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R E V I E W

Clinical consequences of red cell storage in the critically ill

Alan Tinmouth, Dean Fergusson, Ian Chin Yee, and Paul C. Hébert for the ABLE Investigators and the 

Canadian Critical Care Trials Group

Red cell (RBC) transfusions are a potentially life-saving 
therapy employed during the care of many critically ill 
patients to replace losses in hemoglobin to maintain 
oxygen delivery to vital organs. During storage, RBCs 
undergo a series of biochemical and biomechanical 
changes that reduce their survival and function. 
Additionally, accumulation of other biologic by-products of 
RBC preservation may be detrimental to recipients of 
blood transfusions. Laboratory studies and an increasing 
number of observational studies have raised the 
possibility that prolonged RBC storage adversely affects 
clinical outcomes. In this article, the laboratory and animal 
experiments evaluating changes to RBCs during 
prolonged storage are reviewed. Subsequently, the 
clinical studies that have evaluated the clinical 
consequences of prolonged RBC storage are reviewed. 
These data suggest a possible detrimental clinical effect 
associated with the transfusion of stored RBCs; 
randomized clinical trials further evaluating the clinical 
consequences of transfusing older stored RBCs are 
required.

ver the past 25 years, we have witnessed a dra-
matic “paradigm shift” whereby red blood cell
(RBC) transfusions, once regarded as “one of
the great advances in modern medicine,” are

now considered harmful in some clinical situations. This
paradigm shift has focused attention on the quality of
stored transfused blood. Changes accompanying the stor-
age of red cells (RBCs) are known as the “storage lesion,”
which can be defined as a series of biochemical and
biomechanical changes in the RBC and storage media
during ex vivo preservation that reduce RBC survival and
function. Although the storage lesion has been well
documented for decades,1 our understanding of the
mechanisms involved in these changes and clinical con-
sequences remains incomplete. Recent clinical trials and
animal experiments have raised fundamental questions
about the efficacy of stored RBCs,2,3 which may have
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important implications for the future of transfusion
research.

In critically ill patients, clinical studies have reported
an association between RBC transfusions and increased
morbidity and mortality, an effect that may increase with
the age of the transfused RBCs. Anemia is very common
in the critically ill with 95 percent of patients admitted to
the intensive care unit (ICU) experiencing a hemoglobin
(Hb) level below normal by the third day4,5 and 40 percent
to 45 percent of critically ill patients receive 5 units of
RBCs during their ICU admission.4,5 More recently, a sem-
inal multicenter randomized controlled clinical trial in
critically ill patients (TRICC, Transfusion Requirements in
Critical Care) demonstrated a lower 30-day mortality rate
in the patients randomly assigned to the restrictive trans-
fusion strategy6 (23.3% vs. 18.7%, p = 0.11; Fig. 1). Plausi-
ble explanations for the increased morbidity and
mortality seen in TRICC may be that prolonged storage
renders RBCs ineffective oxygen (O2) carriers and/or mod-
ifies RBCs, which cause harm when transfused into vul-
nerable patients via either a proinflammatory effect or the
direct toxic effects of by-products of RBC storage. To date,
the mechanisms of action accounting for increased mor-
bidity and mortality remain unknown. In this article, we
will review the laboratory and clinical studies evaluating
changes to RBCs with prolonged storage followed by a
review of studies evaluating the clinical consequences of
prolonged RBC storage.

RBC AND OXYGEN DELIVERY

The goal of RBC transfusions is to increase the Hb concen-
tration, thereby improving O2 delivery to tissues.7,8 The

amount of O2 delivered, either to the whole body or to
specific organs, is the product of blood flow and arterial
O2 content. For the whole body, O2 delivery (DO2) is the
product of total blood flow or cardiac output (CO) and
arterial O2 content (CaO2)8-10 In terms of CaO2, more than
99 percent of O2 is transported by Hb and only a negligible
amount is dissolved in the plasma fraction at ambient
PaO2 in room air. Thus, under most circumstances, DO2

can be calculated by

From this equation, the causes of tissue hypoxia include
decreased DO2 from decreases in Hb concentrations (ane-
mic hypoxia), CO (stagnant hypoxia), or Hb saturation
(anoxic hypoxia).

