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Privacy for the Twenty-First Century:
Cryptography

e Internet is everywhere today. E-mail is as
common as a telephone call, and every com-
pany includes its Web site in its advertise-

ments. The Internet economy was expected to sur-
pass $1.3 trillion by summer 2000 (Must Read
1999a), and online retailing was expected to gener-
ate $36 billion in revenue in 1999, a 250 percent
increase over 1998 (Must Read 1999b). In the pres-
ent millennium, daily life at all levels will increas-
ingly depend on the transmission over public lines
of sensitive, private data, whether it is payment
information or personal e-mail. Since "nearly 60% of
US consumers think that transactions made via the
Internet are unsafe" (Must Read 1999a), the ulti-
mate success of the Internet economy depends on
the ability to guarantee privacy on public systems.
Cryptography and secure cryptosystems will help
protect the privacy of all computer users, ranging
from government and military organizations to the
individual user at home.

Cryptography, from the Greek kryptos ("hidden")
and graphein ("to write"), is defined as the creation
of systems to render a message unintelligible to
unauthorized readers. Cryptanalysis, in contrast, is
the practice of breaking codes, usually when the
key is not known. Cryptology is the study of the two
disciplines. Every cryptographic system consists of
taking a message called plaintext, applying a cipher
or code associated with a particular key that enci-
phers or encodes the message, and producing
ciphertext. After the message is received, the right-
ful recipient, who possesses the key, can decipher or
decode the message (Kahn 1967, p. xv).

Cryptography has been used since the first time
that a secret message was sent through a third
party. Early cryptosystems were crude, employing a
simple letter shift, and reached a pinnacle with
Germany's Enigma machine during World War II.
Enigma was a portable, battery-powered machine
that allowed the user to produce ciphertext one
character at a time with a series of removable and
interchangeable rotors (Kahn 1967, pp. 420-22).

Today, with the advent of e-mail and the Internet,
privacy and security have become a concern to com-

puter users on all levels. One method of increasing
the privacy of all this traffic is to encrypt it, thereby
preventing unauthorized users from accessing pri-
vate information. All cryptosystems rely on keys,
and in conventional systems the same key, called a
symmetric key, is used for both encrypting and
decrypting. According to Zimmerman (1998, p. 111),
one problem is that this key must be "transmitted
over a secure channel-a process that is often
inconvenient. After all, if a secure channel exists,
why is encryption needed in the first place?" Diffie
and Hellman removed this restraint in 1976 with
their groundbreaking article "New Directions in
Cryptography," in which they described their work
on a revolutionary new kind of cryptosystem.

In their article, Diffie and Hellman gave the first
description of a new type of cryptosystem, called
public-key cryptography. This new system was revo-
lutionary because it removed the need for a sym-
metric key. In a public-key cryptosystem, the
sender (Alice) and the receiver (Bob) each generate
two keys, an enciphering key e, which can be pub-
lished in a public file, and a related deciphering key
d, which is kept secret. If Alice wants to send a
message to Bob, she simply looks up Bob's enci-
phering key eB, enciphers her message using eB,

and sends it to Bob over a regular and possibly
insecure channel. Only Bob, who knows his own
secret deciphering key dB, can decipher the mes-
sage. The strength of a public-key system lies in
choosing the keys so that the process is not
reversible. What we want are asymmetric keys: it
should be "computationally infeasible to derive d
[the deciphering key] from e [the public enciphering
key]" (Hellman 1979, p. 147). This "irreversibility"
is achieved through mathematical processes that
are easy to compute in one direction but exceeding-
ly difficult and slow to solve in the other. The two
main public-key cryptosystems are Diffie-Hellman,
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which uses discrete logarithms, and the system
that we discuss in this article, RSA, which is based
on the difficulty of factoring large numbers
(Zimmerman 1998, p. 112).

RSA is one of the most popular public-key crypto-
systems in use in the world today. The name RSA
comes from the last names of its three inventors:
Ronald L. Rivest, Adi Shamir, and Leonard Adelman.
The RSA encryption system uses a large number n,
which is the product of two large primes, p and q, to
construct an enciphering function f and a decipher-
ing function f 1. To construct the enciphering func-
tion, we first need to choose an enciphering key, e,
that is relatively prime to (p (n) = (p - 1)(q - 1), the
Euler phi function (the number of positive integers
relatively prime to n but not greater than n). If our
segment of plaintext is Pi, we define the encipher-
ing function,

I f(Pi) = Pf (mod Pv)

which creates a segment of ciphertext, Ci.
The deciphering function is constructed by first

defining a number b as

b= [p-,q-l1],

the least common multiple ofp -1 and q - 1. The
deciphering key, d, is defined as the least positive
solution of

e x- x1(modb).

