
University of California

Los Angeles

Data Models and Query Languages of

Spatio�Temporal Information

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Cindy Xinmin Chen

����

c� Copyright by

Cindy Xinmin Chen

����

The dissertation of Cindy Xinmin Chen is approved�

Alfonso F� Cardenas

D� Stott Parker

Daniel Valentino

Carlo Zaniolo� Committee Chair

University of California� Los Angeles

����

ii

To my parents

iii

Table of Contents

� Introduction �

��� State of the Art �

����� Temporal Databases �

����� Spatial Databases �

����� Spatio	Temporal Databases � � � � � � � � � � � � � � � � �

��� Proposed Approach �

��� Outline of the Dissertation ��

� SQLT ��

��� TSQL� ��

��� Explicit Time Queries �

����� Schema de�nition in SQLT � � � � � � � � � � � � � � � � � � ��

����� Temporal Selection and Join � � � � � � � � � � � � � � � � � ��

����� The VALID Clause ��

��� Interval	Oriented Reasoning ��

��� Temporal Aggregates �

��� Dealing with Periods ��

��
 Summary �

� Implementation of SQLT ��

��� The Temporal Query Language ��

����� Schema De�nition ��

iv

����� Temporal Selection and Join � � � � � � � � � � � � � � � � � ��

����� Interval	Oriented Reasoning and Temporal Aggregates � � ��

��� Internal Model ��

����� Usefulness	Based Management � � � � � � � � � � � � � � � � ��

��� Built	in Translation From External Relations to Internal Model � ��

��� Summary �
�

� Properties of Spatial Objects ��

��� Spatial Relationships and Operations � � � � � � � � � � � � � � � �
�

��� Triangulation �
�

����� Algorithm of Polygon Triangulation � � � � � � � � � � � � �
�

��� Spatial Relationships Between Triangles � � � � � � � � � � � � � � �

��� Spatial Operations on Points� Lines and Triangles � � � � � � � � � �

��� Spatial Relationship Between Polygons � � � � � � � � � � � � � � � �

��
 Summary �

� A Concrete Model of Spatio�Temporal Data � � � � � � � � � � � �	

��� SQLST ��

��� Implementation �

����� Built	in Functions �

����� AXL �

����� Temporal Aggregates ��

����� Spatial Aggregates ��

����� Spatio	Temporal Aggregates � � � � � � � � � � � � � � � � � �

v

��� Performance �

��� More Abstract Representations ���

����� Schema De�nition ��

����� Spatio	Temporal Queries ��

��� Future Work ���

��
 Summary ���

� Conclusions ���

References ���

vi

List of Figures

��� Allen�s interval operators ��

��� An example of counterclockwise directed triangle � � � � � � � � �

��� A trapezoidation of � line segments � � � � � � � � � � � � � � � � �
�

��� �a� A polygon� �b� Trapezoids inside the polygon� �c� Introducing

diagonals �

��� Example of Relationships Between Triangles � � � � � � � � � � � � �

��� Performance result of Query �� ��

��� Performance result of Query �� ���

��� Performance result of Query �� ���

��� Performance result of Query �� ���

��� Graphs representing spatio	temporal data � � � � � � � � � � � � � ���

vii

List of Tables

��� Semantics of Allen�s operators on PERIOD � � � � � � � � � � � � � �

��� Semantics of Allen�s operators on PERIODSET � � � � � � � � � � ��

��� Abstract model of the spatio	temporal data shown in Figure ��� � ���

��� Concrete model of the spatio	temporal data shown in Figure ��� � ���

viii

Acknowledgments

I would like to express my sincere thanks and appreciation to my advisor�

Professor Carlo Zaniolo� for his continuous advice� guidance� and support� His

profound knowledge and kindness will always be an inspiration�

I am also grateful to Professors Alfonso F� Cardenas� D� Stott Parker and

Daniel Valentino for their participation in my doctoral committee and taking the

time to guide me through my dissertation�

Last� I am thankful to my colleagues Jiejun Kong for his contribution to the

implementation of SQLT and to Haixun Wang for his help with the AXL system�

ix

Abstract of the Dissertation

Data Models and Query Languages of

Spatio�Temporal Information

by

Cindy Xinmin Chen

Doctor of Philosophy in Computer Science

University of California� Los Angeles� ����

Professor Carlo Zaniolo� Chair

In this dissertation� we extend database models and query languages to sup	

port spatio	temporal information� including representations for changing posi	

tions and shapes� Furthermore� we propose techniques to support spatio	temporal

extensions on Object	Relational systems and achieve end	user extensibility�

We begin from temporal data models and query languages� Our approach is

based upon a point	based representation of time enhanced with user	de�ned ag	

gregates that support interval	oriented operators such as duration and during�

This approach provides several advantages� since it solves the coalescing prob	

lem� minimizes extensions required from SQL� and it is applicable to all query

languages�

Then� we extend the time model at the physical level to spatio	temporal

databases� As the basis of our implementation� we introduce counterclockwise	

directed triangles as our core spatial abstract data type� Then� user	de�ned	

aggregates are introduced to support spatial operators such as contain and

overlap� and spatial	temporal operators such as moving distance� Finally�

we represent moving objects as sequences of snapshots of spatial objects such as

x

points� lines and polygons�

To reconcile logical and physical requirements� we follow an implementation

approach based on a layered architecture� Thus� for temporal information� point	

based representations are mapped to an interval	oriented representation at the

internal level� Likewise� we map polygon	based representations into a triangle	

based internal representation� We implement these mappings through query

transformations� and user	de�ned aggregates�

A �nal advantage of our approach is that it allows end	users to further extend

and customize their system� in fact in our SQLST system� users can extend

database functionality by writing new user	de�ned aggregates in SQLST itself�

In summary� the spatio	temporal data models and query languages intro	

duced in this dissertation o�er several conceptual advantages� furthermore� our

implementation approach provides considerable practical bene�ts� including com	

patibility with Object	Relational systems� �exibility� robustness� and ease of cus	

tomization by end	users�

xi

CHAPTER �

Introduction

Time and space are important aspects of all real	world phenomena� Database

applications must capture the time and space varying nature of the phenomena

they model� For example� a doctor�s o�ce needs to maintain a record of the

prescription history of patients� This information certainly varies over time�

drugs are taken during a particular time� a patient may take several drugs at

the same time� and a drug may be taken several times by a patient� Before

prescribing drugs to a patient� the doctor needs to know the patient�s history of

drug usage and the other drugs that the patient is currently taking� As another

example� consider a cyclone roaring through a region in the ocean� It is important

to know when the cyclone will come across an island� how long a cyclone will stay

on an island� which island region will be a�ected� and related information of a

spatio	temporal nature�

In conventional databases� attributes containing temporal or spatial informa	

tion are manipulated solely by the application programs� with little help from the

database management system� A spatio	temporal database is one that supports

aspects of both time and space� It o�ers spatial and temporal data types in its

data model and query language�

Applications that rely on spatio	temporal databases can be found� for exam	

ple� in geographical information systems� autonomous navigation� tracking� and

medical imaging�

�

��� State of the Art

�
�
� Temporal Databases

In the context of temporal databases� two time dimensions are of general interest�

the valid time dimension and the transaction time dimension�

Valid time concerns the time when a fact is true in reality� The valid time of

a fact is the time at which the fact occurred in the real world� independent of the

recording of that fact in some databases� Valid time can be in the past� present�

or in the future� While all facts have a valid time� this may not necessarily be

recorded in the database� for any number of reasons�

Transaction time concerns the time when the fact is present in the database

as stored data� The transaction time of a fact is that of the transaction that

inserted the fact into the database� and of the transaction that removed this fact

from the database�

Moreover� valid time captures the time	varying states of the reality� while the

transaction time captures the time	varying states of the database� These two

dimensions are orthogonal�

With many applications requiring support for temporal databases� extensive

research has focused on temporal queries and reasoning ���� A critical issue in all

these approaches is the choice of model used to represent valid time� for instance�

in many approaches temporal intervals are used to represent valid time states�

while point	based models view the database as a sequence of snapshots�

In the interval	based time model proposed in ����� an �	dimensional space is

a nonempty �nite set D� totally ordered with respect to ���� The elements in

D are called simply points� An interval� I�D�� is a set of simply points over

a �	d space D� denoted by a start point and an end point� In relations based

�

on interval	based time model� a temporal attribute is maintained to record time

intervals� When a projection is taken� coalescing of time intervals is required�

Coalescing consists of two typical steps� ��� unfolding a relation with respect

to the temporal attribute by replacing each tuple with a set of tuples containing

only simply time points� ��� folding the immediate relation with respect to the

temporal attribute by repeatedly taking pairs of tuples which are identical in all

attributes other than the temporal attribute and merge them� until no such pairs

of mergeable tuples exist�

In point	based time model ���� ��� �� the time domain is viewed as a discrete�

countably in�nite� linearly ordered set without endpoints �like the integers�� The

individual elements of the set represent the actual time instants� while the linear

order represents the progression of time� The actual granularity of time can be

chosen upon the application domain� The relationships between the time instants

and the non	temporal database facts are captured by a �nite set of temporal

relations stored in the database�

The major drawback of the interval	based data model is the need for coalesc	

ing time intervals when a projection is taken� whereas point	based data models

are free from this problem� On the other hand� many temporal queries can be

expressed naturally using intervals� e�g�� using Allen�s interval operators� Further	

more� intervals provide a reasonably e�cient representation for physical storage�

while point	based conceptual models must be mapped into di�erent representa	

tions for storage e�ciency�

The language TSQL� ���� introduced a consensus extension of SQL	��� It

supports a Bi	temporal Conceptual Data Model ����� which handles both valid

time and transaction time� In TSQL�� there is no explicit time column in the

relations� and valid time cannot be referred in the query as a tuple attribute�

�

therefore� we say that TSQL� has an implicit�time data model� By keeping time

implicit� TSQL� eliminates the need for a user to specify the coalescing of time

periods �
�� However� implicit time makes the semantics of TSQL� more obscure

and di�cult to formalize� Furthermore� the fact that one cannot work directly

with time makes certain queries hard to express and requires the introduction of

special temporal constructs to achieve the same goal indirectly� This brings us

to the second problem� i�e�� special TSQL� constructs are designed for SQL only�

and do not generalize into a universal temporal data model and query language

that can be used for� say� QBE and Datalog� We refer to this problem as the lack

of universality of TSQL�� Also� TSQL��s compatibility with Object	Relational

systems was not investigated� These problems make TQSL� not included in

SQL	���

�
�
� Spatial Databases

The �eld of spatial databases has been an active area of research for over two

decades� There are two common models of spatial information� �eld	based and

object	based� The �eld	based model treats spatial information such as altitude�

rainfall and temperature as a collection of spatial functions transforming a space	

partition to an attribute domain� The object	based model treats the information

space as if it is populated by discrete� identi�able� spatially	referenced entities�

An implementation of a spatial data model in the context of Object	Relational

databases consists of a set of spatial data types and the operations on those types�

Much work has been done on the design of spatial Abstract Data Types

�ADTs� and their embedding in a query language� such as Spatial SQL �����

Spatial SQL has two parts� a query language to describe what information to re	

trieve and a presentation language to specify how to display query results� Users

�

can issue standard SQL queries to retrieve non	spatial data based on non	spatial

constraints� Moreover� they can issue Spatial SQL commands to inquire about

situations involving spatial data and give instructions in the Graphical Presen	

tation Language �GPL� to manipulate or examine the graphical presentation�

The features of Spatial SQL have an Object	Oriented �avor� such as the complex

abstract data type spatial and its subtypes for di�erent spatial dimensions�

Paradise �
�� provides what can be loosely interpreted as an Object	Relational

data model� In addition to the standard attribute types such as integers� �oats�

strings and time� Paradise also provides a set of spatial data types including

points� polygons� polylines� swiss	cheese polygons� and circles� The spatial data

types provide a rich set of spatial operators that can be accessed from extended

version of SQL�

Commercial examples of spatial database management include IBM DB��s

Spatial Extender ����� Informix�s Spatial DataBlade Module ����� Oracle�s Uni	

versal Server with Spatial Option�Cartridge �
�� and ESRI�s Spatial Data Engine

����� The functionalities provided by these systems include a set of spatial data

types such as points� line	segments and polygons and a set of spatial operations

such as inside� intersection and distance� The spatial types and operations may be

made a part of a query language such as SQL� which allows spatial querying when

combined with an Object	Relational database management system� The perfor	

mance enhancement provided by these systems includes a multi	dimensional spa	

tial index and algorithms for spatial access methods� spatial range queries and

spatial joins�

�

�
�
� Spatio�Temporal Databases

Spatio	temporal data models and query languages are a topic of growing inter	

est� A spatio	temporal database is a database that embodies spatial� temporal�

and spatio	temporal database concepts and captures simultaneously spatial and

temporal aspects of data� It deals with geometries that change with time�

Constraint databases ��� can be used as a common language layer that makes

the interoperability of di�erent temporal� spatial and spatio	temporal databases

possible� Constraint databases generalize the classical relational model of data

by introducing generalized tuples� quanti�er	free formulas in an appropriate con	

straint theory� For example� the formula ���� � t � ��� describes the interval

between ���� and ���� and the formula � � x � � � � � y � � describes the

square area with corners ��� ��� ��� ��� ��� �� and ��� ��� The constraint technology

makes it possible to �nitely represent in�nite sets of points� which are common

in temporal and spatial database applications�

The issue of application	independent interoperability of spatio	temporal databases

is addressed in ����� The referenced approach �rst introduced the TQuel data

model for temporal databases and the �	spaghetti model ���� for spatial databases�

and then developed a parametric �	spaghetti data model for spatio	temporal data�

The �	spaghetti data model ���� provides a general relational representation for

geometric objects� It represents spatial objects that are composed of �nite unions

of closed convex polygons� Polygons are triangulated and can be represented us	

ing �rst	normal form relations with a �xed number of attributes� Each triangle is

represented by its three corners� If the endpoints of the �	spaghetti are functions

of time� then it is called a parametric �	spaghetti� In the TQuel data model� each

relation contains two special attributes called From and To to represent valid

time� The value of these temporal attributes are integers or the special constants

�� or ��� The From and To values represent the endpoints of an interval�

intervals in di�erent tuples with identical non	temporal components have to be

disjoint�

An example of the parametric �	spaghetti data model represented by the

constraint database is as follows�

id x y x� y� x� y� From To

r� � � �� �� � ���t �� ��

object�id� x� y� t� �� id � r�� � � y� y � ��� � � x� x � ��� y � x� �� t

The approach presented in ���� was extended in ���� by using a n	dimensional

parametric rectangles �or boxes�� A n	dimensional rectangle is the cross product

of n intervals� each in a di�erent dimension� The lower and upper bounds of the

intervals are functions of time�

The dedale system ���� ��� also used linear constraints� It introduces space

and time as natural components of �	d point	sets� A polygon in the plane is seen

as the in�nite set of points inside its frontier� dedale also extends the relational

algebra to contain a tuple constructor that builds tuples from atomic objects

�constants and rational numbers��

In ���� ��� a framework of abstract data types for moving objects was de�ned�

The framework takes as its outset a set of basic types that along with standard

data types� such as integer and boolean� includes spatial data types� such as points

and regions� and temporal data types� such as time instants� Then� it introduces

type constructors that can be applied to the basic types to create new types� For

example� given an argument of type �� the function �moving� constructs a type

whose values are functions of time into the domain of �� This leads to types such

as mpoint �moving point� and mregion �moving region�� These abstract types

may be used as column types in conventional relational DBMSs� or they may be

integrated in Object	Oriented or Object	Relational DBMSs�

In ����� a uni�ed model is presented for information that uses two spatial di	

mensions and two temporal dimensions �valid time and transaction time�� The

temporal objects in this �	dimensional space are called bitemporal elements� A

bitemporal element is the union of a �nite set of Cartesian products of intervals

of valid time and transaction time� Spatial objects� assumed to be embedded in

Euclidean �	d space� are represented as simplicial complexes ����� A simplex is

either a single point� a �nite straight line segment� or a triangular area� A simpli	

cial complex is a collection of non	overlapping simplexes� such that if a simplex

belongs to the complex then so do all its component simplexes� A simplicial

complex is uniquely determined by its maximal component simplexes�

A spatio	temporal object is a uni�ed object which has both spatial and bitem	

poral extents� An ST � simplex is an elemental spatial object with a bitemporal

reference attached� An ST � complex is a collection of ST	simplexes� subject to

some constraints� Firstly� the spatial projections of the constituent ST	simplex

must all be distinct� Secondly� the spatial projections of the constituent ST	

�

simplexes must themselves form a spatial simplicial complex� Thirdly� any face

of a spatial simplex occurring as a component in the ST	complex must have at

least as much temporal referencing as its parent� Spatio	temporal operations such

