
Designing Software Product
Lines

with UML

Hassan Gomaa
Department of Information and Software

Engineering
George Mason University

Fairfax, Virginia 22030-4444

Phone: (703) 993-1652
Email: hgomaa@gmu.edu

Software Engineering Workshop Tutorial
April 2005

Copyright © 2005 Hassan Gomaa
All rights reserved. No part of this document may be

reproduced in any form or by any means, without the prior
written permission of the author.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

GOMAA: Preface

Pref-1

DESIGNING SOFTWARE PRODUCT LINES
WITH UML

Hassan Gomaa
Department of Information and Software Engineering

George Mason University
Fairfax, Virginia 22030-4444

(703) 993 1652
Fax: (703) 993 1638

Email: hgomaa@gmu.edu

Preface

June 2004

Overview

This book describes an evolutionary software engineering process for the development of
software product lines, which uses the Unified Modeling Language (UML) notation. A software
product line (or product family) consists of a family of software systems that have some common
functionality and some variable functionality. The interest in software product lines emerged
from the field of software reuse when developers and managers realized that they could obtain
much greater reuse benefits by reusing software architectures instead of reusing individual
software components. The field of software product lines is increasingly recognized in industry
and government as being of great strategic importance for software development. Studies indicate
that if three or more systems with a degree of common functionality are to be developed, then
developing a product line is significantly more cost-effective than developing each system from
scratch.

The traditional mode of software development is to develop single systems—that is, to
develop each system individually. For software product lines, the development approach is
broadened to consider a family of software systems. This approach involves analyzing what
features (functional requirements) of the software family are common, what features are optional,
and what features are alternatives. After the feature analysis, the goal is to design a software
architecture for the product line, which has common components (required by all members of the
family), optional components (required by only some members of the family), and variant
components (different versions of which are required by different members of the family). Instead
of starting from square one, the developer creates applications by adapting and configuring the
product line architecture.

To model and design families of systems, the analysis and design concepts for single
product systems need to be extended to support software product lines. This book is intended to
appeal to readers who are familiar with modeling and designing single systems, but who wish to
extend their knowledge to modeling and designing software product lines. It is also intended to
appeal to readers who are familiar with applying UML to the modeling and design of single
systems but not with developing software product lines.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

GOMAA: Preface

Pref-2

What This Book Provides

Several textbooks on the market describe object-oriented concepts and methods, which are
intended for single systems. Very few books address software families or product lines; and of
those that do, even fewer use UML.

This book provides a comprehensive treatment of the application of UML-based object-
oriented concepts to the analysis and design of software product lines. In particular, it does the
following:

Describes fundamental concepts and technologies in the design of software product lines.

Describes, in considerable detail, a UML-based object-oriented analysis and design
method for software product lines. It examines how each of the UML modeling views—
use case modeling, static modeling, dynamic state machine modeling, and dynamic
interaction modeling—is extended to address software product lines. Each UML
modeling view is extended to reflect the commonality and variability of the product line.
A new view, the feature modeling view, is added to explicitly model the commonality
and variability of software requirements.

Uses the Object Management Group (OMG) concept of model-driven architecture to
develop a component-based software architecture for a product line. The product line
architecture is expressed as a UML platform-independent model, which can then be
mapped to a platform-specific model.

Describes how architectures for software product lines are developed through the
consideration of software architectural patterns in relation to the characteristics of the
product line. The product line architecture is component-based and explicitly models the
commonality and variability of the product line.

Presents three case studies illustrating how a software product line architecture is
developed, starting with use cases and feature modeling in the requirements modeling
phase, static and dynamic modeling in the analysis modeling phase, and the development
of the component-based software architecture in the design modeling phase. The case
studies focus on a microwave oven product line, an electronic commerce product line,
and a factory automation product line.

Includes a glossary, a bibliography, and two appendices, which provide (1) an overview
of UML 2 notation and (2) a catalog of software architectural patterns for product lines.

The PLUS Advantage

The UML-based software design method for software product lines described in this book is
called PLUS (Product Line UML-Based Software Engineering). The PLUS method extends the
UML-based modeling methods that are used for single systems to address software product lines.
With PLUS, the objective is to explicitly model the commonality and variability in a software
product line. PLUS provides a set of concepts and techniques to extend UML-based design
methods and processes for single systems to handle software product lines. In particular, for
modeling software product lines, PLUS provides the following additions to the process of
modeling single systems:

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

GOMAA: Preface

Pref-3

Software Product Line Requirements Modeling

Use case modeling. Model commonality and variability in the use case model. For this
purpose, PLUS provides an approach to modeling kernel, optional, and alternative use
cases, as well as an approach to modeling variation points in use cases.

Feature modeling. Model product line features. Feature modeling is a key concept in
software product lines. PLUS provides an approach for modeling common, optional, and
alternative features, an approach for deriving the feature model from the use case model,
and an approach for representing features with the UML notation.

Software Product Line Analysis Modeling

Static modeling. Develop a product line context model for the product line boundary.
Determine kernel, optional, and alternative external classes. Develop a product line
information (entity class) model: determine kernel, optional, and alternative entity
classes.

Dynamic interaction modeling. Develop interaction diagrams to realize kernel, optional,
and alternative use cases. Use evolutionary development: the kernel first approach is
applied to determine product line commonality, followed by product line evolution to
determine variability.

Dynamic state machine modeling. Develop kernel, optional, and alternative statecharts.
Manage state machine variability through inheritance and parameterization.

Feature/class dependency modeling. Determine the dependency that common, optional,
and alternative features have with kernel, optional, and variant classes.

Software Product Line Design Modeling

Software architectural patterns. Determine the software architectural structure and
communication patterns that are most appropriate for the product line, given the catalog
of architectural patterns.

Component-based software design. Develop a component-based software design for the
product line, which models kernel, optional, and variant components, as well as their
ports and provided and required interfaces. Design the component-based architecture that
explicitly models the components and their interconnections.

Software Application Engineering

Develop a software application that is a member of the product line, by using the feature model to
derive the application from the product line architecture and components.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

GOMAA: Preface

Pref-4

Annotated Table of Contents

Chapter 1: Introduction

This chapter presents an introduction to software product lines, a discussion of software reuse
issues, and an overview of object-oriented analysis and design with UML.

Chapter 2: Design Concepts for Software Product Lines

This chapter discusses and presents an overview of key design concepts and technologies for
software product lines, including object-oriented technology, software architecture, and the
software component technology.

Chapter 3: Software Product Line Engineering

This chapter introduces the software product line design method, which is described in much
greater detail in subsequent chapters. One of the goals of this method is to be capable of
extending other design methods, such as the author’s COMET method (Concurrent Object
Modeling and Architectural Design Method) to model and design software product lines. The
acronym for the method is PLUS (Product Line UML-Based Software Engineering). However,
the term PLUS is also intended to mean that other methods can be extended to support product
lines such as COMET, ROPES, or RUP/USDP.

There are two main strategies for developing a software product line, referred to as
forward evolutionary engineering and reverse evolutionary engineering. Forward evolutionary
engineering is best used when a new product line is being developed with no previous systems to
guide the development. Reverse evolutionary engineering is best used when the product line
development begins with existing systems that are candidates for modernization and inclusion in
a project to develop a product line.

Chapter 4: Use Case Modeling for Software Product Lines

This chapter describes how use case modeling concepts are extended to address software product
lines—in particular, how the common and variable functionality of the product line is modeled
with kernel, optional, and alternative use cases, and how variation points are used to model
variability.

Chapter 5: Feature Modeling for Software Product Lines

This chapter describes feature modeling—a concept used widely in software product lines but not
addressed by UML. The discussion covers how feature modeling concepts can be incorporated
into the UML and how features can be determined from use cases.

