems are identified and structured 
  Emphasis is on designing distributed 

subsystems as configurable components that 
communicate with each other via messaging. 



Sequential vs Concurrent 
Systems 

  Sequential system design 
  Emphasis is on the object-oriented concepts of 

information hiding , classes, and inheritance 

  Concurrent system design 
  Concurrent tasking concepts (e.g. real-time, 

client/server, distributed applications) have to 
be taken into account, in addition to Object 
Oriented concepts. 



Incremental Prototyping 
(6.1.4-5) 

  After modeling, the software 
subsystems are incrementally 
constructed and integrated into 
incremental prototypes. 

  A phased, iterative approach 
  Build and test a little at a time. 

  If significant problems are testing, a 
return to the modeling phases is in 
order. 



Incremental Software 
Construction (6.1.4) 

  Incremental Software Construction 
consists of  
  Detailed design 
  Coding 
  Unit testing 



Incremental Software 
Integration (6.1.5) 

  During incremental software testing, the 
integration testing of each software is 
performed 

  Integration test for the increment  
  based on the use cases selected 
  developed for each use case 
  Is type of white box testing (between object 

interfaces) 
  Yields incremental prototype, formed by a 

software increment 
 Verified, integrated, then reiterated (see Fig. 6.1) 



System Testing (6.1.6) 

  When the incremental prototype is to be 
turned over to the customer, it must 
first undergo system testing. 

  The use cases of the requirements 
model are tested black box, ensuring 
the software meets specifications. 



Unified Software Development 
Process (USDP) (6.2.1) 

  The first book to describe the process was titled The 
Unified Software Development Process  
 (ISBN 0-201-57169-2) and published in 1999 by Ivar 

Jacobson, Grady Booch and James Rumbaugh.  
  RUP is trademark name for IBM 
  Workflows, after domain modeling and ending in 

deployment 
 Requirements 
 Analysis 
 Design 
 Implementation 
 Test 



Unified Process Generic 
Phases  



Generic Workflows per phase 
(Iterative Development) 



COMET vs. USDP (6.2.1) 

  Directly compatible with COMET 
  The first three phases even have same 

names 

  USDP’s Testing phase is broken into 
COMET’s Incremental Integration and 
System Testing phases 
  These activities should be performed by 

separate teams. 
  Incremental Integration -> Development Team 
  System Testing -> Testing Team   



Spiral Model 



COMET in Spiral Method 
Quadrant III (6.2.2) 

  Objective identification (I) 
  Risk analysis (II) 
  Product development (III) 

  Requirements Modeling 
  Analysis Modeling 
  Design Modeling 

  Cycle planning (IV) 



Modeling Activities in COMET 

  COMET defines the modeling phases 
thus: 
  Requirements: defining the function of the 

system. 
  Analysis: Decomposing the the problem for 

better understanding. 
  Design: Synthesizing the solution into a 

complete system. 



Requirements Modeling Activities 
(6.3.1) 

  Emphasis on functional requirements of 
the system defined in terms of actors 
and use cases 
  Define actors/stakeholder needs 
  Define black-box use cases for analysis 



Analysis Modeling Activities 
(6.3.2) 

  Emphasis is on understanding the 
problem in terms of domain objects and 
messages between them only* 
  Static Modeling 
  Object Structuring 
  Finite State Machine Modeling 
  Dynamic Modeling 

  * Important note: Other design issues deferred to design phase, e.g. 
active/passive, sync/async, operation invoked 



Static Modeling/Analysis 
model (6.3.2a) 

  Discussed in Chapter 8 
  Define problem-specific static model* 

  Structural view 
 Classes defined in terms of attributes 

  Emphasis on info modeling of real-world classes in the 
problem domain 

 Relationships between classes defined 

  * Important note: Operations are defined in the 
design model 



Object Structuring/Analysis 
Model (6.3.3b) 
  Discussed in Chapter 9 
  Determine the objects that participate in each use 

case, e.g.  
 Entity 
 Interface 
 Control 
 Application logic 

  After objects determined, dynamic relationships are 
determined in dynamic model 



Finite State Machine Modeling 

  Discussed in Chapter 10 
  State-dependent system properties 

defined  
  Using hierarchical state-charts 
  Each state-dependent object determined is 

defined in terms of its constituent 
statechart 



Dynamic modeling/Analysis 
model (6.3.3c) 

  Discussed in Chapter 11 
  The use cases are refined to show the 

interaction among the participating objects 
  For state-dependent use cases, the interaction 

among state-dependent control  objects and 
statecharts they execute are made explicit 

  Collaboration diagrams or sequence diagrams 
are developed  



Design Modeling Activities 
(6.3.3) 

  Consolidate object collaboration 
diagrams. 

  Decide the subsystems and their 
relationships. 

  Decide the distribution of subsystems. 
  Characterize the objects as active 

(tasks) or passive. 
  Structure subsystems into concurrent 

tasks. 