Additionally, tissue hypoxia may be related to abnor-
malities in oxygen-Hb dissociation and the ability of the
RBC to traverse the microcirculation. The loading and
unloading of oxygen to Hb is described as a sinusoidal
oxyhemoglobin dissociation curve, which enables both
efficient oxygen loading at high oxygen tensions in the
lungs and the efficient unloading at low partial pressures
of oxygen (pO2) in the microcirculation of the tissues. Hb
O2 binding affinity, however, may be altered by acidosis
and factors such as 2,3-diphosphoglycerate (2,3-DPG),
which promotes unloading of O2 in the tissues by a right
shift of the oxyhemoglobin dissociation curve. These fac-
tors may potentially have a significant beneficial or nega-
tive effect in the adaptive response to anemia.

To deliver O2 to the tissues, the RBC must navigate
the microcirculation where the capillary diameter ranges
from 3 to 8 µm. For the 8-µm RBC to navigate these narrow
channels, it must retain its deformability. This deformabil-
ity is dependent on a number of factors including surface
area-volume ratio, membrane elasticity, and intracellular
viscosity.11 To maintain these properties, the RBCs depend
on the catabolism of glucose and generation of high
energy adenosine triphosphate (ATP) via the Embden-
Meyerhoff pathway. Loss of their normal biconcave shape
and deformability impairs the ability of the RBC to deliver
O2 and remove CO2 from the tissues via the microcircula-
tion. These senescent RBCs and poorly deformable cells
are culled from the circulation as they pass through the
splenic circulation.

The healthy host has substantial physiologic reserves
for DO2, thereby enabling the human body to adapt to
significant increases in O2 requirements or decreases in
DO2 as a result of various diseases. In health, the amount
of O2 delivered to the whole body exceeds resting O2

requirements by a factor of two- to fourfold.8 RBC trans-
fusion implicitly assumes that an increase in Hb with
transfusion will increase the O2 content of blood and
deliver O2 in a form that will be readily utilized by tissue.
After RBC transfusions, an increase Hb concentration is
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Fig. 1. Critical care patients randomly assigned to a restrictive 

transfusion strategy to maintain their Hb level between 7 and 

9 g per dL had improved survival compared to patients ran-

domly assigned to a liberal transfusion strategy (Hb level, 

10-12 g/dL).6
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readily measured, but the effects of RBC transfusion on
utilization of O2 in peripheral tissues is rarely measured.
As a result, in clinical practice, an increase in Hb concen-
tration still remains the common measure of RBC trans-
fusion efficacy.

HOW WAS RBC STORAGE TIME 
ESTABLISHED?

Both the inability to define the optimum and minimum
clinical transfusion thresholds and the inability to reliably
measure tissue oxygenation have made it difficult to study
and determine the efficacy of RBC transfusions. As a con-
sequence, the determination of shelf life for RBCs has
been based exclusively on the maintenance corpuscular
integrity and posttransfusion 24-hour survival as surro-
gate markers for therapeutic benefit.2,12,13 Determining the
concentration of chromium-radiolabeled RBCs remaining
in the peripheral circulation 24 hours after the adminis-
tration of a fixed dose of RBCs has been the standard mea-
surement for RBC survival. Early studies of blood stored
in citrate and glucose adopted a threshold of 70 percent
for the acceptable 24-hour posttransfusion survival.
Below this threshold, transfused RBCs were deemed not
beneficial in the treatment of anemia,12 but this may have
been more of a pragmatic threshold limited by the tech-
nology of the time. The introduction of acid-citrate-
dextrose (ACD) in 1943 with its enhanced preservative
properties increased the shelf life of blood to 21 days.14

Sustained effort over the past 60 years to maintain corpus-
cular integrity and improve posttransfusion viability has
extended the storage period for blood to 35 to 42 days by
the addition of phosphate, adenine, and nutrient solu-
tions.15-18 Unfortunately, few studies have examined the
efficacy of RBCs in the transport of oxygen when stored
for such a prolonged period of time.