Chapter 6: Static Modeling in Software Product Lines

This chapter describes how static modeling concepts are extended to address software product
lines—in particular, to address modeling the boundary of the software product line and modeling
entity classes, which are information-intensive classes. Also discussed is the categorization of
application classes from two perspectives: the role the class plays in the application, and the reuse
characteristic of the class.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

GOMAA: Preface

Pref-5

Chapter 7: Dynamic Interaction Modeling for Software Product Lines

This chapter describes how dynamic interaction modeling concepts are extended to address
software product lines. Communication diagrams are developed for each kernel, optional, and
alternative use case. Dynamic interaction modeling to address use case variation points is also
covered. The kernel first approach is used for dynamic modeling, followed by the product line
evolution approach.

Chapter 8: Finite State Machines and Statecharts for Software
Product Lines

This chapter describes how finite state machine and statechart modeling concepts are extended to
address software product lines. In particular, each state-dependent control class—whether kernel,
optional, or variant—needs to be modeled with a finite state machine and depicted as a statechart.
It is also possible to model variability using inherited state machines and parameterized state
machines.

Chapter 9: Feature/Class Dependency Modeling for Software Product
Lines

This chapter describes how to determine which classes from the analysis model are needed to
support the features from the feature model. Product line classes are categorized as kernel,
optional, and variant classes. Modeling class variability using both inheritance and
parameterization is described. Feature-based dynamic modeling and static modeling are also
covered.

Chapter 10: Architectural Patterns for Software Product Lines

This chapter describes a range of software architectural patterns that are particularly useful in the
design of software product line architectures. Both architectural structure and communication
patterns are described. Architectural structure patterns address the overall structure of the
software architecture. Architectural communication patterns address the ways in which
distributed components can communicate with each other. This chapter also describes how
product line architectures can be built from these patterns.

Chapter 11: Software Product Line Architectural Design: Component-
Based Design

This chapter describes how a product line architecture is designed as a component-based
architecture. Separation of concerns in component design is an important issue. Components are
categorized according to their roles in the software architecture. The design of component
interfaces is described. The chapter also discusses how component-based software architectures
can be depicted with the structured class and composite structure diagram notation introduced in
UML 2, which allows components, ports, connectors, and provided and required interfaces to be
depicted.

Chapter 12: Software Application Engineering

This chapter describes the process for deriving a member of the software product line from the
product line architecture and components. This is a tailoring process involving selection of the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

GOMAA: Preface

Pref-6

appropriate components and setting of the parameter values for individual components to include
in the product line member. The chapter covers how the feature model is used to help in this
process.

Chapter 13: Microwave Oven Software Product Line Case Study

This chapter describes how the PLUS software product line method is applied to the design of a
microwave oven software product line. Because this is a new product line, the forward
evolutionary engineering product line development strategy is used, in which an iterative
approach is used to determine the kernel functionality of the product line before the variable
functionality is modeled.

Chapter 14: Electronic Commerce Software Product Line Case Study

This chapter describes how the PLUS software product line method is applied to the design of an
e-commerce application product line. Because there are two main systems—business-to-business
(B2B) and business-to-consumer (B2C)—in the electronic commerce product line, the reverse
evolutionary engineering product line development strategy is applied first to each type of
system, from which the product line commonality is determined first, followed by the product
line variability.

Chapter 15: Factory Automation Software Product Line Case Study

This chapter describes how the PLUS software product line method is applied to the design of a
factory automation product line. Because this product line starts with existing factory automation
systems that are candidates for modernization and inclusion in the product line, the reverse
evolutionary engineering product line development strategy is applied.

Appendix A: Overview of the UML Notation

This appendix provides an overview of the different UML 2.0 diagrams used by the PLUS
method. The differences between the UML 2.0 notation and UML 1.x notation are also explained,
as are the conventions used in this book.

Appendix B: Catalog of Software Architectural Patterns

In this appendix the software architectural structure and communication patterns, originally
described in Chapter 10, are documented alphabetically in a common template for easy reference.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

1

Hassan Gomaa
Biosketch

Hassan Gomaa is Chair and Full Professor in the Department of Information and Software
Engineering at George Mason University, Fairfax, Virginia. He received a B.Sc.(Eng.) with First
Class Honors in Electrical Engineering from University College, London University, and the
DIC and Ph.D. in Computer Science from Imperial College of Science and Technology, London
University.

He has over 30 years experience in software engineering, both in industry and academia, and has
published over 130 technical papers and 3 textbooks. His book, "Software Design Methods for
Concurrent and Real-Time Systems", is published by Addison Wesley as part of the SEI Series
on Software Engineering, had its fourth printing in 1999, and was translated into Chinese in
2003. His second book, entitled “Designing Concurrent, Distributed, and Real-Time
Applications with UML”, was published by Addison Wesley in 2000, had its fourth printing in
2004, and was translated into Chinese in 2004. His latest textbook entitled “Designing Software
Product Lines with UML” was published by Addison Wesley in July 2004.

His current research interests include object-oriented analysis and design for concurrent, real-
time, and distributed systems, software architecture, software product lines, software reuse,
software performance engineering, intelligent software agents, software engineering
environments, and software process models. His research has been funded by the National
Science Foundation, NASA, DARPA, Hughes Applied Information Systems, Siemens, Software
Productivity Consortium, Virginia Center of Innovative Technology, Virginia Center of
Excellence in Software Reuse, CTA, American Management Systems, and Grumman. He is the
developer of the DARTS, ADARTS, CODARTS, COMET, and PLUS software design methods.
He has taught several short courses for industry and academia He also consults in both the
technical and management aspects of software engineering.

Previously, he held faculty positions at the Wang Institute of Graduate Studies, where he was
Professor of Information Technology, and at Imperial College of Science and Technology,
London University, where he was a lecturer (equivalent to Assistant Professor in North America)
in the Department of Computing. He also has several years industrial experience, most recently
at General Electric.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

1

SPL-1Copyright 2005 H. Gomaa

Designing Software Product Lines with UML

Hassan Gomaa
Department of Information and Software Engineering

George Mason University
Fairfax, Virginia 22030-4444

Phone: (703) 993-1652
Email: hgomaa@gmu.edu

Software Engineering Workshop Tutorial
April 2005

Copyright © 2005 Hassan Gomaa
All rights reserved. No part of this document may be reproduced in any form

or by any means, without the prior written permission of the author.

SPL-2Copyright 2005 H. Gomaa

Introduction
• Software Product Line

– Family of products / systems
– Some common components, some optional, some variant

• Designing Software Product Lines
– Object Oriented Analysis and Design of Software Product Lines
– Emphasis on modeling commonality and variability in software

product lines
• Unified Modeling Language (UML)

– Standardized notation for object-oriented development
– UML notation extended to model software product lines
– Use UML standard extension mechanisms

• Stereotypes
• Constraints
• Tagged values

• UML 2.0
– New concepts for depicting software architectures and components

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

2

SPL-3Copyright 2005 H. Gomaa

UML and COMET

• Unified Modeling Language (UML)

– OMG Standardized notation for describing design

– Methodology independent

• Concurrent Object Modeling and architectural design
mEThod (COMET)

– Object Oriented Analysis and Design Method

– Targeted for concurrent, distributed, and real-time
applications

– Uses UML notation

• COMET = UML + Method
• H. Gomaa, “Designing Concurrent, Distributed, and Real-Time

Applications with UML”, Addison Wesley Object Technology Series,
2000

SPL-4Copyright 2005 H. Gomaa

Software Reuse

• Traditional Software Reuse

– Library of reusable code components

– Emphasis on code reuse

• Architecture Reuse

– Focuses on requirements and design reuse

– Much greater potential than code reuse

• Software Product line engineering

– Software engineering for family of products

– Reuse of requirements and architecture

• Application engineering

– Software engineering for one member of family

• Architecture for Software Product Lines

– Captures similarities and variations of product family

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

3

SPL-5Copyright 2005 H. Gomaa

Object-Oriented Analysis and Design (OOAD)
for Software Product Lines

• Unified Modeling Language (UML)

– Standard notation for describing a software design

– Needs to be used with an analysis and design method

• UML notation for OOAD method for single systems

– H. Gomaa, “Designing Concurrent, Distributed, and
Real-Time Applications with UML”, Addison Wesley
Object Technology Series, 2000.