as projection and selections are also discussed in �����

��� Proposed Approach

The topic of spatio	temporal databases has been the focus of research work and

many solutions have been proposed in all major database conferences and special	

ized workshops and symposiums� This re�ects the importance and signi�cance

of spatio	temporal database applications and the complexity of technical prob	

lems to be solved� The number and variety of the solutions proposed are also

due to the fact that di�erent application areas have di�erent requirements and

thus demand di�erent solutions� However� most solutions proposed so far� par	

ticularly Database Extenders and DataBlade of commercial DBMSs ���� ���� lack

�exibility and therefore generality�

Another issue is extensibility� which represents a long	sought	after but hard	

to	attain goal for database systems� Relational DBMSs provided no extensibility�

A relational DBMS restricts a table column to one of the certain data types

including integer� �oating	point number� character string� date� time� datatime�

interval� numeric and decimal� and de�nes a precise �and hard	coded� collection

�

of functions and operators that are available for each data type ��
�� Because

the set of data types and operations is limited� many real	world problems are

extremely di�cult to code and� once coded� perform badly�

However� even in the latest generation of O	R �Object	Relational� systems�

extensibility comes with many limitations and requires signi�cant expertise and

programming e�ort� Indeed� the main extensibility mechanism of O	R systems

is to allow SQL queries to call external functions coded in a procedural lan	

guage �such as C or Java�� Function libraries for speci�c application domains

are now marketed aggressively by vendors under di�erent brand names� such as

DataBlades� DB extenders� cartridges� or snapins� But they all share similar lim	

itations with respect to power and �exibility� inasmuch as they can only support

a prede�ned set of operators on single records� e�g�� the functions cannot access

the database tables either directly or through embedded SQL calls� Further	

more� procedural attachments to SQL� such as UDFs �User De�ned Functions�

or stored procedures� are notorious for being inordinately hard to develop and

debug ����� Thus current DataBlades are not conducive to end	user extensibility

�even if their source code was available��

In general� while more concrete models are more suitable for e�cient im	

plementation� abstract models are better from the view point of generality and

usability� The main di�erence between di�erent models is the level of abstrac	

��

tion they support� Some models� such as the point	based time model� are more

desirable from the point of usability and generality but more di�cult to imple	

ment than other more storage	conscious data models such as the interval	based

time model� The main concern in this scenario is to meet the practical require	

ment� especially the suitability� to be supported as extensions of current database

systems�

We start this dissertation with a point	based representation of time enhanced

with user	de�ned aggregates to support interval	oriented operators� followed by

a di�erent storage representation�using time intervals�

Then� we propose a concrete model for spatio	temporal data� The temporal

data type remains as intervals and the spatial data type is counterclockwise�

directed triangles� Spatio	temporal queries are expressed by user	de�ned aggre	

gates� such as duration and during for temporal relationships� contain and distance

for spatial ones� and moving distance for spatio	temporal ones� We also show

that users can choose an abstract model of spatio	temporal data� whose spatial

data types are points� lines and polygons� and the temporal data type is time

instants �points�� The mapping between di�erent models is achieved using the

table expressions supported in Object	Relational systems�

Therefore� our approach minimizes the extensions required in SQL� or other

relational languages� to support spatio	temporal queries� This approach provides

��

a better extensibility mechanism than Database Extenders or DataBlades� Also�

we achieve orthogonality of temporal and spatial aspects of data� and has minimal

additions to SQL� In fact� only user	de�ned aggregates are required to perform

the spatio	temporal queries� The support of multi	layer abstraction reconciles

ease of use and e�cient implementation�

��� Outline of the Dissertation

The rest of the dissertation is organized as follows�

Chapter � presents a temporal data model and query language�SQLT � SQLT

uses a point	based temporal data model and user	de�ned temporal aggregates to

support interval reasonings� We demonstrate the universality of this approach

by proposing parallel designs for SQL� QBE and Datalog� Then� in Chapter �

we discuss an e�cient implementation of SQLT on top of DB� Object	Relational

system using user	de�ned functions and table expressions�

Chapter � presents an overview of the properties of spatial objects� and

Chapter � presents a concrete spatio	temporal data model and query language�

SQLST � Counterclockwise	directed triangles and time intervals are used at the

internal level to model spatial and temporal objects� As in SQLT � only user	

de�ned aggregates are used to support spatio	temporal queries� Also� we discuss

an abstract model of spatio	temporal information� where polygons and time in	

��

stants are used to model spatial objects and time� The mapping method between

di�erent models is also discussed�

Chapter
 concludes the dissertation�

��

CHAPTER �

SQLT

Temporal reasoning and temporal query languages present di�cult research prob	

lems of theoretical interest and practical importance� One issue is the chasm

between point	based temporal reasoning and interval	based reasoning� Another

problem is the lack of robustness and universality in many proposed solutions�

whereby temporal extensions designed for one language cannot be easily applied

to other query languages�e�g�� extensions proposed for SQL cannot be applied to

QBE or Datalog� In this chapter� we provide a simple solution to both problems

by observing that all query languages support �i� single	value based reasoning and

�ii� aggregate	based reasoning� and then showing that these two modalities can

be naturally extended to support� respectively� point	based and interval	based

temporal queries� We follow TSQL� insofar as practical requirements are con	

cerned� and show that its functionality can be captured by simpler constructs

which can be applied uniformly to Datalog� QBE and SQL�

��

��� TSQL�

To illustrate some of the issues with TSQL�� consider a patient database with

the history of prescriptions given to patients as in ������ The schema and sample

TSQL� queries are as follows�

�� Schema de�nition

Example � De�ne the Prescript relation

CREATE TABLE Prescript

�Name CHAR����� Physician CHAR�����

Drug CHAR����� Dosage CHAR�����

Frequency INTERVAL MINUTE�

AS VALID STATE DAY

The Prescript relation is a valid time relation� The valid time has a gran	

ularity of one day� The important observation to be made here is that

valid time must be quali�ed via annotations� since it is not a column of the

relation�

�� Temporal selection and join

Example � What drugs have been prescribed with Proventil�

��

SELECT P��Name� P	�Drug

FROM Prescript AS P� P	

WHERE P��Drug
 �Proventil� AND P	�Drug �� �Proventil�

AND P��Name
 P	�Name

The query returns the patient�s name� the drug and the maximal periods

during which both that drug and Proventil were prescribed to the patient�

Undoubtedly� queries involving only selections� projections� and joins rep	

resent the best feature of TSQL�� insofar as these queries are the same as

in standard SQL	��� This is accomplished by keeping the time dimension

implicit� as illustrated by the fact that the valid	time column is not even

mentioned in the previous query� Therefore� by default� a TSQL� query on

a valid	time relation returns a valid	time relation� Additional constructs

must then be used to deviate from this behavior� For instance� the keyword

SNAPSHOT must be added to produce a normal relation instead of a valid	

time one� While using the keyword SNAPSHOT adds little complexity to

a query� other constructs needed to override TSQL��s defaults are neither

simple nor user	friendly� The VALID clause discussed next is an example�

�� VALID clause

�

The VALID clause is used to override the default timestamp of the resulting

tuple of a query�

Example � What drugs were Melanie prescribed during �����

SELECT Drug

VALID INTERSECT�VALID�Prescript�� PERIOD ������ DAY�

FROM Prescript

WHERE Name
 �Melanie�

The query returns drugs� if any� prescribed to Melanie in ���
 and the

maximal periods during which Melanie took the drugs� There will be tuples

returned if some drugs were prescribed to Melanie in ���
� but� due to the

VALID annotation added to the SELECT clause� only the drug history for

���
 is shown� rather than the complete history� The need for this special

construct VALID is created by the fact that time in TSQL� is kept implicit�

As described in ����� VALID is only one of several new constructs required

by TSQL�� which make TSQL� hard to learn and to use�

��� Explicit Time Queries

The basic approach we propose here is based on a point	based temporal data

model and on explicit	time queries� Our point	based temporal data model as	

sumes�

�

� the use of some granularity for representing valid time�for instance we will

uses days in our examples�

� every temporal relation contains an additional column� say the last column�

called VTime� storing single time	granules� and

� the relation contains one row for each �time� point at which the database

fact is valid�

For instance� a temporal �virtual� relation that is supported by the system�

the calendar relation� is as follows�

Calendar Year Month Day VTime

� � � � � � � � � � � �

���	 September
� ���
�����	
� � � � � � � � � � � �

Here� we display only one tuple as a sample of our calendar relation� Also

observe that we represent valid	time dates using the month�day�year notation�

This calendar relation is not a stored object� it is a virtual view that provides a

user	friendly QBE interface to calendar queries� such as the following that returns

all days in September ���
�

Calendar Year Month Day VTime

P���	 PSeptember P

In as much as this calendar query is implemented by an internal calendar

function� it exempli�es the main idea of our approach� select a data model that

simpli�es the expression of complex temporal queries� and rely on mapping to

��

e�cient internal representations for implementation� The idea of di�erent repre	

sentations at di�erent levels has been long popularized by the ANSI�X��SPARC

architecture for DBMS ����� E�ective representations at the storage level are dis	

cussed in next chapter� Also at the end	user level� simple solutions exist to avoid

the redundant printouts generated by point	based representations� For instance�

rather than having the previous query generate �� tuples� identical in the year

and month columns� we can use the following display to present the results�

Result Year Month VTime

���	 September ���������	
� � � � � � � � �

���	 September ���������	

Since people are quite adept at �lling	in the dots� this is a concise and un	

ambiguous representation for much larger sets� The same sets could also be

represented by a single tuple as follows�

������ September� ���������� ������ ���	������

This can either be viewed as an unnormalized tuple� where September ���	

is associated with the set of days ���������	 � � � ���������	� or as an interval	

based representation of the same information� An interval	based representation is

acceptable at the user level� and has some properties that make it an interesting

�although perhaps not the best� candidate at the storage level� as it will be

discussed later�

��

�
�
� Schema de�nition in SQLT

We now describe SQLT � our valid	time extension of SQL	��� where explicit time

is used in schema declarations and queries�

Example � De�ne the Prescript relation

CREATE TABLE Prescript

�Name CHAR����� Physician CHAR�����

Drug CHAR����� Dosage CHAR�����

Frequency INTERVAL MINUTE� VTime DATE�

Thus� the valid time has become the last column in our relation� The reserved

keyword VTime must be used to denote the name of the valid	time column�a

relation can have at most one of these columns� Similar conventions apply to the

schemas de�ned in QBE� or to Datalog languages� such as LDL�� ����� ���� The

expressions of temporal selection and join queries in SQLT � QBET and DatalogT

are straightforward and are shown next�

�
�
� Temporal Selection and Join

Example � What drugs have been prescribed with Proventil�

SELECT P	�Name� P	�Drug� P	�VTime

FROM Prescript AS P� P	

��

WHERE P��Drug
 �Proventil� AND P	�Drug �� �Proventil�

AND P	�Name
 P��Name AND P	�VTime
 P��VTime

Prescript Name � � � Drug � � � VTime

name Proventil vtime
P name P drug P vtime

Conditions

drug 	� Proventil

query��Name� Drug� VTime�

prescript�Name� �� Proventil�� � � VTime��

prescript�Name� � Drug� � � VTime��

Drug �� �Proventil��

�
�
� The VALID Clause

TSQL��s VALID clause is no longer needed since� in SQLT � the target time span

can be explicitly controlled by conditions in the WHERE clause�

Example � What drugs was Melanie prescribed during �����

SELECT P�Drug� P�VTime

FROM Prescript AS P� Calendar AS C

WHERE P�Name
 �Melanie� AND C�Year
 ��

AND P�VTime
 C�VTime

��

The same query can be expressed as follows in QBET and DatalogT �

Calendar Year Month Day VTime

���	 vtime

Prescript Name � � � Drug � � � VTime

Melanie P drug P vtime

query��Drug� VTime�

calendar������ � � VTime��

prescript��Melanie�� � Drug� � � VTime��

��� Interval�Oriented Reasoning

An important requirement of all temporal languages is to support Allen�s inter	

val operators such as overlap� precede� contain� equal� meet� and intersects ��� as

illustrated in Figure ����

Temporal languages that are based on temporal intervals ���� rely on these

operators to express temporal joins� In this kind of languages� the query of

Example � would be expressed by the condition �P� overlaps P
�� No explicit

use of overlaps is needed in point	based semantics� since two intervals overlap if

and only if they share some common points �� ���� This conclusion also holds

for TSQL�� where equality between time points is assumed as default condition

when no other temporal condition is given� In TSQL�� however� the user must

��

I

II

I II

I

II

I

II

I
II

I overlap II

I precede II

I contain II

I equal II

I meet II

Figure ���� Allen�s interval operators

use explicit constructs to specify the remaining Allen�s operators� For instance�

consider the following query�

Example � TSQL� Query	 �nd the patients who have been prescribed Proventil

throughout �����

SELECT SNAPSHOT Name

FROM Prescript�Name� Drug� AS P

WHERE P�Drug
 �Proventil�

AND CONTAINS�VALID�P�� PERIOD ������ DAY�

This query returns the patient�s name if the patient took Proventil for the

whole period of ���
� Thus VALID�P� denotes the valid time of tuples in P

��

represented as one or more intervals �i�e�� periods in TSQL� terminology�� and

PERIOD �����	�� DAY is simply a constructor of a time period starting January

�� ���
� and ending December ��� ���
�

If a patient took Proventil during several non	contiguous time periods� then�

at least one of these intervals must contain the �Year ���
� time period� This

brings out the important point that TSQL� is really dealing with sets of intervals

�a time element in TSQL��s terminology�� rather than a single interval� For now�

let us ignore this point �discussed in great length in next chapter� as if every drug

were only prescribed during one interval� Then� consider

FROM Prescript�Name� Drug� AS P

The attribute	list �Name� Drug� is an instance of TSQL��s �special� extension

of SQL	�� called restructuring� The purpose of this construct is to de�ne the

attributes on which the tuples must be coalesced� Indeed Proventil might have

been prescribed to the same patient by di�erent physicians� and with di�erent

dosage and frequency� If we remove the attributes �Name� Drug� from the FROM

clause of the previous query� the meaning of the query is changed into� �nd the

patients who have been prescribed Proventil� by the same physician
 with the

same dosage and frequency� throughout ���
� this is a much stricter condition

than the original one� Therefore� to support this query� we need to project out the

physician� dosage� and frequency columns� and coalesce the time intervals into

��

maximal intervals of time during which the values of attributes �Name� Drug�

remain unchanged�

Many queries that arise in the context of interval	oriented reasoning involve

duration� For instance� we might want to �nd the names of the patients who have

been prescribed some drugs for a total of more than ��� days� Again� we have to

use restructuring to ensure that we accumulate the length of a prescription inde	

pendent of physician� dosage and frequency �e�g�� to ensure that patients do not

circumvent the maximum prescription period limitations by changing physician��

Example � TSQL� Query	 �nd the patients who have been prescribed some drug

for more than �� days�

SELECT SNAPSHOT Name

FROM Prescript�Name� Drug� AS P

WHERE CAST�VALID�P� AS INTERVAL DAY� � INTERVAL 	�� DAY

Again� VALID�P� de�nes one or more periods� In TSQL�� the terms period and

interval denote� respectively� anchored and unanchored spans of time� Thus� in

TSQL�� casting is needed to convert a set of �one or more� periods to an interval

by adding up the length of each period� Therefore� the query in Example � adds

up the lengths in days of all periods during which a patient took the same drug�

and checks whether the accumulated length exceeds ��� days� A more complex

��

TSQL� query is needed to �nd patients who took the same drug for more than

��� consecutive days�i�e�� a continuous prescription of the same drug for more

than ��� days� this is discussed in Section ����

��� Temporal Aggregates

In a point	based temporal model� intervals are sets of contiguous points� thus set

aggregates should be used to support interval	oriented reasoning� For instance�

the last query can be formulated and expressed in SQL	�� as follows�

Example SQL��� Query for Example �

SELECT Name

FROM Prescript

GROUP BY NAME� DRUG

HAVING COUNT�VTime� � 	��

Observe that� unlike TSQL� which had to introduce restructuring� no new

construct is needed here� The set of attributes each period is associated with is

speci�ed explicitly and unequivocally by the group	by attributes NAME� DRUG�

While the semantics of the count aggregate faithfully expresses the concept

of duration� we will introduce in SQLT a special temporal aggregate duration to

optimize�

�

� users� convenience of having mnemonic constructs to express the intuitive

meaning of the intended operation �also we include versions that convert

to di�erent granularities� e�g�� duration month to convert to numbers of

months�� and

� e�ciency of execution since the implementation can be optimized directly

from the storage representation used for valid time �e�g�� an interval	based

representation��

Therefore� in our SQLT language� the previous query will be expressed as

follows�

Example �	 SQLT Query for Example �

SELECT Name

FROM Prescript

GROUP BY NAME� DRUG

HAVING DURATION�VTime� � 	��

Di�erent styles of aggregate queries are possible for SQLT � For instance� we

can express the query in Example �� using nested sub	queries� as follows�

Example �� Temporal Aggregates in SQL��� using Nested Sub�queries �same

as Example ��

�

SELECT P�Name

FROM Prescript AS P

GROUP BY P�NAME

HAVING DURATION �

SELECT P��VTime

FROM Prescript AS P�

WHERE P��NAME
 P�NAME AND P��DRUG
 P�DRUG� � 	��

This second form is in fact preferable� since it is more general and accommo	

dates any number of group	by combinations�unlike the explicit group	by form

used in Example ���

Since all query languages support aggregates� our new temporal aggregates

can be added on without perturbing the syntactic and semantic structure of the

original languages� Thus� in QBET � our query can be expressed as follows�

Example �� QBET Query for Example �

Prescript Name � � � Drug � � � VTime

PG name G drug vtime

Conditions

DURATION vtime �
��

Of particular interest� is the �G� appearing in the �rst and third columns of

the �rst table� this denotes that name and drug serve as group	by columns for

��

other variables� such as vtime� that appear in the same row without �G� �
���

For DatalogT languages� we will use the head	aggregation syntax of LDL��

����� Then� our previous query can be expressed as follows�

Example �� DatalogT Query for Example �

groupdays�Name� Drug� durationhVTimei�

prescript�Name� � Drug� � � VTime��

query	�Name�
 groupdays�Name� � TotalDays�� TotalDays � ����

Here an attribute name followed by the pointed brackets denotes an aggregate

column� Every aggregate column is implicitly grouped by all the non�aggregate

columns in the head of the rule� Thus� in our example� we compute the aggregate

duration of VTime with respect to the two other columns Name and Drug�

In general� the limitations caused by implicit group	by attributes are easily

overcome given the great �exibility of user	de�ned aggregates in LDL��� Version

� ����� ���� In particular� we have de�ned a binary aggregate called contain which

is true when one set of time points contains all the time points in the other set�

Thus our query of Example can be formulated as follows�

Example �� DatalogT Query for Example �	 �nd the patients who have been

prescribed Proventil
 throughout �����

��

query��Name� containh�VTime�� VTime��i�

prescript�Name� �� Proventil�� � � VTime���

calendar������ � � VTime���

In an interval	based representation� VTime� and VTime
 are implemented

as two sets of intervals� Then� containh�VTime�� VTime
�i is implemented by

checking that� for each interval I� in VTime
� there is an interval I� in VTime��

such that I� contains I��

The binary aggregate contain can also be used in QBET quite naturally�

Example �� QBET Query for Example �

Prescript Name � � � Drug � � � VTime

PG name Proventil vtime�

Calendar Year Month Day VTime

���	 vtime

conditions

CONTAIN� vtime�� vtime
�

In SQLT � the same query is expressed most naturally using the nested sub	

query technique discussed previously�

Example �� SQLT Query for Example �

SELECT P�Name

FROM Prescript AS P

��

GROUP BY P�Name

HAVING

��SELECT P��VTime

FROM Prescript AS P�

WHERE P��Name
 P�Name AND P��Drug
 P�Drug

AND P��Drug
 �Proventil��

CONTAIN

�SELECT C�VTime

FROM Calendar AS C

WHERE C�Year
 ����

The semantics of our new temporal aggregates can be de�ned from existing

SQL	�� aggregates in a very natural fashion� For instance� contain�S�� S
� can

be de�ned as a shorthand of

COUNT�S�� � COUNT�S� � S
�

where the set intersection can be expressed using joins� Likewise� precede�S�� S
�

and meet�S�� S
� can be respectively de�ned as max�S�� � min�S
� and max�S��

� min�S
��

��

��� Dealing with Periods

TSQL��s basic time element consists of a set of periods� For a drug� therefore� the

duration of each prescription period is added up when computing the length of

a prescription� To deal with individual prescription periods� TSQL� introduces

the special keyword PERIOD� Thus� to �nd drugs prescribed for more than ���

consecutive days� we have the following query�

Example �� TSQL� Query	 �nd the patients who have been prescribed some

drugs for more than �� consecutive days�

SELECT SNAPSHOT Name

FROM Prescript�Name� Drug� �PERIOD� AS P

WHERE CAST�VALID�P� AS INTERVAL DAY� � INTERVAL 	�� DAY

This solution su�ers from several problems including the fact that �i� parti	

tioning violates the TSQL��s data model ���� and �ii� we do not know how to

extend this construct to query languages where there is no FROM clause�

Again� TSQL��s problem can be solved using a new aggregate called period

which basically enumerates the periods in ascending temporal order� Time	points

that fall within the same consecutive period of time are given the same period

number �PerNo�� and a di�erent number is used for each period�

We can now de�ne the following view�

��

Example �� A View Enumerating Periods

CREATE VIEW PartitionedP�Name� Drug� PerNo� VTime�

AS SELECT P��Name� P��Drug� PERIOD�P	�VTime�� P��VTime

FROM Prescript AS P� P	

WHERE P��Name
 P	�Name AND P��Drug
 P	�Drug

GROUP BY P��Name� P��Drug� P��VTime

Now� PerNo can be used as one of the group	by attributes�

Example � SQLT Query for Example ��

SELECT Name

FROM PartitionedP

GROUP BY Name� Drug� PerNo

HAVING DURATION�VTime� � 	��

An important advantage of this approach is that SQLT can be de�ned com	

pletely using SQL	��� To compute PerNo for any time	point in an interval we

must count the number of start	points of periods before it� Thus� the view Par�

titionedP could also have been de�ned as follows�

Example �	 The meaning of PERIOD in SQL���

CREATE VIEW PartitionedP�Name� Drug� PerNo� VTime�

��

AS SELECT P��Name� P��Drug� COUNT�P	�VTime�� P��VTime

FROM Prescript AS P� P	

WHERE P��Name
 P	�Name AND P��rug
 P	�Drug

AND P��VTime �
 P	�VTime AND NOT EXIST

�SELECT P���

FROM Prescript AS P�

WHERE P��VTime
 P	�VTime � � AND P��Name
 P	�Name

AND P��Drug
 P	�Drug�

GROUP BY P��Name� P��Drug� P��VTime

This de�nition is primarily of theoretical interest� The direct implementation

of this aggregate is much more e�cient�actually very e�cient as we assume that

the intervals are stored in ascending temporal order�

The previously created view can be useful for other queries as well� For

instance� a query to �nd drugs whose �rst period of prescription to a patient was

totally contained in ���
� is simply expressed as follows�

Example �� SQLT Query	 �nd drugs whose �rst prescription period is con�

tained in ����

SELECT P�Drug

FROM PartitionedP AS P

��

WHERE P�PerNo
 �

GROUP BY P�Drug

HAVING

��SELECT C�VTime

FROM Calendar AS C

WHERE C�Year
 ���

CONTAIN

�SELECT P��VTime

FROM Prescript AS P�

WHERE P��Name
 P�Name AND P��Drug
 P�Drug��

This query is hard to express in TSQL� but it is easy to be expressed in QBET

and DatalogT extended with a period aggregate and a contain aggregate�

Example �� QBET Query for Example ��

Prescript Name Drug VTime

G name G drug PERIOD� vtime�

PartitionedP Name Drug PerNo VTime

name drug perno vtime

PartitionedP Name Drug PerNo VTime

PG drug� perno� vtime�

Calendar Year Month Day VTime

���	 vtime

��

Conditions

perno� � � AND CONTAIN� vtime
� vtime��

Example �� DatalogT Query for Example ��

partitionedP�Name� Drug� periodhVTimei�

prescript�Name� � Drug� � � VTime��

query�Drug� containh�VTime�� VTime��i�

partitionedP� � Drug� �� VTime���

calendar������ � � VTime���

In DatalogT � periodhVTimei must return the original argument VTime along

with its period number PerNo� On the other hand� contain evaluates to either true

or false and returns zero arguments� Therefore� only the Name� Drug values for

which the aggregate containh�VTime
� VTime��i evaluates to true are produced in

the head of the rule� The �exibility of having zero� one� or several values returned

is supported in Version ��� of LDL�� ����� ����

��	 Summary

In this chapter� we have taken a minimalist approach using a point	based rep	

resentation� While the standard SQL aggregates� such as sum� count� avg� min

�

and max� would su�ce in terms of expressive power� we have added temporal

aggregates to boost users� convenience and implementation e�ciency�

The bene�ts of point	based representation were �rst explored by Toman ����

���� Here� we have improved on that work by introducing temporal aggregates

that model Allen�s temporal operators and TSQL��s partitioning by user	friendly

constructs amenable to e�cient implementation ����� We proved the power and

generality of this approach by showing that it can express all valid	time TSQL�

queries� We have also shown the universality of the approach �i�e�� its validity

with di�erent query languages��

�

CHAPTER �

Implementation of SQLT

This chapter investigates the problem of supporting SQLT � TENORS �Tempo	

rally ENhanced O	R System� can express temporal queries as powerful as those of

TSQL� with only minimal extensions to standard SQL by using constructs such as

user	de�ned functions and table expressions supported in Object	Relational sys	

tems� In this chapter� we describe the indexing and clustering strategies used for

TENORS� and the mapping of external queries into internal queries to optimize

e�cient execution on a DB� Object	Relational database� Our storage strategy

uses an interval	based representation� where relations are time	segmented using

a manageable current usefulness criterion� the execution strategy relies on user	

de�ned functions and aggregates�

��� The Temporal Query Language

In the point	based model �� ���� the database is viewed as a sequence of snapshots

from user�s standpoint� The main advantage of this model is that it eliminates the

��

need for explicit coalescing after projection that is instead required by interval	

based data model� In other words� the point	based model lays the burden of

coalescing on database rather than on users� thus becomes more user	friendly� It

assumes that�

� Some granularity is used for representing valid time� Basically� atomic

granules� also called chronons� can be de�ned using the standard SQL	��

data types of DATE� TIMESTAMP� In this chapter� DATE is used in all

examples�

� Every temporal relation contains an additional column� say the last column�

called VTime� storing chronons�

� The relation �virtually� contains one row for each chronon at which the

database fact is valid�

�
�
� Schema De�nition

Temporal relations in TENORS contain an explicit valid time column that is part

of the schema declarations and is then used in queries�

Example �� De�ne the Employ relation and Position relation�

CREATE TABLE Employ

�Name CHAR����� Title CHAR����� Title Level DECIMAL�	��

��

Misc CHAR�	���� VTime DATE�

PRIMARY KEY�Name�Title�Title Level���

CREATE TABLE Position

�Title CHAR����� Title Level DECIMAL�	�� Salary DECIMAL����	��

VTime DATE�

PRIMARY KEY�Title�Title Level���

Thus� the valid time has become the last column in the relations� The reserved

keyword VTime must be used to denote the name of the valid	time column�

a relation can have at most one of such column� The expression of temporal

selection and join queries in TENORS is straightforward and shown next�

�
�
� Temporal Selection and Join

In point	based model� simple conditions can be applied to the temporal column

VTime to select a snapshot of the relation or the history of the quali�ed tuples

during a certain period of time� For example� to �nd the positions Melanie was

holding on certain dates� only the time span on VTime is needed to be adjusted�

Example �� What title was Melanie holding on June �
 �����

SELECT Title

FROM Employ

��

WHERE Name
 �Melanie� AND VTime
 ��������

Likewise� if users want to see Melanie�s employment history during ���
�

in TSQL� users have to use the special construct VALID which is required for

that purpose� In TENORS� users can simply replace the last quali�cation of

Example �� with

VTime �� ��������	� AND VTime � ����������

Moreover� temporal joins are handled just as regular natural joins� By assum	

ing a virtual point	based model� TENORS borrows the join semantics directly

from SQL without introducing any extension�

Example �� Show the salary history for directors in the ���s�

SELECT Employ�Name� Position�Salary� Employ�VTime

FROM Employ� Position

WHERE Employ�Title
 �Director� AND Employ�Title
 Position�Title

AND Employ�VTime
 Position�VTime AND Employ�VTime �� ��������

AND Employ�VTime � �����	����

Temporal joins involve equality of points in time� In TENORS� the notion of

�same time� is naturally captured by the equality

EmployVTime � PositionVTime

��

Employ�V T ime � Position�V T ime

In TSQL�� this equality is omitted from the query since it is implicitly assumed

by the system for every query� This behavior is di�erent from SQL where any join

condition must be explicitly speci�ed to meet varying circumstances� Therefore�

TSQL��s �same time� implicit assumption simpli�es join queries as that above�

but then requires additional constructs such as restructuring� coupling and VALID

for more complex queries�

The main advantage o�ered by both TSQL� and TENORS is that they are

both free of the coalescing problem that besets languages for interval	based rep	

resentations�

�
�
� Interval�Oriented Reasoning and Temporal Aggregates

Temporal intervals� which in TSQL� are called periods� provide a simple con	

densed representation of a set of contiguous time granules� which has been widely

used in temporal databases�

In fact� for several non	overlapping intervals associated with a tuple� two dif	

ferent representations are possible� either they can be treated as a set thus con	

stitute a single tuple� or each interval is associated with the tuple separately thus

constitute multiple tuples� Previous work has used both representations based on

set of intervals �called the time element in TSQL�� ����� and representation based

��

on individual interval ����� TENORS provides two temporal aggregates PERIOD�

SET and PERIOD to map sets of chronons into sets of intervals and individual

intervals� respectively�

This aggregate	based approach introduces minimal extension to Object	Relational

model since user	de�ned functions and user	de�ned aggregates are already avail	

able in some O	R databases ����� For instance� the query ��nd all the positions

held by Melanie for more than �� days� can be expressed using aggregate PERI�

ODSET and function span�

Example �� Melanie�s positions of more than � days as a whole�

SELECT Title

FROM Employ

WHERE Name
 �Melanie�

GROUP BY Title

HAVING SPAN�PERIODSET�VTime�� � �

where the aggregate PERIODSET delivers a set of intervals and the function

span sums up the overall length for the entire time span� In this example� after

selecting the records for Melanie� users need to coalesce all the intervals during

which she had a given title �as users have projected out the columns Title Level

and Misc�� TSQL� instead uses a special construct called �restructuring� to

��

express what is naturally expressed in TENORS by the standard group	by clause

and aggregation�

While PERIODSET is an aggregate� span is a scalar function which accepts a

composite object �a set of intervals or a list of individual intervals� as argument

and returns the sum of each interval�s length�

Since Melanie could have held the same title during several time periods� with

interruptions in between� then a user might want to �nd the positions held by

Melanie for more than �� consecutive days� The PERIOD aggregate must be used

for this purpose�

Example �� Melanie�s positions of more than � consecutive days�

SELECT Title

FROM Employ

WHERE Name
 �Melanie�

GROUP BY Title

HAVING SPAN�PERIOD�VTime�� � �

The PERIOD aggregate seems a bit unusual since it may return multiple tuples

with identical group value and di�erent time intervals� Generalized user	de�ned

aggregates that can return more than one answer have been proposed by several

researchers ���� ��� �
�� For instance� in a time series� rather than the single

��

global maximum� it need to return the multiple local maxima� Another impor	

tant application is online aggregates ����� where a sequence of �early returns� is

returned for each group value to provide a good approximation of the �nal value

of the average�

The two temporal aggregates� PERIOD and PERIODSET of TENORS� trans	

form the basic representation �values� chronons� into �values� period�� and �values�

set�of�periods� representations� respectively� Depending on selection of granular	

ity� each of these two aggregates come in two versions�one for the granularity

of DATE and one for the granularity of TIMESTAMP according to the datetime

types of SQL	���

Scalar Functions

The new data type DATEPERIOD �or TIMESTAMPPERIOD� supports some scalar

functions� In fact� DATEPERIOD consists of a pair of dates �or timestamps� and

supports the unary functions start that returns the �rst point of the pair� and

end that returns the second point�� Certainly it is mandatory that end � start�

otherwise it is treated as a NULL value�

The use of the PERIOD aggregate followed by interval	based functions such as

span and contains provides the essential mechanism for expressing the well	known

operators of Allen�s interval algebra ����

�Semi�closed periods are used � The advantage of semi�closed period is no extra computing

in coalescing when two periods are consecutive�

��

Consider the following query� ��nd those people whose incumbency contains a

Joe�s incumbency period on the same titles� can be expressed in terms of contains

as follows�

Example � People�s incumbency that contains one of Joe�s incumbency period

on same titles�

SELECT R�Name� R�Title� PERIOD�R�VTime�

FROM �SELECT Title� PERIOD�VTime�

FROM Employ

WHERE Name
 �Joe�

GROUP BY Title

� AS L�Title� Prd��

Employ AS R

WHERE L�Title
 R�Title

GROUP BY R�Name� R�Title

HAVING CONTAINS�L�Prd� PERIOD�R�VTime��

The minimalist approach has not introduced new TENORS constructs for

Allen�s operators such as overlap� precede� meet and the functions introduced

above� since they can be easily expressed by the combination of existing SQL

expressions without any loss of performance �Table �����

Although contains could also be expressed using start and end� its explicit

�

Operator Semantics de�ned on PERIODTYPE

SPAN�x� SPAN� PERIODTYPE � INTERVAL

end�x�� start�x�

x OVERLAPS y OVERLAPS� PERIODTYPE � PERIODTYPE � BOOLEAN

start�x� � end�y� � start�y� � end�x�
x PRECEDES y PRECEDES� PERIODTYPE � PERIODTYPE � BOOLEAN

start�x� � start�y�
x CONTAINS y CONTAINS� PERIODTYPE � PERIODTYPE � BOOLEAN

start�x� � start�y� � end�x� � end�y�
x MEETS y MEETS� PERIODTYPE � PERIODTYPE � BOOLEAN

start�x� � end�y� � end�x� � start�y�
x EQUALS y EQUALS� PERIODTYPE � PERIODTYPE � BOOLEAN

start�x� � start�y� � end�x� � end�y�

x INTERSECTS y INTERSECTS� PERIODTYPE � PERIODTYPE � PERIODTYPE

x OVERLAPS y j� �max�start�x�� start�y���
min�end�x�� end�y���

Table ���� Semantics of Allen�s operators on PERIOD

inclusion allows signi�cant opportunities for query optimization� which will be

discussed in Section ����

Similar considerations also apply to the PERIODSET data types �Table �����

which contain an identically	named function for each one of PERIOD� This func	

tion overloading is quite natural� since the application of� say� the span function

to a period T yields the same result as the application of its dual span to the

singleton set containing only T � Similar considerations hold for all functions�

As illustrated in Example �� the use of table expression provides a very power	

ful mechanism for putting TENORS� temporal aggregates to work� For instance�

the query in Example �� can also be expressed using this useful syntactic device�

�

Operator Semantics de�ned on PERIODSETTYPE

SPAN�X� SPAN� PERIODSETTYPE � INTERVAL

 fx�XgSPAN�x

X OVERLAPS Y OVERLAPS� PERIODSETTYPE � PERIODSETTYPE � BOOLEAN

�x � X� �y � Y� x OVERLAPS y

X PRECEDES Y PRECEDES� PERIODSETTYPE � PERIODSETTYPE � BOOLEAN

�x � X� �y � Y� x PRECEDES y

X CONTAINS Y CONTAINS� PERIODSETTYPE � PERIODSETTYPE � BOOLEAN

�y � Y� �x � X� x CONTAINS y

X MEETS Y MEETS� PERIODSETTYPE � PERIODSETTYPE � BOOLEAN

�x � X� �y � Y� x MEETS y

X EQUALS Y EQUALS� PERIODSETTYPE � PERIODSETTYPE � BOOLEAN

��y � Y� �x � X� x EQUALS y� � ��x � X� �y � Y�

y EQUALS x�

X INTERSECTS Y INTERSECTS� PERIODSETTYPE � PERIODSETTYPE

� PERIODSETTYPESfx INTERSECTS y j �x � X� �y � Y g
Table ���� Semantics of Allen�s operators on PERIODSET

Example �	 Restructuring through TABLE Expression

SELECT Title

FROM �SELECT Title� PERIOD�VTime�

FROM Employ

WHERE Name
 �Melanie�

GROUP BY Title

� AS T�Title� Prd�

WHERE SPAN�T�Prd� � �

TSQL� would use the restructuring and partition construct� instead of the ta	

��

ble expression� Interesting enough� both TENORS� table expression and TSQL�

restructuring are used in the FROM clause� suggesting that �i� there can be a sim	

ple mapping from TSQL� to TENORS� and �ii� this new SQL construct might

be used to reduce the number of new constructs needed in TSQL�� In general�

many of the techniques presented in this chapter can be adapted to support much

of TSQL� on an O	R system�

��� Internal Model

The internal representation TIM �for Temporal Internal Model� was selected to �i�

e�ciently support snapshot queries� intersection queries� and temporal join� �ii�

simplify the mapping into current O	R systems for both queries and indexing�

Practical considerations also restricted the choices to approaches which could

be implemented on top of B�	trees� since this is the only indexing structure

supported by all commercial systems and proved to be a de facto standard�

There has been a substantial amount of excellent work on valid	time indexing�

However� they could not be directly used because of a number of reasons� For ex	

ample� some representation were designed for such as transaction time databases

or temporal events and are not directly applicable to valid	time databases ���� ���

Other representations� including ��
� ��� �
� ��� are for valid	time databases� but

cannot be supported easily on top of B�	trees� Finally� �
�� ��� proposed tempo	

��

ral indexing schemes based on standard B�	trees� However� in their proposals�

various indices must be built on the same attribute and query optimizer must

know how to choose the right one under various circumstances�this feature is

not yet supported by current O	R systems� Also none of the above proposals

considered clustering of temporal data via existing indexing strategies�

On the contrary� TENORS adopts a usefulness based scheme that builds

on standard B�	trees� and introduces no change in storage modules of existing

DBMSs� Hence it can easily support primary and secondary indices to exploit

temporal and non	temporal quali�cation and a combination of the two�

The most natural application for temporal databases occurs in the evolution	

ary scenario� where an enterprise that currently stores and queries conventional

time	varying relations �such as employees and customers� is upgraded to store

and query the history of such relations� Then� for each query ��nd objects sat	

isfying a quali�cation Q� there will be natural counterparts such as ��nd the

objects satisfying Q� at a given time t �snapshot query�� at a given time interval

�t� t�� �intersection query�� and along complete history �history query�� This sce	

nario also suggests that �i� performance of queries on a conventional databases

provides the natural metrics for evaluating the performance of their temporal

versions� �ii� a suitable selection of indices on conventional databases can be used

to automatically generate a suitable selection of indices for the history database�

��

�
�
� Usefulness�Based Management

In TIM� every tuple stores an interval of validity for the non	temporal information

by means of two additional attributes� VTstart and VTend� to represent the set

of VTime chronons that are contained in the semi	closed period �VTstart�VTend��

Also the history of a relation is partitioned into k consecutive temporal segments�

S�� S�� � � �� Sk�

A temporal relation is segmented as follows� Initially it is at S� and all tuples

are valid at the moment� thus it de�nes the initial usefulness as ���!� As time

goes by� some tuples become invalid and usefulness at moment t is de�ned to be

U�t� �
V �t�

S�t�

where V �t� is the count of all tuples still valid at t� and S�t� is the count of

all tuples in current segment� TENORS assumes that users have speci�ed a

minimum usefulness level Umin� then current segment is split at the moment

when usefulness falls below that level �i�e�� U � Umin��

The split is achieved by null change� �i� a new segment is allocated by increas	

ing current segment number by one� �ii� all currently invalid tuples are untouched

thus left in previous segments� �iii� all currently valid tuples are broken into two

pieces�the invalid piece is left in the previous segment and the valid piece is

copied into the new segment�

Therefore� whenever a temporal segment is instantiated� all tuples are valid

��

Algorithm � Null Change Algorithm

Require� Initially� Tseq � �� U � ���! � Umin�
�� for Each insertion� deletion� and update of active tuples do
�� Nactive � count�active tuples in current slice�
�� Nall � count�all tuples in current slice�
�� U � Nactive

Nall
	� if current relation slice is not empty � U � Umin then

� Tseq� � Tseq � �
�� Insert all active tuples in slice Tseq�

�� Update VTend of all active tuples in Tseq as RT �special mark�
� Tseq � Tseq�

��� end if
��� end for

and U is ���!� U decreases until it falls below Umin� then a null change would

create a new segment�

This usefulness	based scheme naturally clusters tuples according to their VTime

values� thus confers vast opportunities to speed up snapshot queries and intersec	

tion queries� The price is that tuples with long VTime values are duplicated thus

cause certain redundancy� Fortunately� the tradeo� between storage redundancy

and retrieval speedup is user	controllable�

� If Umin � �� then null change never happens and a temporal relation is left

unsegmented� Let us denote the size of this unsegmented relation as N��

� For � � Umin � �� the usefulness in each segment of R equals Umin except

the current one� which is somewhere between Umin and ���!� For statistical

reasons� we may ignore the exception and assume each segment is at the

level of Umin� If there are ni tuples in a temporal segment Si� then the

��

number of invalid tuples in the segment is ��� Umin��ni� and those tuples

are the only tuples that contribute to a coalesced relation� Therefore� if

NUmin denotes the size of a segmented relation� then N� � ���Umin��NUmin

and NUmin �
N�

��Umin
�

For example� when Umin � ��
 or Umin � ���� the size of segmented relation

obtained is respectively ��� or � times the size of its unsegmented dual�

In the above discussion� only inserting valid tuples into temporal relations is

considered� It is not di�cult to handle retroactive insertion in the usefulness	

based scheme�an obsolete tuple will be inserted into corresponding temporal

segments with necessary splits� This makes the usefulness level of those segments

higher than Umin but it is acceptable to snapshot and intersection queries� On

the other hand� a tuple valid at future time will always stay in current segment

because null changes can not sever an invalid piece from it�

��� Built�in Translation From External Relations to In�

ternal Model

The temporal segmentation just described is incorporated in TIM�s temporal

indexing as follows�

��

� The VTime column in the original relation is replaced by the three columns�

Tseq� VTstart� VTend where Tseq is the relation	segment number and VT�

start� VTend denote the beginning and end of the interval�

� TENORS also allows the user or database administrator to declare primary

�aka�� clustered� and secondary �i�e�� non	clustered� indices on the external

relation�on any combination of attributes except VTime� Then these in	

dices are automatically translated into indices on TIM relations as follows�

�� If K is the primary index on the external relation� then

�Tseq�K�VTstart� will be the primary index on the TIM relation�

�� If K is a secondary index on the external relation� then

�K�Tseq�VTstart� will be a secondary index on the TIM relation�

� For each external relation R� an auxiliary internal relation RTseq is created

to record start time and end time of every segment of R�

For instance� Example �� will be translated to

Example �� De�ne the Employ relation and Position relation

CREATE TABLE Employ

�Tseq INTEGER� Name CHAR�����

Title CHAR����� Title Level DECIMAL�	��

Misc CHAR�	���� VTstart DATE� VTend DATE��

��

CREATE TABLE Employ Tseq

�Tseq INTEGER� VTstart DATE� VTend DATE��

CREATE TABLE Position

�Tseq INTEGER� Title CHAR����� Title Level DECIMAL�	��

Salary DECIMAL����	�� VTstart DATE� VTend DATE��

CREATE TABLE Position Tseq

�Tseq INTEGER� VTstart DATE� VTend DATE��

And TENORS index management statements�

CREATE INDEX i� ON Employ�Name�Title�Title Level� CLUSTER�

CREATE INDEX i	 ON Position�Title�Title Level� CLUSTER�

CREATE INDEX i� ON Position�Salary��

are automatically translated into the following internal ones�

CREATE INDEX i� ON Employ�Tseq�Name�Title�Title Level�VTstart� CLUSTER�

CREATE INDEX i	 ON Position�Tseq�Title�Title Level�VTstart� CLUSTER�

CREATE INDEX i� ON Position�Salary�Tseq�VTstart��

��

Besides translation of external tables and their indices into their internal

counterparts� TENORS also straightforwardly translates external queries to TIM

queries� For instance� the intersection query of Example �� is translated into the

following query which exploits RTseq table and primary index on Tseq to access

only those relevant temporal segments rather than the whole relation�

Example �� What titles was Melanie holding during �����

SELECT E�Title�

PERIOD�max�E�VTstart� ���������� min�E�VTend� ����������

FROM Employ AS E� Employ Tseq AS ET

WHERE ET�VTstart � �������� ET�VTend � ��������

AND E�Name
 �Melanie� AND E�Tseq
 ET�Tseq

AND E�VTstart � �������� AND E�VTend � ��������

GROUP BY E�Title

The query �nds temporal segments overlapping with user	speci�ed time span

���������
� to ����������
� in this case�� then calls PERIOD aggregate and

outputs coalesced result� It is important to observe that there are two di�er	

ent versions of temporal coalescing�one for screen display and one for physical

storage� The previous one is called external coalescing and the later one internal

�

coalescing� External coalescing removes Tseq attribute while internal coalescing

must keep Tseq attribute in the result valid	time relation for potential use in later

operations�

Considering the case of internal coalescing� the result relation automatically

keeps primary indexing on the input table�s Tseq because data is obtained seg	

ment by segment from the input relation� Therefore� later temporal operations

on the result relation are still able to exploit the primary index on Tseq�

Temporal Joins The bene�ts of segmentation are dramatic when computing

temporal joins� For unsegmented valid	time relations temporal joins can have

intractable performance� since access to right side relation is multiplied as left

side relation grows in size� and vice versa� However� this is not true for segmented

temporal relations�

For segmented temporal relations� a temporal segment in left relation is only

joinable with overlapping temporal segments in right relations� Example �� shows

how to e�ciently pick up overlapping temporal segments for any period� For

temporal join� TENORS introduces a transient mediator tableM�LTSEQ� RTSEQ�

computed as

"LTSEQ�RTSEQ�L TSEQ�LTSEQ� LSTART � LEND�

�

�
� R TSEQ�RTSEQ� RSTART � REND��

where ����intersect���LSTART�REND���RSTART�LEND�� Thus it derives overlap	

ping Tseqs for left relation L and right relation R� Example �
 is then translated

into�

Example �� Show the salary history for directors in the ���s�

SELECT L�Name� R�Salary�

PERIOD�max�L�VTstart� R�VTstart� ����������

min�L�VTend� R�VTend� �����	������

FROM Employ AS L�

�SELECT LT�Tseq� RT�Tseq

FROM Employ Tseq AS LT� Position Tseq AS RT

WHERE LT�VTstart � �����	���� AND LT�VTend � ��������

AND LT�VTstart � RT�VTend AND LT�VTend � RT�VTstart

� AS M�LTseq� RTseq��

Position AS R

WHERE L�Title
 �Director� AND L�Title
 R�Title

AND M�LTseq
 L�Tseq AND M�RTseq
 R�Tseq

AND L�VTstart � R�VTend AND L�VTend � R�VTstart

AND L�VTstart � �����	���� AND L�VTend � ��������

AND R�VTstart � �����	���� AND R�VTend � ��������

��

GROUP BY L�Name� R�Salary

Compared to Example �
� the �rst two quali�cations are unchanged� The

other quali�cations implement temporal join via the mediator table and intersec	

tion�

Interval�Oriented Queries As mentioned in Section ������ an important op	

timization performed by TENORS is for queries involving period containment�

such as the query in Example ��� In this query� users can take advantage of the

fact that for an interval to be contained into the other� it must also overlap it�

In fact� the occurrence of the contains construct in a query prompts the query

optimizer to apply this optimization� Thus the query of Example �� is mapped

into�

Example �� People�s incumbency that contains one of Joe�s incumbency period

on same titles�

SELECT R�Name� R�Title� PERIOD�R�VTstart� R�VTend�

FROM �SELECT Tseq� Title� PERIOD�VTstart�VTend�

FROM Employ

WHERE Name
 �Joe�

GROUP BY Tseq� Title

��

� AS L�Tseq�Title�VTstart� VTend��

Employ AS R

WHERE L�Tseq
 R�Tseq AND L�Title
 R�Title

AND L�VTstart � R�VTend AND R�VTstart � L�VTend

GROUP BY R�Name� R�Title

HAVING L�VTstart �� R�VTstart AND L�VTend �� R�VTend

This query involves temporal join to test overlapping� An interesting ob	

servation is that since L and R share the same Tseq table� thus the transient

mediator table is saved as temporal segments in the two relations that can be

joined directly�

Other fundamental temporal query optimizations involved in this query in	

clude ��� dynamically applying temporal operators span and contains to periods

generated by the aggregate PERIOD� ��� exploiting physical storage and indices�

and ��� temporal query rewriting for Allen�s operators� For instance� start and

end functions are rewritten as VTstart and VTend directly� span and contains are

rewritten as combination of existing SQL operators and logical expressions of

VTstart and VTend�

�

��� Summary

In this chapter� we discuss an implementation of SQLT�TENORS� which used

time intervals at the physical level� TENORS has shown that O	R constructs

such as user	de�ned functions and table expressions in the FROM clause can play

a role as important as ADTs in supporting temporal extensions� At the physical

level� TENORS has successfully addressed issues on data model� query language�

and temporal clustering� that cannot be easily solved in an ADT	based approach�

TENORS used a usefulness	based storage organization for performance� scalabil	

ity� and automatic generation of temporal indices�

Future work includes designing user	de�ned index strategies which are now

being included in several DBMSs� To the extent that user	de�ned index strategies

will simplify the mapping from the external model to the internal one� they will

further reinforce our positive conclusion on the practicality of building valid	time

databases on O	R systems�

�

CHAPTER �

Properties of Spatial Objects

Spatial objects possess some unique properties� There are many kinds of relation	

ships between two or more spatial objects� and there are many types of operations

that can be applied to spatial objects�

One important question in a spatial database is how to represent geometry�

In this chapter� we introduce the concept of counterclockwise directed triangle�

which is used together with points and lines to model spatial data� followed by a

polygon triangulation algorithm developed by Seidel ����

Next� we discuss the spatial relationships between triangles and spatial oper	

ations on points� lines and triangles and show how to de�ne spatial relationships

between two polygons based on the relationships between triangles�

��� Spatial Relationships and Operations

The fundamental properties of spatial objects can be classi�ed in non	geometric

and geometric properties ���� Non	geometric properties describe attribute	based

�

data which are usually expressed by standard alpha	numerical data� e�g�� the

population or name of a city� the cost and the energy consumption of a house�

Geometric properties can be distinguished in metric and topological features�

Metric features describe shape and location of spatial objects in a reference

frame� A reference frame is the standardized spatial background into which a

set of spatial objects is conceptually embedded� e�g�� the Cartesian coordinate

system� Each point is attached to a certain reference �coordinate� point� The

shape of a spatial object describes an abstraction of its geometric structure such

as point� line� or polygon� The location of an object indicates the position of the

object with regard to the selected reference frame�

Topological features characterize relationships between spatial objects that

refer to statements concerning adjacency� connectivity� inclusion� and similar re	

lationships of objects� These relationships are independent from the used ref	

erence system and invariant under topological transformations like rotation and

scaling� Also� spatial objects can be subject to temporal changes and thus be

dynamic�

A spatial relationship is a relationship between two or more spatial objects�

They include spatial predicates which compare two spatial objects with respect

to some spatial relationship� They conform to traditional binary relationships

and return a boolean value�

�

Topological relationships are the most formally investigated spatial relation	

ships� They use topological properties for their description and include concepts

like continuity� adjacency� overlapping� interior� boundary� connectivity� and

inclusion� An essential property is that they are preserved under topological

transformations such as rotation and scaling�

Metric relationships use measurements such as distances and directions� Spa	

tial order relationships are based on the de�nition of order� As a rule� each order

relation has an inverse relationship� For instance� behind is a spatial order rela	

tionship based on the order of reference with the inverse relationship in front of �

Since the directional relationships are in�uenced by the relative size� distance� and

the shapes of the two objects� so they are considered as fuzzy concepts�

Spatial objects are manipulated by spatial operations� A spatial operation

is de�ned as a function with spatial arguments� i�e�� it takes spatial objects as

operands and returns either spatial objects or scalar values as results�

Some spatial operations compute a metric property of a spatial object and

return a number� The area operation returns the area and the perimeter opera	

tion returns the perimeter of a polygon object� The operation length calculates

the total length of a line object�

On the other hand� some spatial operations returning atomic spatial objects

or sets of objects� such as intersection� The intersection operation does not have

�

closure properties� For example� the intersection of two lines may be either a

point or a line�

Another important class of operations are spatial selection and spatial join

operations� which combine sets of spatial objects and compare spatial objects by

spatial predicates� Given a set S of spatial objects� a spatial selection �lters out

all those objects of S that ful�ll a selection condition given either by a spatial

predicate or by a comparison expression� Given two sets S and T of spatial

objects� a spatial join constructs new spatial objects that aggregates objects from

S and T � The decision on whether a pair of spatial objects of S and T belongs to

the result depends on a boolean expression in the join condition� which is either

a spatial predicate or a comparison expression�

��� Triangulation

Traditionally� applications with spatial data are based upon coordinates� How	

ever� with coordinate geometry� the complexity of standard operations and the

di�culty of guaranteeing that no geometric inconsistencies are overlooked� In

particular� objects separated into non	coherent parts causes problems which are

di�cult to treat�

In ���� and ����� a general spatial data model based upon simplicial complexes

is presented� A simplex is either a point� a �nite straight line segment� or a

�

triangle� To be more precise� a �	simplex is a set consisting of a single point

in the Euclidean plane� an �	simples is a set consisting of all the points on a

straight line between two distinct points in the Euclidean plane� including the

end points� and a �	simplex is a set consisting of all the points on the boundary

and in the interior of a triangle whose vertices are three non	collinear points�

A simplicial complex is a collection of non	overlapping simplexes� such that

if a simplex belongs to the complex then so do all its components� A simplicial

complex is uniquely determined by its maximal component simplexes�

Many algorithms of triangulating polygon have been proposed in the past

���� ��� ��� ��� An arbitrary n	vertex polygon can be triangulated into n � �

triangles in time O�n log� n� ���� This algorithm will be described in Section

������

In this research� we extend the concept of simplex to counterclockwise directed

triangles� The virtue of counterclockwise directed triangles lies in the simplicity

to test whether a point is inside a polygon �a set of triangles� while the point	

location problem represents a major computational geometry task and is the basis

to determine spatial relationships between spatial objects�

De�nition �� A triangle is counterclockwise directed if its three vertexes�

point��x�� y��� point��x�� y��� and point��x�� y�� are counterclockwise orientated�

i�e��

������������

x� y� �

x� y� �

x� y� �

������������

� �

0 2 4 6 8 10

4

6

2
v1 v2

v3

T

P1

P2

Figure ���� An example of counterclockwise directed triangle

Figure ��� is an example of a counterclockwise directed triangle� The vertexes

of the triangle T � v�� v� and v� are counterclockwise orientated� The edges

v� � v�� v� � v� and v� � v� are directed lines� To test whether a point is

inside a triangle is the same as to test whether a point is on the left side of all

three edges of the triangle� For example� point P� is on the left side of all three

edges of T � so P� is inside T � On the other hand� point P� is on the left side of

edges v� � v� and v� � v� but not on the left side of edge v� � v�� so P� is not

inside T �

�
�
� Algorithm of Polygon Triangulation

Polygon triangulation has been studied extensively in Computational Geometry�

Garey et al� ���� were the �rst to publish an O�n logn� algorithm� Then� an	

other algorithm with the same complexity was published by Chazelle ����� The

O�n logn� bound was then improved to bounds of the form O�n logCP �� where

CP is a �shape� parameter no bigger than n that depends on the polygon P to be

triangulated� Later� Tarjan and Van Wyk ���� made a major breakthrough with

an O�n log logn� algorithm� followed by Clarkon et al� ����� with a randomized

algorithm with O�n log� n� expected running time� In ����� Seidel ��� presented

a simpler randomized algorithm also with O�n log� n� expected running time� In

this section� we will focus on the algorithm developed by Seidel ���� one of the

fastest triangulation algorithms and also the easiest to implement �
���

Consider a set S of n non	horizontal� non	crossing line segments� Starting at

each endpoint of each segment in S� draw two horizontal rays� one towards the

left and one towards the right� each extending until it hits a segment of S� For

a segment endpoint p� the union of these two possibly truncated rays emanating

from p is called the horizontal extension through p� The trapezoidations �Fig	

ure ���� of S� or #�S� for short� is the segments of S together with horizontal

extensions through the endpoints�

Let S � fs�� s�� � � � � sn��g be the set of edges around a simple polygon P �

�

Figure ���� A trapezoidation of � line segments

assume that no two vertices of P have the same y	coordinate� This condition

can always be achieved by rotating the coordinate system by an su�ciently small

amount� thus the assumption will not cause loss of generality� A triangulation

of P from a trapezoidation #�S� is computed in two steps� ��� remove from

consideration all trapezoids of #�S� that do not lie in the interior of P � ��� for

each of the remaining trapezoids check whether it has two vertices of P on its

boundary that do not lie on the same side� If such a pair of vertices exists� draw a

diagonal between them� The diagonals introduced in the second step partition P

into a number of subpolygons� each of which has a very special form� its boundary

consists of two y	monotone chains� one of which is a single edge� A polygon of

such a form can easily be triangulated in linear time by repeatedly �cutting o��

convex corners of the y	monotone chain�

Figure ��� is an example of triangulating a polygon� In �a�� a trapezoidaized

polygon is showed� Next in �b�� all the trapezoids not inside the polygon are

�

(a) (b) (c)

Figure ���� �a� A polygon� �b� Trapezoids inside the polygon� �c� Introducing

diagonals

removed� Then in �c�� diagonals are added� the original polygon has been divided

into � triangles�

The complete algorithm is as follows�

Let log�i� n denote the ith iterated logarithm� i�e�� log��� n � n and for i � �

we have log�i� n � log�log�i��� n�� For n � � let log�n denote the largest integer l

so that log�l� n � � � and for n � � and � � h � log� n� let N�h� be shorthand for

d n

log�h� n
e� Given trapezoidation #�S�� where S is a set of edges of a simple polygon�

$�S� is a point location query structure for #�S�� i�e�� $�S� is a directed acyclic

graph with one source and with exactly one sink for each trapezoid of #�S��

The input to the algorithm below is a simple polygonal chain C of n segments

in consecutive order along C�

�� Generate s�� s�� � � � � sn� a random ordering of the segments of C

�

�� Generate #�� the trapezoidation for the set fsig along with the correspond	

ing search structure $�

�� For h � � to log� n do

�a� For N�h� �� � i � N�h� do

i� Obtain trapezoidation #i and search structure $i from #i�� and

$i�� by inserting segment si

�b� Trace C through #N�h� to determine for each endpoint of all non	

inserted segments the containing trapezoid of #n�h�

�� For N�log� n� � i � n do

�a� Obtain trapezoidation #i and search structure �i from #i�� and $i��

by inserting segment si

��� Spatial Relationships Between Triangles

The spatial relationships between two triangles are de�ned as follows�

� equal�triangle�� triangle�� � i� the set of the vertexes of triangle� are

equal to the set of the vertexes of triangle�

� overlap�triangle�� triangle�� � i� at least one edge of triangle� crosses

with an edge of triangle�

�

T3

T4

T5
T6

 T1,T2

Figure ���� Example of Relationships Between Triangles

� contain�triangle�� triangle�� � i� the three vertexes of triangle� are all

inside triangle�

� disjoint�triangle�� triangle�� � i� non of the vertexes of triangle� is

inside triangle� and vice versa� and non of the edges of triangle� crosses

with any edge of triangle�

� adjacent�triangle�� triangle�� � i� one edge of triangle� overlaps with

an edge of triangle�

� commonborder�triangle�� triangle��� i� two vertexes of triangle� are

equal to two vertexes of triangle�

� meet�triangle�� triangle�� � i� one vertex of triangle� is on an edge of

triangle�

�

Figure ��� illustrates the de�nition of these relationships between two trian	

gles� For example� �i� T� and T� which have the same set of vertexes are equal

to each other� �ii� T� and T� share a commonborder� so do T� and T�� �iii� T��

T�� and T� are disjoint with T� and T
� also T� and T� are disjoint with T��

�iv� T� and T� are adjacent because an edge of T� overlaps with an edge of T�

and two vertexes of T� are not inside T�� �v� T� meets T� because one vertex of

T� is on an edge of T� and the other two vertexes of T� are not inside T�� �vi�

T
 overlaps T� because one vertex of T� is inside T
� and �vii� T
 contains T�

because all three vertexes of T� are inside T
�

Furthermore� the relationships between these spatial operators are�

equal �� contain

equal �� overlap

contain �� overlap

adjacent �� overlap

commonborder �� overlap

meet �� overlap

commonborder �� adjacent

For example� if equal�triangle�� triangles
� evaluates to TRUE� then it implies

that contain�triangle�� triangle
� also evaluates to TRUE�

�

��� Spatial Operations on Points
 Lines and Triangles

The operations associated with points� lines and triangles are as follows�

� distance�point��x�� y��� point��x�� y��� �
p
�x� � x��� � �y� � y���

� inside�point�x�� y��� line��x�� y��� �x�� y���� � tests whether the point is

on the line� i�e��������������

x� y� �

x� y� �

x� y� �

������������

� �

and �min�x�� x�� � x� � max�x�� x�� or min�y�� y�� � y� � max�y�� y���

� distance�point�x�� y��� line��x�� y��� �x�� y����

�

����������������������
���������������������

�
�
�
�
�
�
�
�
�
�
�
�

x� � x� y� � y�

x� � x� y� � y�

�
�
�
�
�
�
�
�
�
�
�
�p

�y��y�����x��x���

if

��������

y� � y� x� � x�

x� � x� y� � y�

��������
�

��������

y� � y� x� � x�

x� � x� y� � y�

��������
� �

min�
p
�x� � x��� � �y� � y����

p
�x� � x��� � �y� � y����

otherwise

� center of mass�line��x�� y��� �x�� y���� � the x and y coordinates of the

center of mass of a line is�

�

cmx �
x� � x�

�
� cmy �

y� � y�

�

� length�line ��x�� y��� �x�� y���� �
p
�x� � x��� � �y� � y����

� crosspoint�line��line��� the cross point of two lines is pointc �x� y� with

the coordinates as�

x �

�x� � x��

��������

x�� y��

x�� y��

��������
� �x�� � x���

��������

x� y�

x� y�

��������
�y� � y���x�� � x���� �y�� � y����x� � x��

y �

�y� � y��

��������

x�� y��

x�� y��

��������
� �y�� � y���

��������

x� y�

x� y�

��������
�y� � y���x�� � x���� �y�� � y����x� � x��

and �min�x�� x�� � x � max�x�� x�� or min�y�� y�� � y � max�y�� y����

When there is no solution to the above equations� we say pointc � null�

� intersect�line�� line��� if the cross point of the two lines is not null� we

say line� and line� cross with each other

� center of mass�triangle��x�� y��� �x�� y��� �x�� y���� � the x and y coor	

dinates of the center of mass of a triangle is�

�

cmx �
x� � x� � x�

�
� cmy �

y� � y� � y�

�

� area�triangle��x�� y��� �x�� y��� �x�� y���� �
�
�

������������

x� y� �

x� y� �

x� y� �

������������

� perimeter�triangle��x�� y��� �x�� y��� �x�� y�����
p
�x� � x��� � �y� � y���

�
p
�x� � x��� � �y� � y��� �

p
�x� � x��� � �y� � y���

� intersect�line� triangle� � returns a segment of the line that is inside

the triangle� which may be also be a point�

To calculate the intersection of a line and a triangle� �rst test if any end	

points of the line is inside the triangle� If both of the endpoints are inside

the triangle� then return the line� Next� calculate the cross point of the

line and the edges of the triangle� If there are two such points� then return

the line segment with these two points as endpoints� if there is only one

cross point and one endpoint of the original line is inside the triangle� then

return the line segment with the cross point and the original endpoint as

endpoints� if there is only one cross point and there is no endpoint of the

original line inside the triangle� then return the cross point�

� intersect�triangle�� triangle�� � if two triangles intersect with each

other� it may return a set of triangles� a line segment or only a point�

Algorithm � is a simpli�ed version of the algorithm of intersection of convex

polygons presented in �
�� In this algorithm� L is a list containing the

coordinates of points� which is empty at the beginning of the algorithm�

Each cross point of the edges of the two triangles are appended to L� and

the vertex of the triangles is also appended to L if it is inside the other

triangle� Then L is triangulated using the algorithm in Section ������ If L

only contains one element� that means the two triangles meet at one point�

if L contains two element� that means the two triangles are adjacent with

each other�

Algorithm � intersect two triangles into a region

Require� initially T�� T�� L � ��
�� for each edge E of T� do
�� for each edge E � of T� do
�� pointc � crosspoint�E�E ��
�� if pointc �� null then
	� append pointc to L

� end if
�� end for
�� end for
� for each vertex V of T� do

��� if V inside T� then
��� append V to L
��� end if
��� end for
��� for each vertex V � of T� do
�	� if V � inside T� then
�
� append V � to L
��� end if
��� end for
�� triangulate L into set of triangles S
��� return S