Design Modeling Activities (cont.; 
6.3.3) 

  Solution domain is considered 
  Analysis model is mapped to concurrent 

design model  
  Determine if messages should be 

asynchronous or synchronous. 
  Determine the class interfaces. 

  Including information that will be hidden 

  Develop a detailed design of the software. 
  Task synchronization and communication 
  Internal design of the concurrent tasks 



Design activities (Chp 12) 
(6.3.3)  

  Consolidate and define 
  Object collaboration model 
  Interfaces 
  Software architecture 
  Subsystems 



Design activities (Chp 13) 
(6.3.3) 

  Make decisions about how to structure the 
distributed application into distributed 
subsystems, in which subsystems are design 
as configurable components 
  For distributed apps, design the dist software 

architecture by decomposing the system into dist 
subsystems and defining the message 
communication interfaces between the 
subsystems. 



Design activities (Chp 14) 
(6.3.3) 

  Make decisions about the characteristics 
of objects (e.g. active/passive) 
  During task structuring, tasks are 

structured using the task structuring 
criteria, and task interfaces are defined 

  Make decisions about the characteristics 
of messages (e.g. sync/async) 



Design activities (Chp 15) 
(6.3.3) 

  Make decisions about class interfaces.   
  For each subsystem 

  Design the information hiding classes (passive 
classes 

  Design the operations of each class 
  Identify the parameters of each operation 



Design activities (Chp 16) 
(6.3.3) 

  Develop the detailed software design, 
addressing detailed issues concerning 
task synchronization and 
communication, and the internal design 
of concurrent tasks 



Structuring Criteria - Analysis 
and Design 

  Certain stages in the analysis and design 
process structuring criteria is used* 
  Object structuring – determine objects in system 
  Subsystem structuring – determine subsystems 
  Concurrent task structuring criteria – determine 

tasks (active objects) 

  * UML stereotypes are used throughout to 
clearly show use of structuring criteria 



COMET in a Nutshell (6.4.1-2)  

1.  Develop Requirements Model 
1. Develop use case model 

1.  Develop use case diagrams depicting the actors and use cases, and 
define the relationships between them. Packages may be used to group 
functional areas. 

2.  Document each use case with a use case description (i.e. a narrative 
description of the use case) 

2.  Develop Analysis Model 
1. Develop static model of problem domain using classes, 

relationships, and attributes 
1.  Develop a static model class diagrams showing the physical 

classes in the problem and their relationships. 
2.  Develop a system context model class diagrams showing the 

external I/O of the system (e.g. Sensors and actuators). 
3.  Develop a static model of the entity, or data-oriented, classes in 

the problem. 
4.  Define all classes in the class dictionary, which describes classes 

and attributes. 



COMET in a Nutshell (cont; 
6.4.2) 

2.  Optionally structure the system into classes and 
objects. 

3.  Develop a dynamic model. For each use case: 
1. Determine the objects that participate in the use case. 
2. Develop and analyze interaction diagram (collaboration or 

sequence) showing sequence of object interactions 
3. Develop a statechart for each state-dependent object in a 

collaboration. Determine event consistency (I/O) 
4. Develop message sequence descriptions for each 

interaction diagram.  



COMET in a Nutshell (cont ; 
6.4.3) 

3.  Develop Design Model 
1.  Synthesize artifacts from the analysis model to 

produce an initial software architecture. If 
problems identified, iterate through step 2 again 

1.  Synthesize state-charts 
2.  Synthesize a collaboration model 
3.  Synthesize a static model 

2.  Design overall software architecture 
3.  Design distributed component-based architecture 
4.  Design concurrent task architecture for each 

subsystem 



COMET in a Nutshell (cont ; 
6.4.3) 

4.  Design the concurrent task architecture for 
each subsystem 

1.  Structure subsystems into concurrent tasks. 
2.  Define the tasks and their interfaces. 
3.  Develop concurrent collaboration diagrams for 

each subsystem. 
4.  Document the design of each task in a task 

behavior specification. 
5.  Analyze the real-time performance of the 

design. (Iterate steps 3.3 and 3.4, if needed) 
6.  Design the classes in each subsystem. 



COMET in a Nutshell (cont ; 
6.4.3) 

7.  Develop the detailed design of each 
subsystem. 

1. Design the internals of composite tasks. 
2. Design the details of task synchronization. 
3. Design the connector classes for inter-class 

communication. 
4. Design and document each task’s internal event 

sequencing logic. 

8.  Analyze the performance of the real-time 
design for each subsystem in greater detail 
(Iterate steps 3.4-3.7, if needed) 



Summary (6.5) 

  COMET is a software design lifecycle and 
methodology. 

  COMET is highly iterative 
  The basic phases of COMET are: 

  Requirements Modeling 
  Analysis Modeling 
  Design Modeling 
  Incremental Software Construction 
  Incremental Software Design 
  System Testing 



Thank you  

  COMET overview concluded 
  Q&A welcome 