• UML notation for OOAD Method for modeling software
product lines

– H. Gomaa, “Designing Software Product Lines with
UML”, Addison Wesley Object Technology Series,
July 2004

SPL-6Copyright 2005 H. Gomaa

Evolutionary Process Model
for Software Product Lines

Product Line
Engineering

Product
Line

Reuse
Library

Application
Engineering

Product Line
Requirements

Product Line Requirements and
Analysis Models,

Product Line Architecture,
Reusable Components

Application
Application

Requirements

Unsatisfied Requirements, Errors, Adaptations

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

4

SPL-7Copyright 2005 H. Gomaa

Product Line Engineering

SPL-8Copyright 2005 H. Gomaa

Requirements Modeling
What should SPL Design Method provide?

• Support variability in use case
modeling

• Integrate feature modeling with
other UML views

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

5

SPL-9Copyright 2005 H. Gomaa

UML Modeling for Single Systems

• Use Case Model

– Use case diagram

• Static Model

– Class diagram

• Dynamic Model

– State Machine Model

• Statechart

– Interaction Model

• Communication (collaboration) or sequence diagram

SPL-10Copyright 2005 H. Gomaa

UML Modeling for Software Product Lines

• Use Case Model
– Model kernel, optional, and alternative use cases
– Model variation points in use cases

• Static Model
– Model kernel, optional, variant classes and relationships

• Dynamic State Machine Model
– Statechart for each state dependent object

• Dynamic Interaction Model
– Communication diagram for each use case
– Communication diagrams depend on objects in

prerequisite use cases
• Feature modeling

– Model product line variability in software requirements

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

6

SPL-11Copyright 2005 H. Gomaa

Use Case Modeling for
Software Product Lines

• Use Case Model
– Defines functional requirements in terms of use cases

and actors
– Use case describes sequence of interactions between

actor and system
• Single Systems

– All use cases required
– All actors required

• Software product lines
– Kernel use cases
– Optional use cases
– Alternative use cases
– Some actors may be optional

SPL-12Copyright 2005 H. Gomaa

Variation Points in a Use Case Model

• Variation Point

– Location in a use case where a change can take place

• Variation Point can be handled by

– Variation Point within use case

• Identify line # in use case where variability can be
introduced

– Conditional use case relationship

• Extend relationship

– Extend use case if product line condition is True

• Include relationship

– Include use case if product line condition is True

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

7

SPL-13Copyright 2005 H. Gomaa

Developing Use Case Model for
Software Product Lines

•• Kernel First ApproachKernel First Approach

– Develop use cases that are common to all members of
the software product line

• Kernel use cases

• Product Line Evolution Approach

– Start with kernel use case model

– Develop optional and alternative use cases

SPL-14Copyright 2005 H. Gomaa

Developing Use Case Model for Software Product Lines -
Kernel First ApproachKernel First Approach

•• Kernel First ApproachKernel First Approach

– Develop kernel use cases initially

•• Example of Kernel First ApproachExample of Kernel First Approach

– Kernel use case in Microwave Product Line

• Cook Food

• Product Line Evolution Approach

– Address Product Line use case variability

– Cook Food kernel use case

• Several variation points

– Optional use cases in Microwave Product Line
• Set Time of Day
• Display Time of Day
• Cook Food with Recipe

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

8

SPL-15Copyright 2005 H. Gomaa

User
Timer

Cook Food

Use Case Model for Microwave Oven System

• Example of Timing Requirement
- When timer expires, system must

switch off heater within 100 msecs

SPL-16Copyright 2005 H. Gomaa

User
Timer

<<optional>>
Cook Food with Recipe

<<kernel>>
Cook Food

<<optional>>
Set Time of Day

<<optional>>
Display Time of Day

Use Case Model for Microwave Oven Product Line

Categorize use cases
using UML
stereotypes

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

9

SPL-17Copyright 2005 H. Gomaa

Use Case Model for Microwave Oven SPL

Use case name: Cook Food
Reuse category: Kernel
Summary: User puts food in oven, and microwave oven cooks food.
Actors: User (primary), Timer (secondary).
Precondition: Microwave oven is idle.

Description:
1. User opens the door, puts food in the oven, and closes the door.
2. User presses the Cooking Time button.
3. System prompts for cooking time.
4. User enters the cooking time on the numeric keypad and presses the Start Button.
5. System starts cooking the food.
6. System continually displays the cooking time remaining.
7. The timer elapses and notifies the system.
8. System stops cooking the food and displays the end message.
9. User opens the door, removes food from the oven, and closes the door.
10. System clears the display.

Alternatives:
Line 1: Uses presses Start when the door is open. System does not start cooking.
…..

Postcondition: Microwave oven has cooked the food.

SPL-18Copyright 2005 H. Gomaa

Cook Food Use Case - Variation Points

• Lines 3,8: Display Language – Mandatory alternative

– Default = English

– Alternatives = French, Spanish, German, Italian

• Line 1: Weight Sensor – Mandatory alternative

– Default = Boolean weight

– Alternative = Analog weight

• Line 1: Heating Element – Mandatory alternative

– Default = One-level Heating Element

– Alternative = Multi-level Heating Element

• Line 2: Power level – Optional

– Power level buttons = high, medium, or low.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

10

SPL-19Copyright 2005 H. Gomaa

Cook Food Use Case - Variation Points

• Lines 3,4,6,8,10: Display Unit - Mandatory alternative
– Default = one-line display
– Alternative = multi-line display

• Lines 2, 6: Minute plus. Optional
– Add one to cooking time.
– Start cooking if not yet cooking.

• Lines 1,5,8,9: Light – Optional
– Lamp switched on when cooking & when door is open.

• Lines 5,8: Turntable – Optional
– Turntable rotates for duration of cooking

• Line 8: Beeper – Optional
– Switch Beeper on when cooking stops

SPL-20Copyright 2005 H. Gomaa

Use case name: Set Time of Day
Reuse category: Optional
Dependency: Variation point in Cook Food use case: at Display Unit variation point,
select Multi-Line Display
Summary: User sets Time of Day clock
Actor: User
Precondition: Microwave oven is idle
Description:

1. User presses Time of Day (TOD) Button
2. System prompts for Time of Day.
3. User enters the Time of Day by pressing the numeric keypad.
4. System displays the entered Time of Day.
5. User presses start.
6. System starts the Time of Day timer.
7. System increments the Time of Day each second.

