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1 Introduction

Agent-based modeling (ABM) has been recognized has a major modeling paradigm
but however, suffers from important limitations:

• ABM is purely bottom-up: microscopic knowledge, i.e., related to system
components, is used to construct models while macroscopic knowledge,
i.e., related to global system properties, is used to validate models [32].

• Therefor, it is not possible to explicitly introduce bidirectional relations
between these two points of view or introduce new ones representing, e.g.,
different spatial and/or temporal scales or domains of interest.

• Moreover, the role of knowledge depends on its level of observation, not
on its epistemic state, which does not seem relevant.

Multi-level1 agent-based modeling (ML-ABM) aims at extending the classi-
cal ABM paradigm to overcome these limitations. It can be defined as Integrat-
ing heterogenous ABM, representing complementary points of view2, so called

1The terms multi-layer, multi-perspective and multi-view may also be found [81, 83, 84,
132]. The term multi-scale (multi-resolution may also be found) is often used but has a more
restrictive meaning as it constraints the definition of levels and their relations.

2Points of view are complementary, for a given problem, if they can not be taken in isolation
to address it. As [73] note (we translate), ”the global behavior of a complex system cannot be
understood without making interact a set of points of view.”
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levels3, of the same system. Integration means of course these ABM interact
but also they can share environment and agents.

ML-ABM is mainly used to solve two types of modeling problems:

• the modeling of cross-level interactions, e.g., top-down feedback con-
trol,

• the (dynamic) adaptation of the the level of detail of simulations,
e.g., to save computational resources or use the best available model in a
given context4.

In the first case, the different points of view co-exist, as they integrate inter-
dependent models, while in the latter, levels can be (dis)activated at run time
according to the context, as they represent independent models designed for
specific situations. E.g., in flow hybrid models, regions of the environment with
a simple topology are handled with an equation-based (macroscopic) model,
while others are handled with an ABM.

On an other hand, automated observation and analysis methods can
be introduced at levels not explicitly present in the model, e.g., the group level.

This article aims to bring together the available bibliography5 on the subject
so that it is accessible to interested researchers. Section 2.1 introduces the main
theoretical issues that have been addressed so far and section 2.2 presents the
different application domains of ML-ABM, with an emphasis on social and flow
simulations.

2 Bibliography

The production of scientific articles on ML-ABM has taken off for nearly a
decade (fig. 1). However, they have been published in various conferences or
journals causing, along with a vocabulary unification problem, a poor visibility
of the field.

2.1 Theoretical issues

Three main theoretical issues have been addressed so far:

• the definition of generic meta-models and simulation engines [56–58, 68,
70, 85, 96, 100, 101, 111, 118, 125, 127].

• the detection and reification of emergent phenomena [13–19, 26–29, 43,
64, 86, 87, 121, 128],

• and the definition of generic representations for aggregated entities [82].

3of organization, observation, analysis, granularity, ...
4When two levels with static relations are considered, such model is often described as

hybrid [11, 33–36, 59, 60, 77, 91, 130].
5Provided as a bibtex file (Biblio.txt) in the source archive. Bibliographical data used to

compute the fig. 1 is also available.
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Figure 1: Bibliographical statistics on ML-ABM computed from (a) author’s
bibliographic database and (b) google scholar data on the May 22, 2012.

2.1.1 Meta-models, simulation engines and platforms

Many meta-models and simulation engine dedicated to ML-ABM have been
proposed in the literature. They are are briefly presented in the following, in
a chronological order. DEVS6-based approaches have been included. Indeed,
DEVS, as a generic event-based simulation framework, has been extended to
support ABM [72].

GEAMAS [56–58] (GEneric Architecture for MultiAgent Simulation) is a
pioneering ML-ABM framework integrating three levels of descriptions (micro,
meso, macro). Micro and macro levels represent respectively agent and system
points of view while the meso (or middle) level represents an aggregation of
agents in a specific context. Communication between levels is asynchronous.
GEAMAS-NG [29] is a newer version of the framework providing tools to
detect and reify emergent phenomena.

tMans7 [96] is a multi-scale agent-based meta-model and platform. Unfor-
tunately, the project seems to have died in the bud.