��� Spatial Relationship Between Polygons

The spatial operators de�ned for triangles in Section ��� can be used towards

polygons with little change�

Let S and S � denote sets of triangles that two polygons R� and R� are de	

composed into� and t and t� denote an element in S and S �� respectively� The

operators proposed in Section ��� can be used on two polygons in the following

ways�

�� R� is equal to R� if S � S ��

�� R� overlaps R� if �t � S� t� � S �� �edge e of t� edge e� of t�� such that e

and e� intersect

�� R� contains R� if �t� � S �� �vertexes v of t�� �t � S� such that v is inside

t�

�� R� is disjoint with R� if �t � S� 	�t� � S �� such that t overlaps t��

�� R� is adjacent with R� if �t � S� �t� � S � where t is adjacent with t� and

the two ends of the adjacent edge are neighboring vertexes of both R� and

R��

� R� and R� have a commonborder if �t � S� �t� � S � where t and t� have

a common border and the two ends of the common border are neighboring

�

vertexes of both R� and R��

� R� meets R� if �t � S� �t� � S �� such that t meets t� and �t�� � S �� t�� does

not contain t�

Since a polygon with n vertexes can be decomposed into n� � triangles while

the relationships between two triangles can be determined in constant time� so

the comparison of two polygons can be done in O�n�� time�

��	 Summary

In this chapter� we reviewed the characteristics of spatial data and extends the

simplexes concept to counterclockwise directed triangles� which is used together

with points and lines to model spatial data�

This chapter also introduced the polygon triangulation algorithm developed

by Seidel ���� which can be done in O�n log� n� time�

The spatial relationships between triangles and spatial operations on points�

lines and triangles were then presented� Finally� we discussed how to de�ne

spatial relationships between two polygons based on the relationships between

triangles�

�

CHAPTER �

A Concrete Model of Spatio�Temporal Data

This chapter presents the design and implementation of SQLST � an extensible

spatio	temporal data model and query language� We use counterclockwise di	

rected triangles to model spatial objects and intervals to model time� In addition

to providing the spatio	temporal primitives as built	ins� SQLST allows the user

to introduce additional extensions to the data model and query language� The

two main mechanisms used for this purpose are user	de�ned aggregates and table

expressions� This approach minimizes the extensions required in SQL� supports

the orthogonality of spatial and temporal constructs� and the customization of

spatio	temporal extensions to meet the di�erent needs of di�erent applications�

��� SQLST

We now introduce SQLST through examples� For concreteness� we consider a

spatio	temporal application from the NSF Arctic System Science �ARCSS� Re	

search Program Ocean Atmosphere Ice Interactions �OAII� Project� The marine

��

environment is an interactive system comprising the water� ice� air� biota� dis	

solved chemicals and sediments� ARCSS�OAII seeks to enhance understanding

of this system and its role in climate and global change� The extratropical cy	

clone data set ��� at ARCSS provides information about cyclones in the Northern

Hemisphere� We will use this data set through out our study�

Consider a cyclone database at a weather center� Included in this database

is the information about cyclone activities including the path and the center of

pressure for cyclones during time intervals�

Example �� De�ne the Cyclone relation�

CREATE TABLE Cyclone

�ID INT� Pressure REAL� Trajectory LINE�

Tstart DATE� Tend DATE�

In this relation� the Tstart and Tend columns indicate the start and end in	

stants of a time interval� and have a granularity of one day� Trajectory is a line

segment whose start and end points are the positions� of the cyclone at time

Tstart and Tend� respectively� Pressure is the average of the pressure values mea	

sured at the center of the cyclone at Tstart and Tend� and its unit is milibar� ID

is the cyclone identi�er� ID and Tstart together serve as the key of the relation�

�x � Rearth
longitude

���
�� y � Rearth

latitude
���

�

��

A second type of information contained in the database is about regions of

interest� For instance� all the islands in an archipelago might be described as

follows�

Example �� De�ne the Island relation�

CREATE TABLE Island

�Name CHAR����� Region TRIANGLE�

In this relation� the Region column stores the geometry of the island� Each

island is decomposed into non	overlapping triangles� So our table contains a

row with Name � �Maui� for each triangle into which the region of Maui has

been decomposed� In general� polygonal regions are represented as sets of non	

overlapping� counterclockwise directed triangles�

Our basic objects are points� lines� and counterclockwise directed triangles�

thus� a polygon is represented by a set of counterclockwise directed triangles�

By decomposing polygons into sets of counterclockwise directed triangles� the

hard	to	express spatial relationships between two spatial objects can be evaluated

easily ���� The algorithms to decompose a polygon into directed triangles and

to merge triangles into polygons can be found in ���
��� Finally� we use time

intervals to model temporal data at the physical level�

A set of typical cyclone	related queries for NFS ARCSS�OAII dataset is given

��

next� we had also used similar queries to analyze the computer simulation data

produced by a climatic weather model on a NASA	sponsored project �����

Example �� Find all cyclones whose high pressure stage �pressure � �mb�

lasted more than � days�

SELECT ID

FROM Cyclone

WHERE Pressure � ����

GROUP BY ID

HAVING DURATION�Tstart� Tend� � �

This query will return the IDs of the cyclones whose high pressure stage last

more than � days�

As it can be easily inferred from the syntactic structure of this query that

uses the GROUP BY and HAVING constructs� the operator duration is in fact a

user	de�ned aggregate� The de�nition and implementation of this aggregate in

SQLST will be discussed in detail in Section ���� Similar comments apply to all

the remaining queries in this section�

Example �� Find the cyclones whose trajectory have been enclosed by Maui�

SELECT ID

FROM Cyclone� Island

��

WHERE Name
 �Maui�

GROUP BY ID

HAVING CONTAIN�Region� Trajectory�

This query returns the ID of the cyclones have been completely inside the

island �Maui��

Example � Find how long each cyclone has traveled when it was over Maui�

SELECT ID� SUM�length�intersect�Trajectory� Region���

FROM Cyclone� Island

WHERE Name
 �Maui�

GROUP BY ID

HAVING OVERLAP�Trajectory� Region�

This query returns the distance the cyclones traveled when their trajectories

overlap the region of the island �Maui��

The functions intersect and length are built	in C�� functions described in

Section ������ In this case� when a line �Trajectory� overlaps with a triangle

�Region�� their intersection will be a line segment� The length of the line segments

is then calculated and summed up�

Other spatial relationships similar to contain and overlap include adjacent�

disjoint� and equal� etc� All these relationships can be evaluated using user	de�ned

��

aggregates�

Example �	 Identify all cyclones that have come within � miles of the coast of

Lanai�

SELECT ID

FROM Cyclone� Island

WHERE Name
 �Lanai�

GROUP BY ID

HAVING EDGE DISTANCE�Trajectory� Region� �� ��

This query �nds the cyclones whose shortest distance from their trajectories

to the coast of the island �Lanai� is less than or equal to �� miles�

Example �� Find the cyclones that have traveled for more than � miles con�

tinuously�

SELECT ID

FROM Cyclone

GROUP BY ID

HAVING MOVING DISTANCE�Trajectory� Tstart� Tend� � ���

This query returns the IDs of the cyclones whose center have moved contin	

uously over ��� miles�

In the above examples� we see SQLST is a natural minimalist extension to

SQL�

��

��� Implementation

�
�
� Built�in Functions

As the starting point of our SQLST system� we implemented the following built	in

operators in C��� Their de�nition has been discussed in Chapter ��

� distance�point��x�� y��� point��x�� y���

� inside�point� line� � returns � if the point is on the line� � otherwise�

� distance�point�x�� y��� line��x�� y��� �x�� y����

� center of mass�line��x�� y��� �x�� y����

� length�line��x�� y��� �x�� y����

� intersect�line�� line�� � returns their common segment �which may be

a point� if any� return ���� ��� ��� ��� otherwise�

� inside�point� triangle� � returns � if the point is on the left side of all

three edges of the triangle� � otherwise�

� center of mass�triangle�

� area�triangle�

� intersect�line� triangle� � returns a segment of the line that is inside

the triangle if any� return ���� ��� ��� ��� otherwise�

�

� intersect�triangle�� triangle�� � return their common area as a set of

triangles �which may also be a point or a line segment� if any� return

���� ��� ��� ��� ��� ��� otherwise�

These functions are a partial list of the spatial relationships and operations

between points� lines and triangles that SQLST support� For more information�

please refer to ����

Based on these built	in functions� users can de�ne spatial relationships be	

tween two spatial objects such as contain� overlap and edge distance� etc�

�
�
� AXL

The AXL �Aggregate eXtension Language� system� introduced in ��
�� imple	

ments the SQL language on top of Berkeley DB record manager ���� But in ad	

dition to supporting SQL� and allowing the users to introduce new functions by

programming them in C�C�� �as O	R systems do�� AXL supports the de�nition

of powerful user	de�ned aggregates �UDAs� expressed in an SQL	like language�

By programming new UDAs in SQL� end	users can easily extend the database

system and support a variety of advanced database applications ��
�� Applica	

tions supported through AXL�s UDA extensions include� OLAP� data mining�

temporal and spatial databases� and others that make extensive use of data ag	

gregation� Furthermore� AXL is e�cient� and only a limited overhead is paid for

�

developing such applications via UDAs de�ned in SQL� rather than directly in a

procedural language such as C�C���

To create an aggregate in AXL� a user needs to de�ne three SQL routines�

under the labels of INITIALIZE� ITERATE and TERMINATE� which� respectively�

specify the computation to be performed for the �rst value in the stream� for

each successive value� and when the end of the stream is detected� Results of the

aggregation can be returned anytime during these routines by inserting tuples

into an append	only RETURN stream�

For instance� to create an online average aggregate which returns results �cur	

rent averages� for every ��� new values� we can de�ne the following aggregate�

Example �� MOVING AVERAGE � a user�de�ned aggregate in AXL�

AGGREGATE MYAVG�Next INT� � REAL

f

TABLE state�sum INT� cnt INT��

INITIALIZE � f

INSERT INTO state VALUES�Next� ���

g

ITERATE � f

UPDATE state SET sum
 sum � Next� cnt
 cnt � ��

INSERT INTO return SELECT sum�cnt FROM state WHERE cnt����
 ��

��

g

TERMINATE � f

INSERT INTO return SELECT sum�cnt FROM state�

g

g

The �rst line of this aggregate function declares a local table� STATE� to keep

�in memory� the sum and count of the values processed so far� While� for this

particular example� STATE contains only one tuple� it is in fact a table that

can be queried and updated using SQL statements� These SQL statements are

grouped into the three blocks labelled respectively INITIALIZE� ITERATE and

TERMINATE� Thus� INITIALIZE inserts the value taken from the input stream

and sets the count to �� The ITERATE statements update the table by adding

the new input value to the sum and � to the count� The TERMINATE statements

return the �nal result of computation by appending it to RETURN� for conformity

with SQL� RETURN is viewed as a table� and thus an INSERT INTO construct is

used� We also add intermediate results from the computation to RETURN tables

as part of the ITERATE statements�

The fact that UDAs in AXL are written in SQL achieves compatibility of

data types and programming paradigms and inherits the well	known bene�ts of

database query languages� such as scalability� data independence and paralleliz	

��

ability� The ability of introducing and manipulating new tables is one of the �rst

cornerstones of AXL�s power� The second is the ability of one aggregate calling

another� or calling itself recursively�

�
�
�
� Implementation of AXL

The AXL compiler translates AXL programs into C�� code� AXL adopts an

open interface for its physical data model� so that the system can link with a

variety of physical database implementations� The Berkeley DB library ��� is

now used as AXL�s main storage manager� but we have now added support for

in	memory tables� and there is current work to support R	trees �����

The runtime model of AXL is based on data pipelining� In particular� all

UDAs� including recursive UDAs that call themselves� are pipelined� which means

tuples inserted into the RETURN relation during the INITIALIZE�ITERATE steps

are returned to their caller immediately� In order to do this� all local variables

�temporary tables� declared inside the body of a UDA are assembled into a STATE

structure which is passed into the UDA for each INITIALIZE�ITERATE�TERMINATE

call�

AXL UDAs can either be used as stand	alone programs or� imported into O	R

systems such as DB� �with limitations due to the fact that we use UDFs that

return a single value for each call��

��

�
�
� Temporal Aggregates

We implemented our SQLST system by �rst adding the built	ins described in

Section ����� into AXL� and then using its UDA mechanism to implement the

spatio	temporal aggregates needed in spatio	temporal queries such as those of

Section ���� For instance� the temporal aggregate duration is implemented as

follows�

Example �� DURATION

AGGREGATE DURATION�Tstart DATE� Tend DATE� � INT

f

TABLE state�i INT��

INITIALIZE � f

INSERT INTO state VALUES�Tend � Tstart � ���

g

ITERATE � f

UPDATE state SET i
 i � �Tend � Tstart � ���

g

TERMINATE � f

INSERT INTO return SELECT i FROM state�

g

g

��

This aggregate calculates the total length of the time intervals� For example�

if we have a set of tuples as

cyclone��	����� �� �� ����	�������� ����	������

cyclone��	����� �� �� ����	�������� ����	������

cyclone��	����� �� �� ����	�������� ����	������

The result of duration will be �� days�

�
�
� Spatial Aggregates

Similar to the temporal aggregates� spatial relationships can also be expressed

using user	de�ned aggregates� We also take advantage of inheritance and over	

loading characteristics of O	R systems ��
�� Both point and line are subtypes of

triangle� A point can be considered as a triangle whose three vertexes are the

same and a line as a triangle whose �rst two vertexes are the two endpoints of

the line and the last vertex is the center of mass of the line�

Example �� EDGE DISTANCE

AGGREGATE EDGE DISTANCE�Object� TRIANGLE� Object	 TRIANGLE� � REAL

f

��

TABLE state�d REAL��

INITIALIZE � ITERATE � f

INSERT INTO state VALUES�distance�Object��Vertex� Object	�Edge���

g

TERMINATE � f

INSERT INTO return SELECT MIN�d� FROM state�

g

g

As mentioned in Section ������ the built	in function distance�point�line� calcu	

lates the distance between a point and a line segment� The edge distance between

two spatial objects� which are two sets of triangles� is de�ned as the smallest dis	

tance between the vertexes of the triangles of one set to the edges of the triangles

of the other set�

Example �� CONTAIN

AGGREGATE CONTAIN�Object� TRIANGLE� Object	 TRIANGLE� � INT

f

TABLE state�b INT� AS VALUES����

TABLE triangles�Object TRIANGLE��

TABLE points�Vertex POINT��

INITIALIZE � ITERATE � f

��

INSERT INTO triangle VALUES�Object���

INSERT INTO points VALUES�Object	�Vertex��

g

TERMINATE � f

UPDATE state SET b
 � WHERE NOT EXIST

�SELECT Vertex FROM points� triangles

WHERE inside�Vertex� Object�
 ���

INSERT INTO return SELECT b FROM state WHERE b
 ��

g

g

The function inside is a built	in function that will evaluate to � if a point is

inside a triangle� � otherwise�

The spatial aggregate contain�Object�� Object�� then uses inside to test if

Object� contains Object�� The aggregate �rst iterate through all the records and

insert the triangles belong to Object� into one table and the vertexes belong to

Object� into another table� If there exists one vertex of Object� that is not inside

any triangle of Object�� then the aggregate contain will not return anything� oth	

erwise� it will return �� i�e�� contain�Object�� Object�� � � triangle t� � Object�� �

vertex v of t�� � triangle t � Object�� v inside t�

Another example is the aggregate overlap� which can be de�ned as follows�

��

Example �� OVERLAP

AGGREGATE OVERLAP�Object� TRIANGLE� Object	 TRIANGLE� � INT

f

TABLE state�b INT� AS VALUES����

TABLE edges��line� LINE��

TABLE edges	�line	 LINE��

INITIALIZE � ITERATE � f

INSERT INTO edges� VALUES�Object��Edge��

INSERT INTO edges	 VALUES�Object	�Edge��

g

TERMINATE � f

UPDATE state SET b
 � WHERE EXIST

�SELECT line� FROM edges�� edges	 WHERE intersect�line��line	�
 ���

INSERT INTO return SELECT b FROM state WHERE b
 ��

g

g

The function intersect is a built	in function that will evaluate to � if two lines

cross with each other� � otherwise�

Similar to contain� the spatial aggregate overlap then uses intersect to test if

any edge of a triangle belongs to Object� crosses with an edge of a triangle belongs

to Object�� Again� the aggregate �rst iterate through all the records and insert

��

the edges of the triangles into two di�erent tables� If there exists a pair of edges

of triangles belong to Object� and Object� that intersect with each other� then

overlap�Object�� Object�� will return �� otherwise� it will not return anything� i�e��

overlap�Object�� Object�� � intersect�Object�Edge� Object�Edge� �� ��

In a similar fashion� end	users can easily de�ne additional operators such as

adjacent� disjoint� thus producing a spatio	temporal database system that has

powerful primitives and is customized for their application�

�
�
� Spatio�Temporal Aggregates

Some operators may require dealing with both spatial and temporal information

at the same time� such as moving distance�

Example �� MOVING DISTANCE

AGGREGATE MOVING DISTANCE�Object� Tstart DATE� Tend DATE� � REAL

f

TABLE state�d REAL� x REAL� y REAL� time DATE��

INITIALIZE � f

INSERT INTO state VALUES��� cmx�Object�� cmy�Object�� Tend��

g

ITERATE � f

UPDATE state SET d
 d � sqrt�cmx�Object� � x�� � �cmy�Object� � y����

�

x
 cmx�Object�� y
 cmy�Object�� time
 Tend

WHERE Tstart
 time � ���

INSERT INTO state VALUES��� cmx�Object�� cmy�Object�� Tend�

WHERE Tstart �� time � ���

g

TERMINATE � f

INSERT INTO return SELECT d FROM state�

g

g

This aggregate calculates the distance an object travels continuously� We �rst

calculate the distance between two positions of the center of mass of an object at

two consecutive time intervals� and then sum up the distance calculated� When

the start of a new time interval is not continuous to the end of any existing time

interval� we save the value and start a new round of calculation� The built	in

functions cmx and cmy calculates the x and y coordinates of the center of mass

of an object� respectively�

��� Performance

A key question to evaluate the e�ectiveness of the SQLST approach is how much

overhead must be paid for having programmed our extensions in SQL rather

�

than in C or C��� Therefore we performed the following experiment on the

cyclone data set obtained from ���� The data set contains a ��	year record ��

May ��

 through �� December ����� of daily cyclone statistics for the Northern

Hemisphere� The data set includes the position and central pressure of each

cyclone� together with the ID of the cyclone and a date �eld� The data set has

about ������� records and is over ��MB� Also� we used an island relation that

contains ���� tuples� Then� we compared the performance of four queries written

in C�� �accessing the data through the Berkeley	DB API�� against those written

in AXL� An index has been created on the Tstart columns of the Cyclone table and

on the Name column of the Island table� We compare the results of the queries

in four di�erent cases� ��� AXL using indexes� ��� AXL not using indexes� ���

C�� using indexes� and ��� C�� not using indexes�

We tested the performance of the following four queries on a Pentium III with

a single ���HZ processor and �
�MB memory� running LINUX�

Example �� Find the duration of the cyclones occurred in June
 �����

SELECT ID� DURATION�Tstart� Tend�

FROM Cyclone

WHERE ����������� �� Tstart AND ����������� � Tstart

GROUP BY ID

��

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

T
im

e
(in

 m
ill

i-s
ec

on
ds

)