Alternatives:

Variation Points
Line 4: 12/24 hour Clock – Mandatory alternative
TOD display is either 12 hour clock or 24 hour clock

Postcondition: TOD clock has been set

Use Case Model for Microwave Oven SPL

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

11

SPL-21Copyright 2005 H. Gomaa

Use Case Model for
Software Product Lines

- View Integration Approach

• Specify use cases for each member of product line

• Compare use cases for different members

• Determine kernel, optional, and alternative use cases

– Kernel use cases needed by all Product Line members

– Optional use cases needed by some Product Line
members

– Alternative use cases are mutually exclusive

SPL-22Copyright 2005 H. Gomaa

Figure 4.13 E-commerce: Example of Reverse Engineering Approach:
Supplier use cases in B2C systems

Confirm
Shipment

Process
Delivery Order

Bill Customer

Supplier

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

12

SPL-23Copyright 2005 H. Gomaa

Figure 4.14 E-commerce: Example of Reverse Engineering Approach:
Supplier use cases in B2B systems

Confirm
Shipment

Process
Delivery Order

Send Invoice

Supplier

SPL-24Copyright 2005 H. Gomaa

Figure 4.15 E-commerce: Example of Reverse Engineering Approach:
Supplier use cases in E-Commerce product line

«kernel»
Confirm
Shipment

«kernel»
Process Delivery

Order

«alternative»
Bill Customer

Supplier

«alternative»
Send Invoice

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

13

SPL-25Copyright 2005 H. Gomaa

Feature Modeling for
Software Product Lines

• Feature (Kang, SEI)

– Function or characteristic that differentiates between
members of the software product line

• Feature modeling

– Very important for SPLs

– PLUS integrates feature modeling with other UML
modeling views

SPL-26Copyright 2005 H. Gomaa

Feature Modeling

• Feature

– Function or characteristic that differentiates between
members of the software product line

• Features are categorized as

– Common features

• Required by all members of product line

– Optional features

• Required by some members of product line

– Alternative features

• Choice of features

• One of the alternatives may be a default feature

– Parameterized feature

• Type, permitted values, default value

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

14

SPL-27Copyright 2005 H. Gomaa

Feature Modeling in UML

• Model feature as a use case

– Can use when a feature is modeled as a use case

• Model feature as a use case package

– Can use when a feature is a grouping of use cases

• Model feature as a class

– Using UML static modeling to model meta-classes

• Feature / use case dependency

– Tabular representation

SPL-28Copyright 2005 H. Gomaa

Figure 5.1 Optional Feature as Use Case Package

User Timer
«optional»

Display Time Of Day

«optional»
Set Time Of Day

«optional feature»
TOD Clock

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

15

SPL-29Copyright 2005 H. Gomaa

Feature Modeling
• Feature Dependencies

– One feature depends on another

– Dependency on common features is implicit

– Dependency on optional features is explicitly specified

• Feature Relationships

– Mutually exclusive features

• Zero or One out of a group of features

– Exactly one of a group of features

• One and only one out of a group of features

– One or more of a group of features

• One or more out of a group of features

– Mutually inclusive

• If one feature is picked, the other must be picked

SPL-30Copyright 2005 H. Gomaa

Feature Modeling with UML

• Derive features from use cases and variation points
– Concentrate on modeling variability

• Use static modeling meta-class notation
– Classes depict features and feature groups

• Features are categorized using UML stereotypes
– <<common feature>>
– <<optional feature>>
– <<alternative feature>>
– <<default feature>>
– <<parameterized feature>>

• Model Feature Dependencies and Feature Relationships

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

16

SPL-31Copyright 2005 H. Gomaa

Feature Notation
• Uses extension mechanisms of UML

– Stereotypes, tagged values, constraints

• «common feature» Feature Name,

– «common feature» Factory Kernel

• « optional feature» Feature Name {prerequisite = P}

– «optional feature» Light, «optional feature» Beeper

• «alternative feature» Feature Name {prerequisite = P}

– «alternative feature» French, «alternative feature» Spanish

• «default feature» Feature Name {prerequisite = P}

– «default feature» English

• « parameterized feature» Feature Name

– «parameterized feature» ATM Password Length
{type = integer, permitted value = 4..8, default value = 4}

SPL-32Copyright 2005 H. Gomaa

Feature Notation

• «zero-or-one-of feature group» Feature Group Name
{Alternative = A1…An, Prerequisite = P}
– «zero-or-one-of feature group» Roof Rack {alternative

= Basic Rack, Ski Rack, Bicycle Rack}
• «exactly-one-of feature group» Feature Group Name

{default = D, alternative = A1…An, prerequisite = P}
– «exactly-one-of feature group» Display Unit {default =

One-line Display, alternative = Multi-line Display}
• «at-least-one-of feature group» Feature Group Name

{default = D, feature = O1, …, On, prerequisite = P}
– «at-least-one-of feature group» Hotel Reservations

{default = Single Booking Reservations, feature =
Block Tourist Reservations, Block Conference
Reservations}

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

17

SPL-33Copyright 2005 H. Gomaa

«alternative
feature»

Basic Rack

«alternative
feature»
Ski Rack

«zero-or-one-of
feature group»

Roof Rack

{mutually exclusive feature}

«alternative
feature»

Bicycle Rack

«alternative
feature»

Multi-line
Display

«default
feature»
One-line
Display

«exactly-one-of
feature group»
Display Unit

{mutually exclusive feature}

«default feature»
Single Booking

Reservations

«optional
feature»

Block Tourist
Reservations

«at-least-one-of
feature group»

Hotel
Reservations

«optional feature»
Block Conference

Reservations

Figure 5.8 Features and Feature Groups in UML

SPL-34Copyright 2005 H. Gomaa

Use Cases and Features in Software Product Lines
• Use Cases

– Define functional requirements of system or SPL
• Features

– Identify reusable requirements
• Use cases

– Basis to determine features in Software Product Lines
• Functional feature modeled as

– One or more use cases reused together
• Feature modeled as use case or use case package

• Use Case Variation Point as feature
– Optional functional requirement within a use case
– Alternative functional requirement within a use case

• Feature / use case dependency
– Can use tabular representation

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

18

SPL-35Copyright 2005 H. Gomaa

Microwave Oven Feature Model

SPL-36Copyright 2005 H. Gomaa

Table 5.1 Feature/use case relationships: microwave oven SPL

Feature Name
Feature
Category Use Case Name

Use Case Category/
Variation Point (vp)

Variation Point
Name

Microwave Oven Kernel common Cook Food kernel

Light optional Cook Food vp Light

Turntable optional Cook Food vp Turntable

Beeper optional Cook Food vp Beeper

Minute Plus optional Cook Food vp Minute Plus

One-line Display default Cook Food vp Display Unit

Multi-line Display alternative Cook Food vp Display Unit

English default Cook Food vp Display Language

French alternative Cook Food vp Display Language

Spanish alternative Cook Food vp Display Language

German alternative Cook Food vp Display Language

Italian alternative Cook Food vp Display Language

Boolean Weight default Cook Food vp Weight Sensor

Analog Weight alternative Cook Food vp Weight Sensor

One-level Heating default Cook Food vp Heating Element

Multi-level Heating alternative Cook Food vp Heating Element

Power Level optional Cook Food vp Power Level

TOD Clock optional Set Time of Day

Display Time of Day

optional

optional

12/24 Hour Clock parameterized Set Time of Day

Display Time of Day

vp 12/24 Hour Clock

Recipe optional Cook Food with Recipe optional

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

19

SPL-37Copyright 2005 H. Gomaa

Product Line Engineering
- Analysis Modeling

SPL-38Copyright 2005 H. Gomaa

Analysis Modeling
What should SPL Design Method provide?

• For product lines
– Support variability

• Static Modeling
• Dynamic Modeling

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

20

SPL-39Copyright 2005 H. Gomaa

Static Modeling for Software Product Lines

• Static Model

– Define structural relationships between classes

– Depict classes and their relationships on class diagrams

• Static Modeling for software product lines

• Depict class categorization using UML stereotypes

– Stereotype defines a new building block that is derived from an
existing UML modeling element but is tailored to the modeler’s
problem

– Depicted using guillemets

• «entity», «interface», «control»

• UML 1.4 upwards supports multiple stereotypes for class

– Use UML stereotypes to depict reuse category

– Use UML stereotypes to depict application role category

SPL-40Copyright 2005 H. Gomaa

Static Modeling for Single Systems

• UML 1.4 upwards supports multiple
stereotypes for a modeling element

• Single systems (COMET)

– Categorize each class by
application role using stereotype

– «control», «entity», «interface»

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

21

SPL-41Copyright 2005 H. Gomaa

Static Modeling for
Software Product Lines

• UML 1.4 upwards supports multiple
stereotypes for a modeling element

• Single systems

– Categorize each class by application role
using stereotype

– «control», «entity», «interface»

• Software Product Lines (PLUS)
– Second UML stereotype depicts

reuse category
– «kernel», «optional», «variant»

SPL-42Copyright 2005 H. Gomaa

Software Product Line Context Model

• Defines boundary between software product line and
external environment

– Depicted on UML product line context class diagram

• Software product line system

– Consider as one aggregate class

• Application role categories of external classes

– «external I/O device», «external user», «external
system», «external timer»

• Reuse categories of external classes

•• Develop using:Develop using:

–– Kernel First Approach or Kernel First Approach or

– View Integration Approach

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

22

SPL-43Copyright 2005 H. Gomaa

Microwave Oven product line
Kernel System context class diagram

SPL-44Copyright 2005 H. Gomaa

Figure 6.6 Microwave Oven product line context
class diagram

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

23

SPL-45Copyright 2005 H. Gomaa

Dynamic Interaction Modeling for Software Product Lines

• Object interaction model

– Defines how objects participate in use cases

– Use communication (collaboration) diagrams or
sequence diagrams

• Software Product Line Interaction model

– Determine objects that participate in each use case

– Determine sequence of messages sent between objects

– Develop at least 1 interaction diagram for each use case

• Kernel communication diagrams

• Optional communication diagrams

• Alternative communication diagrams

SPL-46Copyright 2005 H. Gomaa

Dynamic Analysis
for Software Product Lines

• Kernel First Approach

– Collaboration diagrams for kernel system are similar to
collaboration diagrams for single system

– Only kernel objects participate in kernel collaboration
diagrams

– Kernel system may or may not be a member of product
line

• Software Product Line Evolution

– Start with kernel collaboration diagrams

– Consider optional and alternative collaboration
diagrams

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

24

SPL-47Copyright 2005 H. Gomaa

Communication diagram for Cook Food use case

«product line system»
: MicrowaveOvenSystem

«external timer»
: Clock

«external input device»
 : Keypad

«input device interface»
: KeypadInterface

«timer»
: OvenTimer

«state dependent control»
: MicrowaveOvenControl

«entity»
: OvenData

«external output
device»

: One-lineDisplay

«output device
interface»

: One-lineDisplay
Interface

«external output device»
: One-levelHeatingElement

«output device interface»
: One-levelHeatingElement

Interface

6: Start Key Input

6.1: Start

8: Timer Event

8.1:
Decrement
Cooking
Time

8.2:
Finished

6.2: Start Cooking
8.4 : Stop Cooking

8.3: Timer
Expired

6.2a: Start Timer

6.3: Start Cooking Output
8.5 : Stop Cooking Output

8.3a.3: End
Prompt

8.3a: Display
End prompt

SPL-48Copyright 2005 H. Gomaa

Statechart for Microwave Oven Control

• Incoming message to object-> input event on statechart
• Output event on statechart -> outgoing message from object

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

25

SPL-49Copyright 2005 H. Gomaa

Communication diagram for Cook Food use case

«product line system»
: MicrowaveOvenSystem

«external timer»
: Clock

«external input device»
 : Keypad

«input device interface»
: KeypadInterface

«timer»
: OvenTimer

«state dependent control»
: MicrowaveOvenControl

«entity»
: OvenData

«external output
device»

: One-lineDisplay

«output device
interface»

: One-lineDisplay
Interface

«external output device»
: One-levelHeatingElement

«output device interface»
: One-levelHeatingElement

Interface

6: Start Key Input

6.1: Start

8: Timer Event

8.1:
Decrement
Cooking
Time

8.2:
Finished

6.2: Start Cooking
8.4 : Stop Cooking

8.3: Timer
Expired

6.2a: Start Timer

6.3: Start Cooking Output
8.5 : Stop Cooking Output

8.3a.3: End
Prompt

8.3a: Display
End prompt

SPL-50Copyright 2005 H. Gomaa

Communication diagram for Cook Food use case

«product line system»
: MicrowaveOvenSystem

«external timer»
: Clock

«external input device»
 : Keypad

«input device interface»
: KeypadInterface

«timer»
: OvenTimer

«state dependent control»
: MicrowaveOvenControl

«entity»
: OvenData

«external output
device»

: One-lineDisplay

«output device
interface»

: One-lineDisplay
Interface

«external output device»
: One-levelHeatingElement

«output device interface»
: One-levelHeatingElement

Interface

6: Start Key Input

6.1: Start

8: Timer Event

8.1:
Decrement
Cooking
Time

8.2:
Finished

6.2: Start Cooking
8.4 : Stop Cooking 8.3: Timer

Expired

6.2a: Start Timer

6.3: Start Cooking Output
8.5 : Stop Cooking Output

8.3a.3: End
Prompt

8.3a: Display
End prompt

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

26

SPL-51Copyright 2005 H. Gomaa

Statechart for Microwave Oven Control

• Incoming message to object-> input event on statechart
• Output event on statechart -> outgoing message from object

SPL-52Copyright 2005 H. Gomaa

Communication diagram for Cook Food use case

«product line system»
: MicrowaveOvenSystem

«external timer»
: Clock

«external input device»
 : Keypad

«input device interface»
: KeypadInterface

«timer»
: OvenTimer

«state dependent control»
: MicrowaveOvenControl

«entity»
: OvenData

«external output
device»

: One-lineDisplay

«output device
interface»

: One-lineDisplay
Interface

«external output device»
: One-levelHeatingElement

«output device interface»
: One-levelHeatingElement

Interface

6: Start Key Input

6.1: Start

8: Timer Event

8.1:
Decrement
Cooking
Time

8.2:
Finished

6.2: Start Cooking
8.4 : Stop Cooking

8.3: Timer
Expired

6.2a: Start Timer

6.3: Start Cooking Output
8.5 : Stop Cooking Output

8.3a.3: End
Prompt

8.3a: Display
End prompt

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

27

SPL-53Copyright 2005 H. Gomaa

Figure 7.6 Communication diagram for kernel use case: Cook Food

«product line system»
: MicrowaveOvenSystem

«external input device»
 : DoorSensor

«input device interface»
: DoorSensorInterface

«external timer»
: Clock

«external input device»
 : Keypad

«input device interface»
: KeypadInterface

«timer»
: OvenTimer

«state dependent control»
: MicrowaveOvenControl

«entity»
: OvenData

«entity»
: EnglishDisplay

Prompts

«external output device»
: One-lineDisplay

«output device
interface»

: One-lineDisplay
Interface

«external output device»
: One-levelHeating

Element

«output device interface»
: One-levelHeatingElement

Interface

1,9: Door Opened Input
3:Door Closed Input

1.1,9.1: Door
Opened
3.1: Door Closed

4: Cooking Time Key
Input
5*: Numeric Key Input
6: Start Key Input

4.1: Cooking Time Selected
5.1: Cooking Time Entered
6.1: Start

5.2a: Update
Cooking
Time

7*,8: Timer Event

7.1,8.1:
Decrement
Cooking
Time

7.2: Time left
8.2: Finished

6.2: Start Cooking
8.4 : Stop Cooking

4.2: Prompt for Time
5.2: Display Cooking Time

8.3: Timer Expired

6.2a: Start Timer

6.3: Start Cooking Output
8.5 : Stop Cooking
Output

7.3: Update Cooking time Display
8.3a: Display End Prompt

4.3,8.3a.1: Read

4.4,8.3a.2:
Prompt

4.5: Time Prompt
5.3,7.4: Display Time
8.3a.3: End Prompt

«external input device»
 : BooleanWeightSensor

«input device interface»
 : BooleanWeightSensor

Interface

2,10: Weight
Input

2.1 : Item Placed
10.1 : Item
Removed

SPL-54Copyright 2005 H. Gomaa

Figure 7.12 Communication Diagram for optional
TOD feature

«product line system»
: MicrowaveOvenSystem

«external timer»
: Clock

«external input device»
: Keypad

«input device interface»
: KeypadInterface

«timer»
: TODTimer

«state dependent control»
: MicrowaveOvenControl

«entity»
: OvenData

«entity»
: EnglishDisplay

Prompts

«external output device»
: Multi-lineDisplay

«output device
interface»