ML-DEVS [125] is an extension of DEVS that allows the simulation of
multi-scale models (and not only coupled models in which the behavior of a
model is determined by the behaviors of its sub-models). Two types of relation
between levels are defined: information propagation and event activation. How-
ever, ML-DEVS focuses on multi-scale modeling and therefor, only supports
pure hierarchies of models, i.e., interaction graphs are viewed as trees [62].

CRIO [39–41] (Capacity Role Interaction Organization) is an organiza-
tional meta-model dedicated to ML-ABM based on the concept of holon [50].
I has been used to develop multi-scale simulations of pedestrian flows (cf. sec-
tion 2.2.2).

6Discrete Event System Specification [134].
7http://tmans.sourceforge.net/
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SPARK8 [111] (Simple Platform for Agent-based Representation of Knowl-
edge) is a framework for multi-scale ABM, dedicated to biomedical research.

IRM4MLS [68, 70] (Influence Reaction Model for Multi-Level Simulation)is
an multi-level extension of IRM4S (Influence Reaction Model for Simulation) [63],
a meta-model for MABS based on the Influence Reaction (IR) model which
views action as a two step process: (1) agents produce ”influences”, i.e., individ-
ual decisions, according to their internal state and perceptions (2) the system
”reacts”, i.e., computes the consequences of influences, according to the state
of the world [37]. Relations (of perception and influence) between levels are
specified with digraphs. IRM4MLS focuses multi-level (or perspective) mod-
eling and therefor does not constraint graph structures. This graphs, along
with the temporal relations between levels allow to distribute the scheduling
of simulations by level. It has been applied to simulate and control intelligent
transportation systems composed of autonomous intelligent vehicles (AIV) in
flexible manufacturing systems (FMS) [67, 71] and container ports [112, 114]
(cf. section 2.2.2).

PADAWAN [85] (Pattern for Accurate Design of Agent Worlds in Agent
Nests) is a multi-scale ABM meta-model based on a compact matricial repre-
sentation of interactions: IODA (Interaction-Oriented Design of Agent simula-
tions) [51], leading to an simple and elegant simulation framework. Relations
between levels, representing how they are nested within each others, are specified
with an upper semilattice.

GAMA9 [118] is an ABM platform with a dedicated modeling language,
GAML, that offers multi-level capabilities. Moreover, it includes a framework
(a set of predefined GAML commands) to agentify emerging structures [128].
It is certainly the most advanced platform, from an end-user point of view, that
integrates a multi-level approach. The multi-scale meta-model focuses on the
notion of situated agent and therefor, top class abstractions include geometry
and topology of simulated entities; however, the meta-model is based on ”the
fundamental notions of agent modeling (agent/environment/scheduler)” [127].
The notion of level does not appear explicitly but the concept of species ”defines
attributes and behaviors of a class of same type agents” and the multi-scale
structure of the model, i.e., how species can be nested within each other.

The Seck & Honig model [101] is an extension of DEVS that allows the
simulation of multi-level (i.e., non hierarchically coupled) models. The cou-
pling between levels is done through regular DEVS models, named bridge mod-
els (fig. 2).

2.1.2 Detection and reification of emergent phenomena

An important problem in ML-ABM is to detect and reify (or more precisely
agentity) phenomena emerging from agent interactions. Of course, the question
is not to detect any emergent phenomenon but those of interest, to adapt the
level of detail of simulations or model cross-level interactions for instance.