CHANGES IN RBCS DURING THE 
STORAGE PROCESS

During storage, RBCs undergo a predictable change in
morphology, evolving from deformable biconcave disks to

reversibly deformed echinocytes to irreversibly deformed
spheroechinocytes (Fig. 2). These corpuscular changes are
associated with a multitude of biochemical and biome-
chanical changes, which have been previously summa-
rized and have been collectively referred to as the storage
lesion.1-3,19,20

These biochemical and biomechanical changes asso-
ciated with RBC storage include a depletion of ATP21-23 and
2,3-DPG,22-25 membrane phospholipid vessiculation26-29 and
loss, protein oxidation1,30 and lipid peroxidation of RBC
membrane,31 and, ultimately, loss of deformability.32-35

These corpuscular changes may contribute to adverse
clinical consequences as a result of altered or diminished
oxygen transport. RBC storage increases RBC-endothelial
interactions,36 which are further increased by endotoxins
and inflammatory cytokines.37 The loss of deformability
and increased interactions with vascular endothelium
compromise microvascular flow of stored RBCs38 and crit-
ically ill patients would be expected to be particularly vul-
nerable.3 Even if able to navigate the microcirculation, the
unloading of oxygen to the tissues may be impaired by the
well-documented depletion of 2,3-DPG in RBCs stored for
more than 48 hours.

ATP depletion has been well documented,21-23 but
the consequences of this phenomenon are not clear.
Rapid depletion of ATP in RBCs reproduces the morpho-
logic changes observed during storage and restoration of
ATP levels reverses these changes.39 During storage, how-
ever, the more gradual depletion of ATP does not corre-
late well with observed morphologic changes, and a large
number of irreversible spherocytes persist despite resto-
ration of normal ATP levels.21,40 The total available ade-
nine nucleotide pool (ATP + ADP + AMP) may be of
greater importance than the concentration of ATP alone41

because this may allow transfused RBCs to regenerate
the necessary ATP to perform normal metabolic func-
tions and repair cellular damage resulting from storage.42

Some studies have suggested that ATP levels may be
important to prevent secondary mediators of the “stor-
age lesion” including dephosphorylation of proteins43 or
changes in the phospholipid composition of the RBC
membrane.

Fig. 2. Electron micrographs of RBCs over 42 days of storage demonstrating progressive changes from biconcave discs to reversibly 

deformed echinocytes to irreversibly deformed spheroechinocytes.33
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The depletion of RBC 2,3-DPG, the
major allosteric modifier of oxygen
affinity, is a well-characterized event
that occurs early during storage.22-24 De
novo synthesis of 2,3-DPG occurs after
transfusion, restoration of RBC 2,3-DPG
can take up to 72 hours.25,44-48 In man
and nonhuman primates, after transfu-
sion of 2,3-DPG–depleted RBCs, sys-
temic DPG levels, as well as the p50
values (a measure of oxyhemoglobin
affinity indicated by the O2 tension at
50% Hb saturation), decrease signifi-
cantly and then regenerate at a variable
rate25,49 (Fig. 3). Based on these observations, it has been
speculated that transfusion of large amounts of stored
RBCs may have an adverse clinical consequence on DO2

in patients whose O2 reserve is compromised.45-48 This
hypothesis has not been tested in controlled clinical trials,
however.

The formation of microvesicles composed of phos-
pholipids, transmembrane proteins, and cytoskeletal
during RBC storage results in a decrease in the surface-
to-volume ratio and the formation of echinocytes and
spheroechinocytes.26 These shape changes are associ-
ated with decreased RBC deformability, as measured by
filterability,33 ektacytometry,34 and increased osmotic
fragility,50-52 which have both been correlated with
decreased RBC survival35,51 (Table 1). Experiments with
the additions of additive solutions (AS-1)53 and experi-
mental hypotonic storage solutions54,55 have demon-
strated decreased RBC membrane loss and vesicle
formation during storage, which were associated with
increased RBC survival.

Oxidative damage is a well-recognized mechanism
contributing to the storage lesion and a plausible mecha-
nism contributing to microvessicle formation and the loss
of deformability. Oxidation of the spectrin-actin-protein
4.1 complex, which binds the phospholipid bilayer to RBC
cytoskeleton, has been correlated with vessiculation of the
RBC membrane.11,30,56 Similarly, lipid peroxidation has also
been associated with increased RBC deformability57 and
osmotic fragility.50 During storage, the loss of band 3, an
intrinsic RBC membrane proteins, results in a shift toward
glycolysis with a resultant decrease in intracellular levels
of NADPH and ATP, which may make the RBCs vulnerable
to oxidative stress.58