: Multi-lineDisplay
Interface

C1: TOD Clock Key Input
C2*: Numeric Key Input
C3: Start Key Input

C1.1: TOD Clock Selected
C2.1: Time Entered
C3.1: Start C2.2a: Update

TOD

T1*: Timer Event

T1.1: Increment
TOD Clock
Time T1.2:

TOD

C1.2: Prompt For
TOD
C2.2: Display TOD

C3.2: Start TOD
Timer

T1.3: Update TOD Display

C1.3: Read

C1.4: Prompt

C1.5: Enter TOD Prompt
C2.3,T1.4: Display TOD

C1.2b: Clear TOD

C1.2a Stop TOD

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

28

SPL-55Copyright 2005 H. Gomaa

State Machine Models for SPLs

• Design statechart for each state dependent class

• Model state machine variability

– Inherited vs Parameterized State Machines

• Inherited State Machine

– Different statechart for each alternative or optional feature

• Disadvantage:

– Each feature & feature combination needs an inherited state
machine

– Leads to combinatorial explosion of inherited state
machines

• Often better to design parameterized state machine

SPL-56Copyright 2005 H. Gomaa

Parameterized State Machine Models

• Design one state machine with states, transitions, events,
actions, corresponding to all features

• Feature dependent transition

– Use feature condition as guard on transition

• Event [Feature Condition]

– Feature condition is

• True if feature Selected

• False if feature not selected

• E.g., Minute Pressed [minuteplus]

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

29

SPL-57Copyright 2005 H. Gomaa

Parameterized Statechart for Microwave Oven Control
(all features)

Feature dependent transition: Minute Pressed [minuteplus]

SPL-58Copyright 2005 H. Gomaa

Parameterized State Machine Models

• Feature dependent action
• Action is only executed if Feature Condition is True

– Action [Feature Condition]
• Switch On [light], Switch Off [light]

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

30

SPL-59Copyright 2005 H. Gomaa

Parameterized Statechart for Microwave Oven Control
(all features)

Feature dependent actions: [light], [beeper]

SPL-60Copyright 2005 H. Gomaa

Parameterized State Machine Models

• Feature dependent state identified by UML constraint

• State can only be entered if Feature is selected

– {feature = recipe} Recipe State

• Transition into state is guarded

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

31

SPL-61Copyright 2005 H. Gomaa

Parameterized Statechart for Microwave Oven Control
(all features)

Feature dependent state (Recipe state)

SPL-62Copyright 2005 H. Gomaa

Figure 8.1 Statechart for Microwave Oven Control (kernel functionality)

Cooking

entry/6.2: Start Cooking

exit/8.4: Stop Cooking

Door Shut Door Open

Door Open
With Item

Door Shut
With Item

Ready To Cook

1.1: Door Opened

Door Closed

2.1: Item Placed 10.1: Item Removed

Door Opened

9.1: Door Opened3.1: Door Closed [Zero Time]

Door Opened/
Stop Timer

Cancel/
Cancel Timer

5.1: Cooking Time Entered/
5.2: Display Cooking Time,
5.2a: Update Cooking Time

8.3: Timer Expired

6.1: Start/
6.2a: Start Timer

Cancel/
Stop Timer

Cooking Time Entered/ Display
Cooking Time,

Update Cooking Time

Door Closed [Time Remaining]

Cancel/Cancel
Timer

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

32

SPL-63Copyright 2005 H. Gomaa

Figure 8.12 Parameterized Statechart for Microwave Oven Control (all features)

Door Shut Door Open

Door Open
With Item

Door Shut
With Item

Ready To Cook

entry/
4M.2a,6.2: Start Cooking,
6.2c: Start Turning [turn],
6.2b: Switch On [light],

exit/
8.4: Stop Cooking,

8.4a: Beep [beeper],
8.4c: Stop Turning [turn]

1.1: Door Opened / 1.2: Switch On[light]

Door Closed / Switch Off [light]

2.1: Item Placed
10.1: Item Removed

Door Opened/
Switch On [light]

Door Opened/
Stop Timer

Cancel/
Cancel Timer

5.1: Cooking Time Entered/
5.2: Display Cooking,
5.2a: Update Cooking Time

8.3: Timer Expired/
8.4d: Clear Power Level [power],8.4b:

Switch Off [light]

6.1: Start/
6.2a: Start Timer

Cancel/
Stop Timer,

Switch Off [light]

Cooking Time Entered/ Display
Cooking Time,

Update Cooking Time

Door Closed [Time Remaining]/
Switch Off [light]

9.1: Door Opened/
9.2: Switch On [light]

3.1: Door Closed [Zero Time]/
3.2: Switch Off [light]

4M.1: Minute Plus[minuteplus]/
4M.2: Start Minute

Cancel/
Cancel Timer

6.11: Minute
Plus[minuteplus]/
6.12: Add Minute

{feature =
recipe}
Recipe

R8.3: Timer
Expired

Cancel

R4.1: Recipe Entered
[recipe]

Item Removed/
Cancel Recipe,
Display Recipe

Cancelled

Cooking

SPL-64Copyright 2005 H. Gomaa

Feature Based Impact Analysis

• Kernel First Approach

– Develop kernel communication diagrams

• Product Line evolution approach

– Consider impact of optional and alternative features on
kernel communication diagrams

• Analyze impact of each feature on kernel communication
diagrams

– Consider optional objects that need to be added

– Consider replacement of default objects with variant
objects

– Consider impact on existing kernel objects that
communicate with optional / variant objects

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

33

SPL-65Copyright 2005 H. Gomaa

Feature Based Impact Analysis

• Kernel First Approach

– Develop kernel interaction diagrams to realize kernel
use cases

• Product Line evolution approach

– Consider impact of optional and alternative features on
kernel

• Analyze impact of each feature

– Optional object(s) can be added

– Variant object can replace default object

– Determine impact on existing kernel objects

• Communicate with optional / variant objects

SPL-66Copyright 2005 H. Gomaa

Communication Diagram For Microwave Oven SPL
- Impact Of Beeper and Light Features

• Optional objects added
• Impact on kernel control object

•Feature dependent messages

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

34

SPL-67Copyright 2005 H. Gomaa

Variation Points in Static Modeling

• A variation point identifies a location at which change will
occur in a software product line

• The variation point also identifies the mechanism for a
reuser to make the change

• Variation point mechanisms

– Abstract classes and inheritance

• Abstract superclass

• Specialized differently for various members of SPL

– Parameterization

• Configuration Parameters

• Different values for different members of SPL

SPL-68Copyright 2005 H. Gomaa

Abstract Classes in Software Product Lines

• Abstract Class

– Defines common interface for subclasses

– Defers implementation of operation(s) to subclasses

– Captures common properties for all related classes

– Often represents kernel class

– Could also be optional

• Subclasses are variant classes

– Inherit common properties from abstract superclass

– Extend with variant properties

• New attributes

• New operations

• Alternative implementations of abstract operations

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

35

SPL-69Copyright 2005 H. Gomaa

Figure 9.1 Example of abstract superclass and subclasses

«variant»
«entity»