Number of Records (in thousands)

duration
AXL w/ key

AXL w/o key
C++ w/ key

C++ w/o key

Figure ���� Performance result of Query ��

Example � Find the distance traveled by the cyclones occurred in June
 �����

SELECT ID� MOVING DISTANCE�Trajectory� Tstart� Tend�

FROM Cyclone

WHERE ����������� �� Tstart AND ����������� � Tstart

GROUP BY ID

Figures ��� and ��� are the results of the aggregates duration andmoving distan�

ce� Since the number of records that meet the selection criterion is �xed� so when

a key is used� we only need to retrieve the quali�ed records directly� thus the

result of performance of AXL and C�� are constant� When no key is used� we

have to search the entire database� so the result of the performance of both AXL

��

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

T
im

e
(in

 m
ill

i-s
ec

on
ds

)

Number of Records (in thousands)

moving_distance
AXL w/ key

AXL w/o key
C++ w/ key

C++ w/o key

Figure ���� Performance result of Query ��

and C�� increase linearly� In both cases� the program written directly in C��

against the Berkeley DB API outperforms AXL by a constant�

Example �	 Find the cyclones which occurred in June
 ���� and landed on the

island Oahu�

SELECT ID

FROM Cyclone� Island

WHERE ����������� �� Tstart AND ����������� � Tstart AND Name
 �Oahu�

GROUP BY ID

HAVING CONTAIN�Region� Trajectory�

Example �� Find the distance between cyclones which occurred in June
 ����

and the coast of island Oahu�

���

100

1000

10000

0 50 100 150 200

T
im

e
(in

 m
ill

i-s
ec

on
ds

)

Number of Records (in thousands)

contain
AXL w/ key

AXL w/o key
C++ w/ key

C++ w/o key

Figure ���� Performance result of Query ��

SELECT ID� EDGE DISTANCE�Trajectory� Region�

FROM Cyclone� Island

WHERE ����������� �� Tstart AND ����������� � Tstart AND Name
 �Oahu�

GROUP BY ID

Figure ��� and ��� are the results of the aggregates contain and edge distance�

Still� when a key is used� the results of performance of AXL and C�� are con	

stant� When no key is used� the results of the performance of both AXL and

C�� increase� Again� In both cases� C�� API of Berkeley	DB is slightly faster

than AXL� We used log scale for the time axis in these two graphs because the

di�erence between using a key or not using one is dramatic� Unlike the aggre	

gates duration and moving distance which handle the incoming data as soon as

���

100

1000

10000

0 50 100 150 200

T
im

e
(in

 m
ill

i-s
ec

on
ds

)

Number of Records (in thousands)

edge_distance
AXL w/ key

AXL w/o key
C++ w/ key

C++ w/o key

Figure ���� Performance result of Query ��

it comes in without storing it� the aggregates contain and edge distance need to

insert the incoming data into temporary tables �rst� and then upon termination�

query these tables to get the desired results� Thus the performance curve of these

two aggregates is di�erent from that of duration and moving distance�

��� More Abstract Representations

Spatio	temporal data modeling involves the abstraction of reality as a number of

objects or features� The selection of abstract models depends on the application

and users� preference�

To model time at the conceptual level� we may use a point	based time model

����� where information is repeated for each time granule where it is valid� The

���

polygon	oriented representation for spatial data is also selected because two di	

mensional shapes o�er a more natural representation for many application do	

mains� For instance� a region in a GIS system can be drawn� enlarged� moved�

or split� Therefore� the abstract model of SQLST views reality as a sequence of

snapshots of objects that are moving and�or changing in shape�

0 2 4 6 8 10

4

6

2

0 2 4 6 8 10

4

6

2

0 2 4 6 8 10

4

6

2

0<=t<10

10<=t<20

20<=t<30

O1
O2

O1

O2

O1

O2

Figure ���� Graphs representing spatio	temporal data

���

Figure ��� is an example of spatial objects changing with time� At time t � ��

there are two spatial objects in the graph� a square O� and a triangle O�� At

time t � ��� O� changes its shape and O� is moved to a new position� At time

t � ��� O� has some more changes in shape while O� stays unchanged�

Table ��� shows how the changes are recorded in the database at the abstract

level� From time t � � on� the square O� is represented by two triangles and the

triangle O� is represented by one triangle� At time t � ��� changes of the shape of

O� and position of O� occur and their representation also changed accordingly�

Now O� is represented by three triangles while O� is still represented by one

triangle with new coordinates of the vertexes� This representation is valid from

time t � �� till further change occurs� At time t � ��� the shape of O� is changed

further while O� remains unchanged� Now O� is represented by one triangle and

O� stays unchanged�

In Table ���� we also notice that the valid time of each fact is recorded as a

time instant VTime�

As we have discussed in the previous chapter� the internal representation of

the spatio	temporal objects shown in Figure ��� is in Table ���� i�e�� triangles are

used for spatial data modeling and intervals are used for temporal data modeling�

A polygon having n vertexes in the abstract data model is decomposed into

n�� triangles in the concrete data model� The time instants associated with the

���

ID S VTime
O� ��������
�����
�
�����
�� �
� � � � � � � � �
O� ��������
�����
�
�����
�� �
O� ��
������������
�
�� �
� � � � � � � � �
O� ��
������������
�
�� �
O� ��������������������
�����
�
�����
�� ��
� � � � � � � � �
O� ��������������������
�����
�
�����
�� ��
O� ������������������� ��
� � � � � � � � �
O� ������������������� ��
O� ��������
�
�����
�� ��
� � � � � � � � �
O� ��������
�
�����
�� ��
O� ������������������� ��
� � � � � � � � �
O� ������������������� ��

Table ���� Abstract model of the spatio	temporal data shown in Figure ���

ID S VTime
O� ������� �
���� �
�
�� ��� ���
O� ��
�
�� ���
�� ������ ��� ���
O� ��
�
�� �
���� ������� ��� ���
O� ��
�
�� ���
�� ������ ���� ���
O� ������� ������ ������ ���� ���
O� ������� �
���� �
�
�� ���� ���
O� ������� ������ ������ ���� ���
O� ����
�� ������ �
�
�� ���� ���
O� ������� ������ ������ ���� ���

Table ���� Concrete model of the spatio	temporal data shown in Figure ���

���

same non	temporal value are coalesced into time intervals�

The extensibility mechanisms of SQLST can also be used to elevate the repre	

sentation to richer and more abstract levels� Next� we show how SQLST can be

further extended to support these more abstract representations� In fact� we will

now express the queries of Section ��� using points and polygons as spatial data

types and time instants as temporal data type�

�
�
� Schema De�nition

The schema of the databases in Section ��� have been changed as follows�

Example �� De�ne the Cyclone relation� �Example ���

CREATE TABLE Cyclone

�ID INT� Pressure REAL� Position POINT� Time DATE�

In the Cyclone relation� the spatial data column is Position which has a data

type point and speci�es the x and y coordinates of the center of a cyclone� The

temporal data column is Time which has a granularity of one day and captures

the time instants of cyclones� movements�

Example �� De�ne the Island relation� �Example ���

CREATE TABLE Island

�Name CHAR����� Extent POLYGON�����

��

In the Island relation� the Extent column has a spatial data type as polygon

and speci�es the geometry of the island�

�
�
� Spatio�Temporal Queries

Since the spatio	temporal operators are supported at the internal level� so table

expressions in O	R systems ���� are used to transform the queries�

For instance� Example � in Section ��� is expressed as follows at the concep	

tual level�

Example �� Find cyclones whose high pressure stage lasted more than � days

�Example ����

SELECT New�ID

FROM �SELECT ID� MAPPING�Position� Time� FROM Cyclone

WHERE C�Pressure � ���� GROUP BY ID�

AS New �ID� Trajectory� Tstart� Tend�

GROUP BY New�ID

HAVING DURATION�New�Tstart� New�Tend� � �

Mapping is also a user	de�ned aggregate which maps a pair of point and time

instant into a pair of line and time interval�

Example �� MAPPING

��

AGGREGATE MAPPING�position POINT� time DATE� � �LINE� DATE� DATE�

f

TABLE state�l LINE� d� DATE� d	 DATE��

TABLE tmp�p POINT� t DATE��

INITIALIZE � f

INSERT INTO tmp VALUES�position� time��

g

ITERATE � f

INSERT INTO state VALUES�SELECT p� position� t� time FROM tmp

WHERE time
 t � ���

UPDATE tmp SET p
 position� t
 time�

g

TERMINATE � f

INSERT INTO return SELECT l� d�� d	 FROM state�

g

g

Similarly� Example �� can be expressed as follows�

Example �� Find the cyclones whose trajectory have been enclosed by Maui

�Example ����

SELECT New�ID

���

FROM �SELECT ID� MAPPING�Position� Time�� T�Region

FROM Cyclone� Island� TABLE�decompose�Extent�� AS T

WHERE Name
 �Maui�� AS New �ID� Trajectory� Tstart� Tend�

GROUP BY New�ID

HAVING CONTAIN�New�Region� New�Trajectory�

Decompose�Extent� is a table function which decompose a polygon �Extent�

into a set of triangles �Region�� The triangulation algorithm can be found in

���
���

��� Future Work

Indexing Spatio	temporal databases manage data whose geometry changes

over time� While there has been a large amount of research for indexing temporal

and spatial data� indexing spatio	temporal data is an area still under research�

One way to index spatio	temporal data is to treat the time axis as just another

dimension like the spatial ones and then a traditional spatial access method such

as the R	trees ���� or Quadtree ���� These methods approximate spatial objects

by their Minimum Bounding Rectangles �MBRs� in order to construct the spatial

index� which is ine�cient solution if the time span of the spatio	temporal object

is long or if the object�s geometry changes rapidly�

���

���� discusses the following issues of e�ciently indexing spatio	temporal ob	

jects�

� data types and data sets supported � should support spatial access meth	

ods and at least one dimension of time �valid time or transaction time��

� index construction � should support not only bulk loading but also dy	

namic insertion�update� and change of timestamp granularity should be

allowed�

� query processing � should support fundamental query types such as selec	

tion and join queries as well as some specialized queries such as �nearest

neighbor� queries�

A data structure suitable for storing and retrieving time intervals and directed

triangles� and meets the above mentioned criterion will need to be created�

Another issue worth considering is how to index a continuously moving object�

especially the ones whose shape change as well as their position�

Spatial Join Spatial joins are one of the most important operations for com	

bining spatial objects stored in several relations� Processing e�cient spatial joins

is extremely important since its execution time is super	linear in the number of

spatial objects of the participating relations and this number may be very large�

���

There are three types of spatial joins ���� The �rst one is MBR�spatial�join�

which computes all pairs of identi�er to each spatial object whose intersection of

minimum bounding rectangles of the two spatial objects is not empty� the second

one is ID�spatial�join� which computes all pairs of IDs with intersection of the

two spatial object is not empty� and the last one is Object�spatial�join� which

computes the intersection of two objects�

Almost all methods designed for an e�cient join processing of non	spatial

relations cannot be used for spatial joins� Using the simple nested loop approach�

every object of one relation has to be checked against all objects of the other

relation� thus the performance of the nested loop algorithm is not good� Hashed	

based join algorithms are suitable only for natural and equi	joins� but not for

spatial joins since some spatial join does not only compute the identi�ers of the

objects in the response set� but also the resulting objects� An approach similar

to sort	merge join may be considered if spatial objects are sorted according to

their spatial proximity�

��� presents techniques for improving spatial join�s execution time with respect

to both CPU and I�O time using R	trees ����� and in particular R%	trees ���� It

empasizes on computing the spatial join of the minimum bounding rectangles of

the spatial objects�

Given the internal spatial data type as directed triangles� it is an interest	

���

ing direction for future research to exploit spatial access method for an e�cient

join processing� Using parallel computer systems and disk arrays will also be

interesting for performing spatial joins�

��	 Summary

This chapter proposes an extendable data model and query language for spatio	

temporal information� SQLST maintains orthogonality of temporal and spatial

aspects of data� and has minimal additions to SQL� In fact� only user	de�ned

aggregates �UDAs� are needed to accomplish the spatio	temporal queries� More	

over� end	users can have their own set of spatio	temporal operators implemented

as UDAs� and they can also choose which level of abstraction they want to work

on� Future work should focus on better spatial indexes such as R	trees ���� and

on spatial join mechanisms�

���

CHAPTER �

Conclusions

In this dissertation� we have investigated data models and query languages for

spatio	temporal information�

Therefore� we �rst propose a minimalist approach to represent temporal in	

formation using a point	based representation� In addition to standard SQL ag	

gregates� we add user	de�ned temporal aggregates to boost users� convenience

and implementation e�ciency� We demonstrate the power and generality of this

approach by showing that it can express all valid	time TSQL� queries� and it can

be extended uniformly to SQL� QBE and Datalog�

Next� we describe the TENORS system� which is an implementation of SQLT �

TENORS uses intervals to represent time at the physical level� Temporal con	

structs are implemented by user	de�ned functions and table expressions� A

usefulness	based storage organization is used in TENORS for performance� scal	

ability� and automatic generation of temporal indices�

Then� we review the properties of spatial objects and introduce counterclock�

���

wise directed triangles as our major abstract spatial data type� which is used

together with points and lines to model spatial objects� Algorithms for polygon

triangulation� relationships between spatial objects� and spatial operations on the

objects are then presented�

Finally� we propose an extendable data model and query language for spatio	

temporal information�SQLST � The SQLST system maintains orthogonality of

temporal and spatial aspects of data� and has minimal additions to SQL� We

employ user	de�ned aggregates �UDAs� to support spatio	temporal queries� by

means of UDAs� end	users can add their own set of spatio	temporal operators�

We also provide a more abstract data model for spatio	temporal information� so

end	users can choose which level of abstraction they want to work on�

Future and on	going work includes user	de�ned indices that simplify the map	

ping between the di�erent levels of representation� supporting better spatial in	

dices such as R	trees ����� and optimizing spatial join mechanisms to expedite

the queries�

In summary� our approach provides better data models and query languages

for temporal and spatio	temporal information in terms of usability� generality�

�exibility� extensibility� and compatibility with Object	Relational systems� The

multi	level architecture lets end	users choose the level of abstraction that they

want to work on� The use of user	de�ned aggregates makes extensions easier

���

to implement on Object	Relational systems� Moreover� further extensions and

customization by end	users are also supported via user	de�ned spatio	temporal

aggregates� The performance results we have obtained are also quite encouraging�

���

References

��� S� Abiteboul� R� Hull and V� Vianu� Foundations of Databases� Addison	
Wesley� ����

��� J�F� Allen� Maintaining knowledge about temporal intervals� In Communica�
tions of the ACM� Vol��
� No���� pp����	���� ����

��� W�G� Aref and H� Samet� An Approach to Information Management in Ge	
ographical Applications� In Proceedings of the �nd International Symposium
on Spatial Data Handling� pp����	���� ����

��� ARCSS Data and Information Archive� Cyclone Track Data Set�
http	��arcss�colorado�edu�Catalog�arcss��html

��� N� Bechmann� H�P� Kriegel� R� Schneider and B� Seeger� The R%&tree� An
E�cient and Robust Access Method for Points and Rectangles� In Proceedings
of ACM�SIGMOD International Conference on Management of Data� pages
���	���� ����

�
� M�H� Bohlen� R�T� Snodgrass and M�D� Soo� Coalescing in Temporal
Databases� In Proceedings of the ��nd International Conference on Very Large
Databases� pages ���	���� ���

�� M�H� Bohlen� R� Busatto and C�S� Jensen� Point	Versus Interval	based Tem	
poral Data Models� In Proceedings of the ��th International Conference on
Data Engineering� pp����	���� ����

��� T� Brinkho�� H�P� Kriegel and B� Seeger� E�cient Processing of Spatial Joins
Using R&Trees� In Proceedings of ACM�SIGMOD International Conference
on Management of Data� pp���	��
� ����

��� Y�S� Bugrov� Fundamentals of Linear Algebra and Analytical Geometry�
Moscow � Mir Publishers� ����

���� T� Burns� et al� Reference Model for DBMS Standardization� Database
Architecture Framework Task Group �DAFTG� of the ANSI�X��SPARC
Database System Study Group� In SIGMOD Record Vol���� No��� pp���	���
���

���� M� Cai� D� Keshwani and P�Z� Revesz� Parametric Rectangles� A Model for
Querying and Animation of Spatiotemporal Databases� In Proceedings of the
�th International Conference on Extending Database Technology� pp����	����
����

��

���� B� Chazelle� A Theorem on Polygon Cutting with Applications� In Pro�
ceedings of the ��rd IEEE Symposium on Foundation of Computer Science�
pp����	���� ����

���� D� Chamberlin�A complete Guide to DB� Universal Database� Morgan Kauf	
mann� ����

���� B� Chazelle and J� Incerpi� Triangulation and Shape Complexity� In ACM
Transactions on Graphics� Vol��� No��� pp����	���� ����

���� C�X� Chen and C� Zaniolo� Universal Temporal Data Languages� In Pro�
ceedings of the �th International Workshop on Deductive Databases and Logic
Programming� ����

��
� C�X� Chen and C� Zaniolo� Universal Temporal Extensions for Data Lan	
guages� In Proceedings of the ��th International Conference on Data Engi�
neering� pp����	��� ����

��� C�X� Chen and C� Zaniolo� SQLST � A Spatio	Temporal Data Model and
Query Language� In Proceedings of the ��th International Conference on Con�
ceptual Modeling� pp��
	���� ����

���� J� Chomicki and P�Z� Revesz� Constraint	Based Interoperability of Spa	
tiotemporal Databases� In Advances in Spatial Databases� LNCS ��
�� pp����	
�
�� Springer� ���

���� J� Chomicki and P�Z� Revesz� A Geometric Framework for Specifying Spa	
tiotemporal Objects� In Proceedings of the �th International Workshop on
Time Representation and Reasoning� pages ��	�
� ����

���� W�W� Chu� C	C� Hsu� A�F� Cardenas and R�K� Taira� Knowledge	Based
Image Retrieval with Spatial and Temporal Constructs� In IEEE Transactions
on Knowledge and Data Engineering� Vol���� No�
� pp���	���� ����

���� K�L� Clarkon� R�E� Tarjan and C�J� Van Wyk� A Fast Las Vegas Algorithm
for Triangulating a Simple Polygon� In Discrete � Computational Geometry�
Vol��� No��� pp����	���� ����

���� K�L� Clarkson� R� Cole and R�E� Tarjan� Randomized Parallel Algorithms for
Trapezoidal Diagrams� In Proceedings of the �th ACM Symposium on Com�
putational Geometry� pp����	�
�� ����

���� P� Dadam� V�Y� Lum and H�D� Werner� Integration of Time Versions into
a Relational Database System� In Proceedings of the �th International Con�
ference on Very Large Data Bases� pages ���	���� ����

��

���� M�J� Egenhofer� A�U� Frank and J�P� Jackson� A Topological Data Model
for Spatial Databases� In Proceedings of Symposium on the Design and Im�
plementation of Large Spatial Databases� pp���	��
� ����

���� M�J� Egenhofer� Spatial SQL� A Query and Presentation Language� In IEEE
Transactions on Knowledge and Data Engineering� Vol�
� No��� pp��
	��� ����

��
� R� Elmasri� G�T�J� Wuu and Y�J� Kim� The Time Index� An Access Struc	
ture for Temporal Data� In Proceedings of the ��th International Conference
on Very Large Data Bases� pp��	��� ����

��� M� Erwig� R�H� Guting� M�M� Schneider and M� Vazirgiannis� Abstract and
Discrete Modeling of Spatio	Temporal Data Types� In Proceedings of ACM
International Symposium on Geographic Information Systems� pp����	��
�
����

���� L� Forlizzi� R�H� Guting� E� Nardelli and M� Schneider� A Data Model and
Data Structures for Moving Objects Databases� In Proceedings of ACM�
SIGMOD International Conference on Management of Data� pp����	����
����

���� A� Fournier and D�Y� Montuno� Triangulating simple polygons and equiv	
alent problems� In ACM Transactions on Graphics� Vol��� No��� pp����	���
����

���� M�R� Garey� D�S� Johnson� F�P� Preparata� and R�E� Tarjan� Triangulating
a Simple Polygon� In Information Processing Letters� Vol�� No��� pp���	���
���

���� C�H� Goh� H� Lu� B�C� Ooi and K�L� Tan� Indexing Temporal Data Using Ex	
isting B�&Trees� In IEEE Transactions on Knowledge and Data Engineering�
Vol���� No��� pp���	�
�� ���

���� R� Gonzalez and R� Woods� Digital Image Processing� Addison	Wesley� ����

���� S� Grumbach� P� Rigaux and L� Segou�n� Spatio	Temporal Data Handling
with Constraints� In Proceedings of ACM International Symposium on Geo�
graphic Information Systems� pp���
	���� ����

���� S� Grumbach� P� Rigaux and L� Segou�n� The DEDALE System for Complex
Spatial Queries� In Proceedings of ACM�SIGMOD International Conference
on Management of Data� pp����	���� ����

���� R�H� Guting� An Introduction to Spatial Database Systems� In VLDB Jour	
nal� Vol��� No��� pp���	���� ����

���

��
� R�H� Guting and M� Schneider� Realm	Based Spatial Data Types� The
ROSE Algebra� In VLDB Journal� Vol��� No��� pages ���	��
� ����

��� R�H� Guting� M�H� Bohlen� M� Erwig� C�S� Jensen� N�A� Lorentzos� M�
Schneider and M� Vazirgiannis� A Foundation for Representing and Querying
Moving Objects� To appear in ACM Transactions on Database Systems

���� A� Guttman� R&Trees� A Dynamic Index Structure For Spatial Searching�
In Proceedings of ACM�SIGMOD International Conference on Management
of Data� pp��	�� ����

���� R�H� Guting� Geo	Relational Algebra� A Model and Query Language or Ge	
ometric Database Systems� In Proceedings of the �st International Conference
on Extending Database Technology� pp���
	��� ����

���� M� Gyssens� J� Ven den Bussche and D� Ven Gucht� Complete Geometrical
Query Languages� In ACM Symposium on Principles of Database Systems�
pp�
�	
� ���

���� J�M� Hellerstein� P�J� Haas and H� Wang� Online Aggregation� In Proceed�
ings of the ���� ACM SIGMOD International Conference on Management of
Data� pp���	���� ���

���� IBM DB� Spatial Extender� http	��www���ibm�com�software�data�spatial�

���� ESRI Spatial Data Engine� http	��www�esri�com

���� Informix Spatial DataBlade Module�
http	��spatial�informix�com�module informix spatial�html

���� C�S� Jensen� et al� A Consensus Glossary of Temporal Database Concepts�
In SIGMOD Record� Vol���� No��� pp���	
�� ����

��
� C� S� Jensen and R� T Snodgrass� Temporal Data Management� In IEEE
Transactions on Knowledge and Data Engineering� Vol���� No��� pp��
	���
����

��� P�C� Kanellakis� G� Kuper and P�Z� Revesz� Constraint Query Languages� In
Journal of Computer and System Sciences� special issue edited by Y�Sagiv�
Vol���� No��� pp��
	��� ����

���� D�G� Kirkpatrick� Optimal Search in Planar Subdivisons� In SIAM Journal
on Computing� Vol���� No��� pp���	��� ����

���

���� G� Kollios� D� Gunopulos and V�J� Tsotras� On Indexing Mobile Objects�
In Proceedings of the ��th ACM SIGACT�SIGMOD�SIGART Symposium on
Principles of Database Systems� pp��
�	��� ����

���� B� Kuijpers� J� Paredaens and L� Vandeurzen� Semantics in Spatial
Databases� In Semantics in Databases� LNCS ����� pp����	���� Springer�
����

���� B� Kuijpers and M� Smits� On Expressing Topological Connectivity in Spatial
Datalog� In Constraint Databases and Their Applications� LNCS ����� pp���
	
���� Springer� ���

���� LDL�� Version �� http	��www�cs�ucla�edu�ldl

���� D�B� Lomet and B� Salzberg� The Performance of a Multiversion Access
Method� In Proceedings of the ACM SIGMOD International Conference on
Management of Data� pp����	�
�� ����

���� N�A� Lorentzos and Y�G� Mitsopoulos� SQL Extension for Interval Data� In
IEEE Transactions on Knowledge and Data Engineering� Vol��� No��� pp����	
���� ���

���� R� Laurini and D� Thompson� Fundamentals of Spatial Information Systems�
Academic Press� ����

��
� V�Y� Lum� P� Dadam� R� Erbe� J� Gunauer� P� Pistor� G�Walch� H�D� Werner
and J� Wood�ll� Designing DBMS Support for the Temporal Dimension� In
Proceedings of the ACM SIGMOD International Conference on Management
of Data� pp����	���� ����

��� Y� Manolopoulos� Y� Theodoridis and V�J� Tsotras� Advanced database in�
dexing� Kluwer Academic� ����

���� B� Moon� I�F�V� Lopez and V� Immanuel� Scalable Algorithms for Large
Temporal Aggregation� In Proceedings of the ��th International Conference
on Data Engineering� pp����	���� ����

���� R� Muntz� E� Shek and C� Zaniolo� Using LDL�� For Spatio	Temporal Rea	
soning in Atmospheric Science Databases� In Applications of Logic Databases
�R� Ramakrishnan
 eds��� pp� ���	���� ����

�
�� M�A� Nascimento and M�H� Dunham� Indexing Valid Time Databases
via B�&Trees� In IEEE Transactions on Knowledge and Data Engineering�
Vol���� No�
� pp����	��� ����

���

�
�� Oracle Spatial� http	��otn�oracle�com�products�spatial�

�
�� J� O�Rourke� Computational Geometry in C� Cambridge University Press�
����

�
�� G� Ozsoyoglu and R�T� Snodgrass� Temporal and Real	Time Databases� A
Survey� In IEEE Transactions on Knowledge and Data Engineering� Vol��
No��� pp����	���� ����

�
�� J� Paredaens� Spatial Databases� The Final Frontier� Proceedings of the �th
International Conference on Database Theory� pp���	��� ����

�
�� J� Patel� et al� Building a Scalable Geo	Spatial DBMS� Technology� Imple	
mentation and Evaluation� In Proceedings of the ACM SIGMOD International
Conference on Management of Data� pages ��
	��� ���

�

� J� Paredaens and B� Kuijpers� Data Models and Query Languages for Spatial
Databases� In Data � Knowledge Engineering� Vol���� No��	�� pp���	��� ����

�
� F� Preparata and M� Shamos� Computational Geometry	 An Introduction�
Springer� ����

�
�� J� Paredaens� J� Van den Bussche and D� Van Gucht� Towards a Theory
of Spatial Database Queries� In ACM Symposium on Principles of Database
Systems� pp���	���� ����

�
�� R� Ramakrishnan� Database Management Systems� WCB�McGraw	Hill�
����

��� H� Samet� The Quadtree and Related Hierarchical Data Structures� In ACM
Computing Surveys� Vol��
� No��� pp���	�
�� ����

��� H� Samet� The design and Analysis of Spatial Data Structures� Addison	
Wesley� ����

��� M� Schneider� Spatial Data Types for Database Systems� LNCS �����
Springer� ���

��� R� Seidel� A Simple and Fast Incremental Randomized Algorithm For Com	
puting Trapezoidal Decompositions and For Triangulating Polygons� In Com�
putational Geometry	 Theory and Applications� Vol��� No��� pp���	
�� ����

��� D� Son and R� Elmasri� E�cient Temporal Join Processing Using Time In	
dex� In Proceedings of the �th International Conference on Scienti�c and Sta�
tistical Database Management� pp����	�
�� ���

���

��� A� Segev and H� Gunadhi� Event	Join Optimization in Temporal Relational
Databases� In Proceedings of the ��th International Conference on Very Large
Data Bases� pp����	���� ����

�
� T� Sellis� N� Roussopoulos and C� Faloutsos� The R�&Tree� A Dynamic
Index For Multi	Dimensional Objects� In Proceedings of the ��th International
Conference on Very Large Data Bases� pp���	���� ���

�� S� Shekhar� S� Chawla� S� Ravada� A� Fetterer� X� Liu� and C�T� Lu� Spatial
Databases 	 Accomplishments and Research Needs� In IEEE Transactions on
Knowledge and Data Engineering� Vol���� No��� pp���	��� ����

��� A�P� Sistla� O� Wolfson� S� Chamberlain� S� Dao� Modeling and Querying
Moving Objects� In Proceedings of the ��th International Conference on Data
Engineering� pp����	���� ���

��� Sleepycat Software� The Berkeley Database �Berkeley DB��
http	��www�sleepycat�com

���� R�T� Snodgrass� The Temporal Query Language TQuel� In Proceedings of the
�rd ACM SIGACT�SIGMOD�SIGART Symposium on Principles of Database
Systems� pp����	���� ����

���� R�T� Snodgrass� I� Ahn� G� Ariav� D� Batory� et al� A TSQL� Tutorial� In
SIGMOD Record� Vol���� No��� pp��	��� ����

���� R�T� Snodgrass� et al� The TSQL� Temporal Query Language� Kluwer Aca	
demic� ����

���� SQL��� �Information technology & Database Language & SQL�� ISO�IEC
���	�����

���� SQL��� �Information technology & Database languages & SQL�� ISO�IEC
���	�����

���� M� Stonebraker� J� Frew� K� Gardels and J� Meredith� The SEQUOIA ����
Storage Benchmark� In Proceedings of the ACM SIGMOD International Con�
ference on Management of Data� pp��	��� ����

��
� M� Stonebraker� P� Brown and D� Moore� Object�relational DBMSs	 tracking
the next great wave� Morgan Kaufmann� ����

��� A� Tansel� et al� Temporal Databases	 Theory
 Design and Implementation�
Benjamin�Cumming� ����

���

���� R�E� Tarjan and C�J� Van Wyk� An O�n log logn� 	time Algorithm for Tri	
angulating a Simple Polygon� In SIAM Journal of Computing� Vol �� pp����	
��� ����

���� Y� Theodoridis� T� Sellis� A� Papadopoulos and Y� Manolopoulos� Speci�	
cations for E�cient Indexing in Spatiotemporal Databases� In Proceedings
of the �th International Conference on Scienti�c and Statistical Database
Management� pp����	���� ����

���� D� Toman� Point vs� Interval	based Query Languages for Temporal
Databases� In Proceedings of the ��th ACM SIGACT�SIGMOD�SIGART
Symposium on Principles of Database Systems� pp���	
� ���

���� D� Toman� A Point	Based Temporal Extension of SQL� In Proceedings of the
�th International Conference on Deductive and Object�Oriented Databases�
pp����	���� ���

���� D� Toman� Point	Based Temporal Extensions of SQL and their E�cient
Implementation� In Temporal Databases	 Research and Practice �O� Etzion

et al�
 eds��� Springer	Verlag� pp����	��� ����

���� V�J� Tsotras� C�S� Jensen and R�T� Snodgrass� An Extensible Notation for
Spatiotemporal Index Queries� In SIGMOD Record� Vol��� No��� pp��	���
����

���� University Information System �UIS� Data Set�
http	��www�cs�auc�dk�research�DP�tdb�TimeCenter�

���� H� Wang and C� Zaniolo� User De�ned Aggregates in Object	Relational Sys	
tems� In Proceedings of the ��th International Conference on Data Engineer�
ing� pp����	���� ����

��
� H� Wang and C� Zaniolo� Using SQL to Build New Aggregates and Ex	
tenders for Object	Relational Systems� In Proceedings of ��th International
Conference on Very Large Data Bases� pp��

	��� ����

��� O� Wolfson� B� Xu� S� Chamberlain and L� Jiang� Moving Objects Databases�
Issues and Solutions� In Proceedings of the �th International Conference on
Scienti�c and Statistical Database Management� pp����	���� ����

���� M�F� Worboys� A generic model for planar geographical objects� Interna�
tional Journal of Geographic Information Systems� Vol�
� No��� pp����	���
����

���

���� M�F� Worboys� A Uni�ed Model for Spatial and Temporal Information�Com�
puter Journal� Vol��� No��� pp��
	��� ����

����� J� Yang and J� Widom� Incremental Computation and Maintenance of Tem	
poral Aggregates� Technical report� Stanford University� ����

����� J� Yang� H�C� Ying and J� Widom� TIP� A Temporal Extension to In	
formix� In Proceedings of the � ACM SIGMOD International Conference
on Management of Data� pp���
� ����

����� C� Zaniolo� A Short Overview of LDL��� A Second	Generation Deductive
Database System� In Computational Logic� Vol��� No��� pp��	��� ���

����� C� Zaniolo� S� Ceri� C� Faloutsos� R� Snodgrass and R� Zicari� Advanced
Database Systems� Morgan Kaufmann� ���

���

