Will Dombrowski
Knowledge Area 2
Software Design
Software Design is the process in which requirements are analyzed so that a description of the software’s internal structure can be produced. The design must describe the architecture, which is how the software is organized into components and the interfaces between components. These components must be described in enough detail to be developed. This process allows engineers to produce models that act as blueprints of the solution to be implemented. These models can be evaluated to examine different solutions and make sure that the various requirements will be fulfilled.
Software Design includes architectural design (top-level structure) and detailed design (component-level structures). This detailed design should record the major decisions that have been taken. Design decisions should try to achieve abstraction, coupling and cohesion, decomposition and modularization, encapsulation and information hiding, and separation between interface and implementation, as well as sufficiency, completeness, and primitiveness.

The following key issues should be kept in mind while designing software: concurrency, control and event handling, component distribution, exception handling and fault tolerance, interaction and presentation, and data persistence.
Design patterns are common solutions to common problems. High level design patterns are called architectural styles. Possible architectural styles include general structures, distributed systems, interactive systems, adaptable systems, and more. Lower level design patterns can be creational patterns, structural patterns, or behavioral patterns. Product families and frameworks can be used to allow reuses of design and components.
Quality Analysis can be performed to ensure a good product design. Run time attributes that can be verified include performance, security, availability, functionality and usability, while those that cannot be discerned are modifiability, portability, reusability, integrity, and testability.