SavingsAccount

- cumulativeInterest : Real = 0
- debitCount : Integer = 0
- maxFreeDebits : Integer = 3
- bankCharge : Real = 2.50

+ credit (amount : Real)
+ debit (amount : Real)
+ clearDebitCount()
+ addInterest (interestRate : Real)
+ readCumulativeInterest () : Real

«default»
«entity»

CheckingAccount

- lastDepositAmount : Real = 0

+ credit (amount : Real)
+ debit (amount : Real)
+ readLastDepositAmount() : Real

«kernel-abstract-vp»
«entity»
Account

accountNumber : Integer
balance : Real = 0
+ open (accountNumber : Integer)
credit (amount : Real)
debit (amount : Real)
+ readBalance () : Real
+ close ()

SPL-70Copyright 2005 H. Gomaa

Variant vs. Parameterized Classes
• Abstract superclass and variant subclasses

– Advantage

• Isolates each variation in one variant class

• A variant class is impacted by only one feature

– Disadvantage

• Could lead to combinatorial explosion of variant classes

• Parameterized Classes

– Advantage

• One parameterized class instead of many variant classes

– Disadvantage

• A parameterized class can be impacted by more than one
feature

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

36

SPL-71Copyright 2005 H. Gomaa

Figure 9.2 Example of parameterized class

«kernel-param-vp»
«entity»

OvenData

- cookingTime : Integer = 0 {range >=0}
- selectedPowerLevel : powerType = High {Range = High, Medium, Low} {feature = Power Level}
- itemWeight : Real = 0.0 {range > 0} {feature = Analog Weight}
- selectedRecipe : Integer = 0 {range > 0}{feature = Recipe}
- TODvalue : Time = 12:00 {feature = TOD Clock}
- TODmaxHour : Time = 12:00 {permitted value = 12:00, 24:00} {feature = TOD Clock}

SPL-72Copyright 2005 H. Gomaa

Feature / Class Dependencies

• For each optional or alternative feature, define

– Optional and/or variant classes required to support feature
– If feature has prerequisite features

• Classes in feature may use classes in prerequisite features
– Features determine which classes can co-exist in same

system

• Some variants are mutually exclusive

– Used by different members of product line

– E.g., High Volume Workstation Controller, Flexible
Workstation Controller, Monitoring Workstation Controller

• Some variants co-exist in same system

– E.g., High Volume Workstation Controller, Receiving
Workstation Controller, Shipping Workstation Controller

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

37

SPL-73Copyright 2005 H. Gomaa

Table 9.1 Feature/class dependencies: microwave oven SPL

Feature Name
Feature
Category Class Name

Class Reuse
Category Class Parameter

Microwave Oven
Kernel

common Door Sensor Interface

Weight Sensor Interface

Keypad Interface

Heating Element Interface

Display Interface

Microwave Oven Control

Oven Timer

Oven Data

Display Prompts

kernel

kernel-abstract-vp

kernel-param-vp
kernel-abstract-vp

kernel-abstract-vp

kernel-param-vp

kernel-param-vp

kernel-param-vp
kernel-abstract-vp

Light optional Lamp Interface
Microwave Oven Control

optional
kernel-param-vp light : Boolean

Turntable optional Turntable Interface
Microwave Oven Control

optional
kernel-param-vp turntable : Boolean

Beeper optional Beeper Interface
Microwave Oven Control

optional
kernel-param-vp beeper : Boolean

Minute Plus optional Keypad Interface

Microwave Oven Control
Oven Timer

kernel-param-vp
kernel-param-vp
kernel-param-vp

minuteplus : Boolean
minuteplus : Boolean
minuteplus : Boolean

One-line Display default One-line Display Interface default

Multi-line Display alternative Multi-line Display
Interface

variant

English default English Display Prompts default

French alternative French Display Prompts variant

Spanish alternative Spanish Display Prompts variant

German alternative German Display Prompts variant

Italian alternative Italian Display Prompts variant

SPL-74Copyright 2005 H. Gomaa

Product Line Engineering
– Design Modeling

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

38

SPL-75Copyright 2005 H. Gomaa

Component-based Distributed Software
Architecture

• Executes on multiple nodes in distributed configuration

– Consists of distributed components

• Distributed component

– Well-defined provided and required interfaces

– Concurrent object

– Logical unit of distribution and deployment

– Communicates with other components using messages

– Structure

• Composite object consisting of other objects

• Simple object

– Capable of being reused

SPL-76Copyright 2005 H. Gomaa

Modeling Components in UML 2.0

• Components
– Modeled as UML 2.0 structured classes
– Depicted on UML 2.0 composite structure diagrams

• Components
– Communicate with each other through ports

• Port
– Consists of provided and/or required interfaces

• Connector
– Joins required port of one component to provided port of

another component

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

39

SPL-77Copyright 2005 H. Gomaa

Design of individual components

SPL-78Copyright 2005 H. Gomaa

Design of “plug compatible” components

• Connector
• Joins required port of

one component to
provided port of another
component

• Microwave Control
can be connected to
either version of
Microwave Display
– Less variability

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

40

SPL-79Copyright 2005 H. Gomaa

Design of Composite Component

SPL-80Copyright 2005 H. Gomaa

Software Design and Architectural Patterns

• Design Patterns

– Small group of collaborating objects

– Gang of Four (Gamma, Helms, Johnson, Vlissides)

• Software Architectural Patterns

– Recurring architectures used in various software
applications

– Buschmann, etc. at Siemens

• Architectural Structure Patterns

– Address structure of major subsystems of system or PL

• Architectural Communication Patterns

– Reusable interaction sequences between components

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

41

SPL-81Copyright 2005 H. Gomaa

Architectural Structure Patterns
for Software Product Lines

• Layered patterns very important in SPLs
– Layers of Abstraction
– Kernel

• Client/Server patterns
– Basic Client/Server
– Client/Broker/Server
– Client/Agent/Server

• Control Patterns very important in RT Design
– Centralized Control
– Distributed Control
– Hierarchical Control

SPL-82Copyright 2005 H. Gomaa

Architectural Structure Patterns
for Software Product Lines

• Layers of Abstraction
– Structure product line into hierarchical levels
– Each layer provides services for higher layers

• Layers of Abstraction in Product Lines
– Allows use of subsets and extensions
– Lower layers do not depend on upper layers

• Kernel components at lowest layer
– Higher layers depend on lower layers

• Optional and variant components at higher layers
• Kernel Pattern in Software Product Lines

– Kernel of product line is at lowest layer of hierarchy
– Optional and variant components at higher layers

depend on kernel components in kernel layer

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

42

SPL-83Copyright 2005 H. Gomaa

Figure 10.1 Example of layers of abstraction pattern
- ISO open systems interconnection reference model

Session LayerLayer 5

Transport Layer Layer 4

Network LayerLayer 3

Data Link LayerLayer 2

Physical LayerLayer 1

Application LayerLayer 7

Presentation LayerLayer 6

SPL-84Copyright 2005 H. Gomaa

Centralized Control Pattern
E.g., Microwave Oven Control

• Centralized Control Pattern

– One control component

• Executes statechart

– Receives sensor input
from input components

– Controls external
environment via output
components

«kernel»
«input component»

DoorComponent

«variant»
«input component»
WeightComponent

«kernel-param-vp»
«input component»
KeypadComponent

«variant»
«output component»

HeatingElementComponent

«variant»
«output

component»
MicrowaveDisplay

«kernel»
«control component»

MicrowaveControl

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

43

SPL-85Copyright 2005 H. Gomaa

Architectural Communication Patterns for Software
Product Lines

• Peer-to-Peer Communication Patterns
– Asynchronous communication
– Bi-directional asynchronous communication