8http://www.pitt.edu/~cirm/spark/
9http://code.google.com/p/gama-platform/
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Multi-perspective modelling of complex phenomena

Fig. 1 Modelling simple phenomena

Fig. 2 Modelling complex phenomena through multiple perspectives

Now if the phenomena we try to model are complex, a reductionist formal sys-
tem can only be partially successful in describing the natural system (Agazzi 1991;
Mikulecky 2001). By describing a natural system as a collection of perspectives,
though, where each perspective is associated with a unique formal system (having
a unique decomposition) as shown in Fig. 2, we can model a system in an inher-
ently ‘richer’ way by having multiple non-isomorphic decompositions that may in-
fluence each other. Such multi-perspective models can indeed capture the tangledness
of the systems that result when we observe the world from different perspectives. As
Morin puts it (Morin 1990), “we must found the idea of a complex system on a non-
hierarchical concept of the whole” (Morin 1990). In a similar way, Levins (2006) pro-
poses the robustness methodology, which, in a sort of triangulation, invites to analyze
and model systems with multiple conceptually independent tools, thus improving ac-
curacy of the models by relating the outcomes obtained from different perspectives.

The relation between complexity and multiple perspectives has been acknowl-
edged by various authors. Kaufmann has stated that the number of possible theo-

Figure 2: The Seck & Honig approach (from [101])

Very different approaches have been proposed to detect and reify emergent
phenomena. They are briefly presented in a chronological order.

Dedicated clustering methods The pioneering RIVAGE project [105–107]
aimed ”at modeling runoff, erosion and infiltration on heterogeneous soil sur-
faces” [106, p. 184]. At the microscopic level, water is viewed as a set of in-
teracting waterballs. An indicator characterizes waterball movements to detect
two types of remarkable situations: straight trajectories (corresponding to the
formation of ravines) and stationary particles (corresponding to the formation
of ponds). Close agents sharing such properties are aggregated in ravine or pond
macroscopic agents.

[8, 120–122, 124] aim at changing the level of detail of fluid flow simulations
based on vortex methods [53]. The goal is, such as in the RIVAGE model, to
detect complex structures, i.e., clusters of particles sharing common properties,
and aggregate them. However, the detection of emergent phenomena relies on
graph-based clustering methods. [64] use a similar approach to detect aggrega-
tions of agents in flocking simulations.

Generic frameworks [14–19] define a formalism, the complex event types to
describe multi-level behaviors. ”Conceptually, complex events are a configura-
tion of simple events where each component event can be located in a region
or point in a hyperspace that includes time, physical space and any other di-
mensions” [18, p. 4]. Events can be composed to represent complex multi-level
behaviors.
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[26–29] propose a conceptual and technical framework to handle emergence
reification . It is included in the GEAMAS-NG platform (cf. GEAMAS para-
graph in the previous section) and has been used in DS, a population model of
the Reunion Island, to detect and reify new urban areas.

[128] propose a similar framework in the GAMA platform (cf. GAMA para-
graph in the previous section). It includes various clustering methods developed
in the literature.

[13] propose a tool, SimAnalyzer, to detect and describe group dynamics.

2.1.3 Generic representations for aggregated entities

While developing generic representations for aggregated entities seems an im-
portant issue, only one publication is available on the subject. [82] proposes the
notion of pheromone field (refering to the concept of mean field in statistical
physics) that ”gives the probability of encountering an agent of the type repre-
sented by the field at a given location” [82, p. 115]. In this approach, agents act
according to their perceptions of pheromone fields (but not of agents).

2.2 Application domains

ML-ABM have been proposed in various fields such as

• biomedical research

– cancer modeling [6, 10, 31, 54, 79, 91, 135–138],

– inflammation modeling [4, 5, 129, 130],

– arterial adaptation [49, 119],

– stent design [117],

– vascular tissue engineering [133],

– bone remodeling [12],

• flow modeling of walking (and running) [39, 75–77], driving [11, 33–36, 67,
71, 112, 114, 131] or streaming [106, 107, 122] agents,

• biology [1, 59, 65, 66, 69, 95, 99, 108–110, 116],

• social simulation [3, 21, 22, 24, 38, 93, 94, 97, 115],

• ecology [20, 52, 87, 90, 92, 102–104, 126],

• geography [46, 55, 80, 88],

• military simulation [60, 61, 84],

• marketing [78],

• epidemiology [25],

• pollution management [98].

An interesting comparative analysis of three of these models can be found
in [44, 45, 47].
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2.2.1 Social simulation

Social simulation is defined by [115, p. 4] as ”the study of social outcomes,
let us say a macro regularity, by means of computer simulation where agents’
behavior, interactions among agents and the environment are explicitly modeled
to explore those micro-based assumptions that explain the macro regularity of
interest”.