Using d, the deciphering function is defined as

f-'(Cj) = C; (mod n),

which returns our plaintext segment, Pi.
In practice, to prevent unauthorized deciphering

by powerful computers, p and q are about one hun-
dred digits long, making n = pq about two hundred
digits long. Vanden Eynden (1987) describes a
method that illustrates how RSA encryption works
for smaller numbers, say, p = 29 and q = 41, with
product n = 1189.

If Alice wants to send Bob a message, for exam-
ple, she first needs to get Bob's encryption informa-
tion: his enciphering key eB and n. Bob has previ-
ously chosen n = 1189 and eB = 3, which is
relatively prime to T(1189) = 1120. Usually, Bob's
choices of n and e would be publicly available, pos-
sibly printed in some type of directory, butp and q
are kept totally secret, even to Alice. Alice would
then use any simple conversion to convert the mes-
sage to numerical form and to break the resulting
sequence into segments having fewer digits than n.
For this example, we use a numerical conversion in
which A converts to 01, Z converts to 26, and a
space converts to 00. If, for example, Alice wants to
send the message "MATHEMATICS," then the
sequence of digits is

13 01 20 08 05 13 01 20 09 03 19.

Since n = 1189 has four digits, we break the mes-
sage into three-digit blocks, resulting in the
sequence PI, P2,... (P for plaintext)

130 120 080 513 012 009 031 900,

with two zeros appended to make the last block
also three-digit.

At this stage, the plaintext blocks are enciphered
using f(Pi), resulting in Cl, C2, . . . (C for cipher- '
text). Since n and eB are public information, Alice
can encipher her message for Bob. In this example,
f(Pj) = Pis (mod 1189) and the message is enciphered
as shown in figure 1.

Therefore, the enciphered message that Alice
would send to Bob is

917 383 730 692 539 729 066 320.

This message seems to have little, if any, relation-
ship to the original message.

After receiving Alice's message, Bob needs to de-
cipher it. First, Bob computes b = 280 and dB = 187.
Bob can then decipher the message using f1 (Pi),
producing Pl, P2.... In this example, f[1 (CQ) =
C,187 (mod 1189) and the message is deciphered as
shown in figure 2.

The result, which reproduces our original plain-
text, is as follows:

130 120 080 513 012 009 031 900

MATHEMATICS TEACHER

P1 = 130 f(P ) = 1303 (mod 1189) Cl = 917
P2 = 120 f(P2) = 1203 (mod 1189) C2 = 383
P3 = 80 f(P3) = 803 (mod 1189) C3 = 730
P4= 513 f(P4 ) = 513 3 (mod 1189) C4 = 692
P5 = 12 f(P5) = 123 (mod 1189) C5 = 539
P6 = 9 f(P6) = 93 (mod 1189) C6 = 729
P7 = 31 f (P7) = 313 (mod 1189) C7 = 66
P8 = 90O f(P8) = 9003 (mod 1189) C8 = 320

Fig. 1
Enciphering the message

Cl = 917 f(Cl) = 917.87 (mod 1189) P1 = 130
C2 = 383 f(C2) = 383187 (mod 1189) P2 = 120
C3 = 730 f(CO) = 730157 (mod 1189) P3 = 80
C4 = 692 f(C4) = 692187 (mod 1189) P4 = 513
C5 = 539 f(C5) = 539187 (mod 1189) P5 = 12
C6 = 729 [(C6) = 729187 (mod 1189) P6 = 9
C7= 66 (C7) = 66187 (mod 1189) P7 = 31
C8 = 320 f(C8 ) = 320187 (mod 1189) P8 = 900

Fig. 2
Deciphering the message
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Regrouping results in

13 01 20 08 05 13 01 20 09 03 19.

Finally, converting back to letters, we get "MATHE-
MATICS," the original message.

The question next arises: Why does this process
work? Namely, why does applying f' to our cipher-
text segment, Ci, bring back the plaintext segment
Pi? If we have plaintext segment Pi, the correspond-
ing ciphertext Ci is defined as

f(Pi) = Ci-Pf (mod n),

which is deciphered by computing

f-4 (Ci) = Pi Cjd(mod n).

We would like to show that P1 = Pi. Since they
are both nonnegative numbers less than n, showing
that

Pi = Pi (mod n)

will suffice. Using the definitions of Ci and P1, we
see that

pI =pe)d pide (mod n).

We next let de = 1 + kb. If (p, P) = 1, then

PP =pi (modp)

and

pP- _= 1 (modp)

by Fermat's little theorem, which states that if p is
a prime number and a is any integer, then aP * a
(mod p). Then

pikb 1 (modp),

since p -1 divides b. Multiplying both sides by Pi,
we get

Pkb+ _= Pi (modp).