• Client/Server Communication Patterns
– Synchronous communication with reply
– Synchronous communication with Callback

• Very important for evolutionary design:
• Broker Communication Patterns

– Broker forwarding
– Broker handle
– Discovery

• Group Communication Patterns
– Broadcast
– Subscription/notification (Multicast)

SPL-86Copyright 2005 H. Gomaa

Software Architecture for Microwave Oven - asynchronous
communication Pattern

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

44

SPL-87Copyright 2005 H. Gomaa

Evolutionary Process Model
for Software Product Lines

Product Line
Engineering

Product
Line

Reuse
Library

Application
Engineering

Product Line
Requirements

Product Line Requirements and
Analysis Models,

Product Line Architecture,
Reusable Components

Application
Application

Requirements

Unsatisfied Requirements, Errors, Adaptations

SPL-88Copyright 2005 H. Gomaa

Software Application Engineering

• Software Application

– Member of software product line

• Software Application Engineering

– Derive application architecture from SPL architecture

• Select application features subject to

– Feature dependencies and relationships

• Derive software application architecture

– Kernel components always selected

– Optional and variant components correspond to features
selected

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

45

SPL-89Copyright 2005 H. Gomaa

Microwave Oven Application
Feature Model

«common
feature»

Microwave
Kernel«exactly-one-of

feature group»
DisplayUnit «exactly-one-of

feature group»
HeatingElement

«optional
feature»

MinutePlus

«optional
feature»

Light

«optional
feature»

Turntable

«optional
feature»
Beeper

«default
feature»

One-lineDisplay

«alternative
feature»

Multi-lineDisplay

«default feature»
One-

levelHeating

«alternative
feature»

Multi-levelHeating

«optional
feature»

TODClock

mutually
includes

requires

requires

requiresrequires

requires

requires

SPL-90Copyright 2005 H. Gomaa

Figure 12.7 Use Case model for Microwave Application

User
Timer

«optional»
Cook Food with Recipe

«kernel»
Cook Food

«optional»
Set Time of Day

«optional»
Update Time of Day

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

46

SPL-91Copyright 2005 H. Gomaa

Table 12.1 Microwave oven application:
feature/use case dependencies

Feature Name
Feature
Category Use Case Name

Use Case
Category/
Variation
Point (vp) Variation Point

Microwave Oven Kernel common Cook Food kernel

Light optional Cook Food vp Light

Beeper optional Cook Food vp Beeper

Multi-line Display alternative Cook Food vp Display Unit

French alternative Cook Food vp Display Language

Boolean Weight default Cook Food vp Weight Sensor

One-level Heating default Cook Food vp Heating Element

TOD Clock optional Set Time of Day
Display Time of Day

optional
optional

12/24 Hour Clock parameterized Set Time of Day
Display Time of Day

optional 12/24 Hour Clock

SPL-92Copyright 2005 H. Gomaa

Figure 12.8 Microwave Oven Application context class
diagram

«product line system»

MicrowaveOven
Application

«kernel»
«external input device»

DoorSensor

«variant»
«external output device»

OneLevelHeating
Element

«variant»
«external input device»

BooleanWeightSensor

«kernel»
«external timer»

Clock

«kernel»
«external input device»

Keypad

«optional»
«external output device»

Lamp

«optional»
«external output device»

Turntable

«variant»
«external output device»

Multi-lineDisplay

«optional»
«external output device»

Beeper
Inputs

To

Inputs
To

Awakens

Inputs
To

Outputs
To

Outputs
To

Outputs
To

Outputs
To

Outputs
To

1

1

0..1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

47

SPL-93Copyright 2005 H. Gomaa

Table 12.2 Microwave oven application: feature/class dependencies

Feature Name
Feature
Category Class Name

Class Reuse
Category Class Parameter

Microwave Oven
Kernel

common Door Sensor Interface

Weight Sensor Interface

Keypad Interface

Heating Element Interface

Display Interface

Microwave Oven Control

Oven Timer

Oven Data

Display Prompts

kernel

kernel-abstract-vp
kernel-param-vp
kernel-abstract-vp

kernel-abstract-vp
kernel-param-vp
kernel-param-vp

kernel-param-vp
kernel-abstract-vp

Light optional Lamp Interface
Microwave Oven Control

optional
kernel-param-vp light : Boolean

Beeper optional Beeper Interface
Microwave Oven Control

optional
kernel-param-vp beeper : Boolean

Multi-line Display alternative Multi-line Display Interface variant

French alternative French Display Prompts variant

Boolean Weight default Boolean Weight Sensor
Interface

default

One-level Heating default One-level Heating Element
Interface

default

TOD Clock optional TOD Timer
Keypad Interface
Microwave Oven Control
Oven Data

optional
kernel-param-vp
kernel-param-vp
kernel-param-vp

TODClock : Boolean
TODClock : Boolean
TODvalue : Real

12/24 Hour Clock Parameterized Oven Data kernel-param-vp TODmaxHour : Integer

SPL-94Copyright 2005 H. Gomaa

Software Architecture for Microwave Oven Application - Component
Structuring

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

48

SPL-95Copyright 2005 H. Gomaa

Figure 12.14 Software architecture for Microwave Oven
Application - message communication

«product line system»
: MicrowaveOvenSystem

«variant»
«external output device»

: Multi-lineDisplay

«variant»
«external output device»

: One-levelHeatingElement

«kernel»
«external input device»

: Keypad

«variant»
«external input device»
: BooleanWeightSensor

«kernel»
«external input device»

: DoorSensor

Timer
Event Door Input Weight Input

Keypad Input

sendControlRequest (keypadEvent)

displayPrompt (promptId)
displayTime (time)
displayTOD (TOD)

startCooking (level)
stopCooking ()

Heating Element Output Display Output

sendControlRequest (doorEvent)
sendControlRequest (weightEvent)

«optional»
«external output device»

: Beeper

«optional»
«external output device»

: Lamp

Lamp Output
Beeper
Output

switchOn ()
switchOff ()

beep ()

«kernel»
«external timer»

: Clock

«kernel»
«input component»
: DoorComponent

«default»
«input component»

: BooleanWeightComponent

«kernel-param-vp»
«input component»

: KeypadComponent

«default»
«output component»

: One-levelHeatingElementComponent

«optional»
«output component»
: LampComponent

«optional»
«output component»
: BeeperComponent

«kernel»
«control component»
: MicrowaveControl

«variant»
«output component»

: Multi-lineMicrowaveDisplay

SPL-96Copyright 2005 H. Gomaa

Microwave Oven Application architecture

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

49

SPL-97Copyright 2005 H. Gomaa

Figure 12.16 Distributed Application Configuration

DoorComponent
{1 node}

BooleanWeightComponent
{1 node}

KeypadComponent
{1 node}

«high speed bus»

One-levelHeatingElementComponent
{1 node}

Multi-lineMicrowaveDisplay
{1 node}

BeeperComponent
{1 node}

LampComponent
{1 node}

MicrowaveControl
{1 node}

SPL-98Copyright 2005 H. Gomaa

Review

• Software Product Line

– Family of products / systems

– Some common components, some optional, some variant

• Designing Software Product Lines

– Object Oriented Analysis and Design of Software Product Lines

– Emphasis on modeling commonality and variability in software
product lines

• Unified Modeling Language (UML)

– Standardized notation for object-oriented development

– UML notation extended to model software product lines

– H. Gomaa, “Designing Software Product Lines with UML: From
Use Cases to Pattern-based Software Architectures”, Addison
Wesley Object Technology Series, July 2004

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 26, 2009 at 19:41 from IEEE Xplore. Restrictions apply.