Major social theories developed in the second half of the twentieth century,
e.g., structuration [42] and habitus [9], theories10, share a common ambition:
solving the micro/macro (so called agency/structure) problem that can be sum-
marized by the following question: To understand social systems, should we
observe agent interactions (micro level) or structures emerging from these in-
teractions (macro level)? Such theories tend to consider altogether agent posi-
tions in the social space (objective facts) and goals (subjective facts) to explain
their beliefs and actions. Their answer to the previous question could be: social
systems can only be understood by considering simultaneously agent interactions
and structures in which they occur :

social structures

agent interactions.

social practices

A key concept used by social theorists and modelers to understand downward
(or top-down) causation in social systems, i.e., how social structures influence
agents, is reflexivity. It can be defined as the ”regular exercise of the mental
ability, shared by all normal people, to consider themselves in relation to their
(social) contexts and vice versa” [7, p. 4]. Thus, social systems differ from other
types of systems, by the reflexive control that agents have on their actions:
”The reflexive capacities of the human actor are characteristically involved in a
continuous manner with the flow of day-to-day conduct in the contexts of social
activity” [42, p. 22]. Two very different approaches, both from a technical and
methodological perspectives, can be considered to simulate systems composed
of reflexive agents:

• a purely emergentist approach, only based on the cognitive capabilities of
agents to represent and consider themselves in relation to the structures
emerging from their interactions (e.g., [23, 48]),

• a multi-level approach based on the cognitive capabilities of agents and the
dynamic reification of interactions between social structures and agents,
i.e., processes that underlie social practices (e.g., [44, 89]).

According to [42], two forms of reflexivity can be distinguished: practical (agents
are not conscious of their reflexive capabilities, and therefor, are not able to
resonate about them) and discursive (agents are conscious of their reflexive

10These theories can be described as hybrid [93]
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Figure 3: ML-ABM in social simulation as a link between concepts defined at
different levels

capabilities) reflexivity. These two forms are respectively related to the ideas
of immergence: agent interactions produce emergent properties that modify the
way they produce them [21] and second order emergence: agent interactions
produce emergent properties that are recognized (incorporated) by agents and
influence their actions [48].

ML-ABM can also be viewed as a way to link independent social theories
(and therefor concepts) defined at different levels (fig. 3) [93, 94, 101]. Readers
interested in a more comprehensive presentation of these questions should refer
to [97, 115].

2.2.2 Flow modeling

A flow of moving agents can be observed at different scales. Thus, in traffic
modeling, three levels are generally considered: the micro, meso and macro lev-
els, modeling respectively the interactions between vehicles, groups of vehicles
sharing common properties (such as a common destination or a common locali-
sation) and flows of vehicles. Each approach is useful in a given context: micro
models allow to simulate road networks with a complex topology while macro
models allow to develop control strategies to prevent traffic jams. However,
to simulate a large-scale road network, it can be interesting to integrate these
different representations (fig. 4). Similar issues appear in different application
domains.

Micro-macro models In environments with simple topologies, a flow a mov-
ing agents can be viewed as a fluid in a pipe. In this context a major problem
in flow ML-ABM is to determine an appropriate coupling between the different
representations in order to preserve simulation consistency [30]. Solutions are
domain (or more specifically model) related and therefor will not be presented
here in detail. Furthermore, the presentation focuses on ”real” ML-ABM: hy-
brid models based on ”simple” microscopic equation-based models are not be
presented here.
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Figure 4: ML-ABM and control in traffic simulation

Micro-meso models Agents sharing common properties can be aggregated
to form-up a higher level (mesoscopic) agent and then, save computer resources
or describe group dynamics, such as in the already mentioned RIVAGE [105–
107] and DS [29] models (cf. section 2.1.2). Conversely, mesoscopic agents can
be disaggregated into lower level agents if related structures vanish.