Thus,
pdle = pkb+1 _ Pi (modp),

and this congruence is clearly true ifp divides Pi. In
the same way,

P=e = Pi (mod q).

Thus,

Pde - Pi (mod n)

because if (a, b) = 1, then z' - z (mod a) and z'
z (mod b) if and only if z' - z (mod ab). Also, P, =Pi,
since Pi - PO (mod n).

As previously stated, the RSA cryptosystem's secu-
rity depends on the difficulty of factoring the large
number n. As Vanden Eynden (1987, p. 142) indicates,

a person trying to read the messages sent to us by fac-
toring n will have to factor a number of 200 digits....
Even at one million operations per second, this will

take about 1094 seconds, or about 3.1086 years.... It
turns out that even if the best methods presently
known are used, it can be estimated that factoring a
200-digit number will take our imaginary computer
about four billion years. By that time, we won't care
who reads our mail. I

This system is only as secure as the current factor-
ing methods are slow and inefficient. If a much
faster computer or more efficient factoring methods
are developed, RSA will become obsolete.

The uses of the increased security of advanced
cryptosystems like RSA have prompted an ethical
debate about the needs of the public as opposed to
the needs of the government. The growth of the
Internet economy has vastly increased the amount
of sensitive data passing through public telephone
and computer lines every day. Consumers want to
keep private information out of unauthorized
hands. However, police and intelligence services
have a legitimate need to secretly gather informa-
tion on terrorists and organized crime groups. The
type of strong encryption represented by RSA can
render a wiretap useless. This debate is ultimately
between the civil libertarians, who insist on the pri-
vacy of the individual, along with businesses, which
want to guarantee the security of transactions, and
the "forces of law and order," which want to keep
strong cryptography out of public hands. Simon
Singh asks, "Which do we value more-our privacy
or an effective police force? Or is there a compro-
mise?"(1999, p. xi).

Cryptography and the RSA algorithms are rich
topics for mathematics classes on many levels.
Gorini (1996) describes a student workshop she cre-
ated that uses a simpler set of encryption and
decryption keys and that allows students to send
their own secret messages. This workshop would
work very well in any class in which the students
have discussed the laws of exponents and modular,
or clock, arithmetic. A more in-depth discussion of
the inner workings of RSA would be appropriate in
an advanced high school or college class, where it
could highlight one of the most important uses of
number theory.

As we enter the twenty-first century, the Inter-
net economy is booming. More and more private
information will be broadcast through public lines.
Such encryption systems as RSA use very simple
but nonreversible mathematical operations to
ensure the privacy of data. As Singh said, "[Cryp-
tography] will provide the locks and keys of the
information age" (1999, p. xi). Although G. H.
Hardy thought that mathematics had nothing prac-
tical to offer to the world, RSA encryption has
proved him wrong ... even if it is an application of
something that mathematicians cannot do.
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Similarly, the key of D is inverted across C to

IO(2) = [-2 - 4112 = [-6112= [6112 = F 

We summarize these changes in figure 18. The
keys of E (4) and B1' (10) are invariant. We observe
that the key changes produced by inverting about
C can be visualized by a reflection across a line
through E and B I on the circle of fifths, as shown in
the first picture in figure 19. Likewise, we can eas-
ily verify that the key changes produced by invert-
ing across any other note can be represented by a
similar reflection across a line through the invari-
ants. (Question: Why is it true that Ip+6(x) = Ip(x)?)

CONCLUSION
When people are asked how mathematics is gener-
ally used in the world, their responses usually have
to do with the practical side of the discipline related
to physics, engineering, business, and similar
fields. Rarely do they think of the arts or music,
since appreciation and invention within these
domains are often considered to spring from the
soul. People are always surprised to learn that
most mathematicians would heartily agree that the
soul is the wellspring of mathematical thought.
Indeed, one might argue that the richness of the
soul offers the most ideal environment for mathe-
matics to send down its deepest roots. Why? As
Edward Rothstein (1995, p. xv) said of his college
days, "Music and math together satisfied a sort of
abstract 'appetite,' a desire that was partly intellec-
tual, partly aesthetic, partly emotional, partly,
even, physical." The occurrence of patterns is the
lifeblood of the permeation of mathematics through
our existence, and nowhere are the creation and
"feel" for patterns more prevalent than in the com-
position and enjoyment of music.

One thing he discovered ... was that music held more
for him than just pleasure. There was meat to it.
What the music said was that there is a right way for
things to be ordered so that life might not always be
just tangle and drift but have a shape, an aim. It was
a powerful argument against the notion that things
just happen.

-Charles Frazier, Cold Mountain
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