[67, 71] propose an multi-level approach to solve the dead-lock problem in
field-driven AIV systems. Such system rely on self-organization principles to
achieve their goals, but AIV can remain trapped into dead-locks. When such a
situation is detected (using a similar approach than [105–107]), it is agentified
to solve the problem using hierarchical control.

[75] propose an innovative framework for such models: (dis)aggregation func-
tions rely not only on the observable state of simulations (the environment) but
also on the internal states of agents. It is used in pedestrian flow simulations.
The proximity between agent states (external and internal) is computed by an
affinity function. However, their approach is not multi-level (in the sense of
the definition proposed in section 1) as mesoscopic agents interact directly with
microscopic agents.

[112, 114] extend this framework on the basis of IRM4MLS [68, 70] to allow
the definition of ”real” ML-ABM. Agents are ”cut” into a a set of physical parts
(bodies), situated in different levels, and a non-situated part (mind) (fig. 5).
Therefor, these different parts can be (dis)aggregated independently. This ap-
proach is applied to the simulation of automated container ports.
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multi-agents. Actes INRETS, pages 93–111, 2008.

[34] M.S. El hmam, H. Abouaissa, D. Jolly, and A. Benasser. Macro-micro
simulation of traffic flow. In Proceedings of the12th IFAC Symposium on
Information Control Problems in Manufacturing (INCOM06), pages 351–
356, Saint Etienne FRANCE, 17-19 Mai 2006.

12



[35] M.S. El hmam, H. Abouaissa, D. Jolly, and A. Benasser. Simulation hy-
bride de flux de trafic basée sur les systèmes multi-agents. In 6e Conférence
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Combining farmers’ decision rules and landscape stochastic regularities
for landscape modelling. Landscape Ecology, 27(3):1–14, 2012.

[96] M. Scheutz, G. Madey, and S. Boyd. tMANS - the multi-scale agent-based
networked simulation for the study of multi-scale, multi-level biological
and social phenomena. In Spring Simulation Multiconference, 2005.

[97] M. Schillo, K. Fischer, and C.T. Klein. The micro-macro link in dai and
sociology. In Multi-Agent Based Simulation, volume 1979 of Lecture Notes
in Artificial Intelligence, pages 133–148. Springer, 2001.

[98] S.I. Schmidt, C. Picioreanu, B. Craenen, R. Mackay, J.U. Kreft, and
G. Theodoropoulos. A multi-scale agent-based distributed simulation
framework for groundwater pollution management. In Distributed Sim-
ulation and Real Time Applications (DS-RT), 2011 IEEE/ACM 15th In-
ternational Symposium on, pages 18–27. IEEE, 2011.

[99] J.B. Seal, J.C. Alverdy, O. Zaborina, G. An, et al. Agent-based dynamic
knowledge representation of pseudomonas aeruginosa virulence activation
in the stressed gut: Towards characterizing host-pathogen interactions in
gut-derived sepsis. Theoretical Biology and Medical Modelling, 8(1):33,
2011.

[100] M.D. Seck. Towards multi-perspective modeling and simulation for com-
plex systems. Personal communication, December 2009.

[101] M.D. Seck and H.J. Honig. Multi-perspective modelling of complex phe-
nomena. Computational & Mathematical Organization Theory, 18(1):128–
144, 2012.

[102] R. Seidl, W. Rammer, R.M. Scheller, and T.A. Spies. An individual-based
process model to simulate landscape-scale forest ecosystem dynamics. Eco-
logical Modelling, 231:87–100, 2012.

18



[103] R. Seidl, W. Rammer, R.M. Scheller, T.A. Spies, and M.J. Lexer. A mech-
anistic, individual-based approach to modeling complexity and dynamics
of forest ecosystems across scales. The 95th ESA Annual Meeting, 2010.

[104] C.A.D. Semeniuk, M. Musiani, and D.J. Marceau. Biodiversity, chapter
Integrating Spatial Behavioral Ecology in Agent-Based Models for Species
Conservation, pages 3–26. InTech, 2011.

[105] D. Servat. Modélisation de dynamiques de flux par agents. Application aux
processus de ruissellement, infiltration et érosion. PhD thesis, Université
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