Storage of RBCs also increases RBC adhesion to
human vascular endothelium in vitro36 and in vivo animal
models.38 Tsai and coworkers59 observed a decrease of 63
percent decrease in microvascular flow after a 25 percent
exchange transfusion with stored RBCs in a hamster model
(Fig. 4). In vitro, RBC adhesions and microvascular occlu-
sion appear be abrogated by prestorage leukodepletion,

Fig. 3. Mean 2,3-DPG levels in recipient (- - -) and in transfused 

RBCs (—) during 3 days after transfusion for CPDA-1 (�), AS-1 

(�), and AS-3 (�) RBCs.44
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Fig. 4. Changes in arteriolar ( ) and venular (�) blood flow 

after moderate hemodilution (Level 2) and in the two experi-

mental groups: fresh and stored RBCs. In both experimental 

groups, fresh and stored RBCs, the blood flow was reduced from 

Level 2 (*) and was also significantly different from each other 

(**; p < 0.05). Data are presented means ± SEM.59

TABLE 1. Changes in percentage of reversibly and irreversibly deformed 
RBCs and associated changes in deformability as measured by nuclear 

pore filtration33

Days
RBC change (%) 

Deformability indexReversibly deformed Irreversibly deformed
5 14.0 ± 1.7 7.0 ± 1.6 118.9 ± 9.4
7 13.6 ± 1.7 8.4 ± 1.6 114.7 ± 7.6

14 27.9 ± 1.9* 14.7 ± 2.6* 70.9 ± 20.5*
21 30.6 ± 3.0 15.7 ± 3.3* 51.8 ± 23.3*
28 35.2 ± 1.6* 17.2 ± 4.1* 70.5 ± 13.2*
35 40.6 ± 3.4* 21.9 ± 5.0* 36.7 ± 7.9*
42 46.8 ± 6.7* 29.9 ± 4.0* 63.9 ± 14.0*

* p < 0.05 compared to blood stored for 5 days.
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suggesting that the altered RBC adhesiveness is associated
with white blood cell (WBC) contaminants.36

There are also a number of reports suggesting that
disease processes, such as sepsis, also impair RBC
deformability.60-64 and impair microcirculatory blood
flow.65-67 This combination may dramatically affect tissue
DO2 in sepsis and septic shock.60-63 In this setting, transfu-
sion of poorly deformable, 2,3-DPG–depleted stored RBCs
with increased vascular adhesion could potentially exac-
erbate preexisting microcirculatory dysfunction and fur-
ther impair tissue perfusion. The available evidence
would suggest that the transfusion of stored RBCs may
have adverse effects on microcirculatory flow and oxygen
utilization, particularly in vulnerable patients.

EFFICACY OF RBC TRANSFUSIONS

In terms of establishing the efficacy of RBC transfusions,
we can calculate the systemic DO2 because it is propor-
tional to the product of the Hb concentration and CO.
There are, however, many inherent difficulties with tissue-
specific indicators of cellular respiration and adequacy of
oxygen transport and utilization. As a consequence, the
current criteria for clinical efficacy for stored RBCs focus
on their physical and biochemical characteristics while
having little to do with their function. In clinical practice,
we rely on increased Hb concentrations and changes in
other crude markers of oxygenation such as mixed venous
O2 and lactate to determine whether a transfusion was
efficacious (Fig. 5). Unfortunately, as previously des-
cribed, RBCs may be ineffective transporters of oxygen,
especially in compromised critically ill patients who have
microcirculatory abnormalities from a number of patho-
logic processes.68-70

ANIMAL STUDIES

Earlier animal studies demonstrated that stored rat blood
compared to fresh RBCs did not improve tissue O2 con-
sumption.71,72 The effect of RBC transfusions was assessed
through isovolemic hemodilution of animals just beyond
the point of O2 supply dependency. In the supply-
dependent state, the efficacy of transfusing old versus
fresh RBCs and blood substitutes to DO2 (CO, arterial O2

saturation, and Hb concentration), to improve O2 con-
sumption (measured directly) and decrease arterial lac-
tate was measured. With this model, the two studies
consistently noted that transfusion of rat RBCs stored
under standard conditions for 28 days when compared to
fresh rat blood (less than 5 days) were not efficacious in
improving tissue O2 consumption or other measures of
tissue hypoxia.71,72 These findings were further supported
by an additional study that 28-day-old rat blood stored in
CPD failed to improve microvascular pO2 in a hemor-
rhagic rat model compared to fresh RBCs or RBCs stored
in saline-adenine-glucose-mannitol.73 Subsequent work,
however, demonstrated that the storage lesion in rat RBCs
is significantly worse than the storage lesion in human
RBCs after similar storage times.74 Although 28-day rat
blood is significantly “older” than 28-day human blood,
these experiments still serve to highlight the possible del-
eterious effects of the storage effect to impair oxygen
delivery to the tissues.3 To overcome the differences
between rat and human blood, Raat and associates23 com-
pared the transfusion of 2- to 6-day-old, 2- to 3-week-old,
and 5- to 6-week-old human blood in a rat isovolemic
exchange model.23 The exchange transfusion with the old
blood resulted in a decrease in microvascular pO2 com-
pared to the fresh and intermediate blood (Fig. 6). Several

Fig. 5. As DO2 decreases, there is a gradual increase in the oxy-

gen extraction ratio (OER) and a corresponding decrease in the 

systemic venous O2 (SVO2). With the increased OER, initially 

there is no decrease in oxygen consumption (VO2) by the tissues. 

The VO2 only decreases when the DO2 falls below a critical 

threshold (critical DO2); this is associated with an increase in 

lactate (anaerobic metabolism).

VO2

OER

SvO2

Lactate

VO2

DO2Critical DO2

Delivery dependent             Delivery independent

Fig. 6. Difference between intestinal microvascular oxygen 

concentration (mPO2) in rat isovolemic exchange model at the 

start and end of exchange transfusion with washed human 

RBCs that had been stored up to 6 week. Values are displayed as 

means ± SEM, n = 8. *p < 0.05 versus 2- to 6-day stored RBCs; 

‡p < 0.05 versus no change (zero).23
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conclusions may be drawn from these in vivo experi-
ments. First, these animal studies provide some of the
only evidence confirming that RBCs effectively increase
oxygen delivery and release oxygen at the cellular level.
Second, the experiments in supply-dependent animals
demonstrate that the many changes observed in the lab-
oratory may have important in vivo consequences.
Indeed, older transfused RBCs may have a limited ability
to acutely improve O2 availability. These experiments raise
a number of questions. Specifically, it is unclear whether
the observed effects of transfusing old stored blood were
due to corpuscular changes within the RBC or associated
with bioreactive substances in plasma supernatant of
stored RBCs. Finally, the magnitude of this effect and its
clinical consequences have yet to be established.

CLINICAL STUDIES OF O2 KINETICS

Clinical studies attempting to determine the effect of RBC
transfusions on O2 kinetics have not provided definitive
answers. We identified 19 clinical studies75-93 evaluating
the impact of RBC transfusions on O2 kinetics in humans.
All studies measured DO2 and O2 consumption before and
after the transfusion of a specified number of allogeneic
RBCs. DO2 uniformly increased but O2 consumption was
observed to change in only 6 of the studies.8 The lack of
change in O2 consumption reflects either methodologic
errors94 or patients with an elevated anaerobic threshold
rather than an indication that RBCs were unnecessary, as
was suggested by one of the studies.75 The most recent
study also evaluated systemic oxygen transport by mea-
suring skeletal oxygen tension with microelectrodes.78

Even though a number of clinical trials91-93 have attempted
to define optimal levels of DO2, there is still no consensus
as to which patients are most likely to benefit and which
intervention or approach is superior (i.e., fluids, inotropic
agents, or a combination of these interventions).

CLINICAL STUDIES EXAMINING 
CONSEQUENCES OF RBC STORAGE

A systematic literature search was conducted to identify
previous systematic reviews on the topic of clinical effec-
tiveness of stored RBCs, and none were identified. In the
absence of published systematic reviews, we conducted
a systematic search and synthesis of the literature with
standard methods.

Numerous studies have demonstrated an association
between RBC transfusions and increased mortality4,5,95-99

and morbidity4,5,95-97,100-113 (Table 2). Most of these studies
are prospective or retrospective cohort studies and there-
fore despite multivariate analysis, the relationship
between RBC transfusions and increased adverse events
may still be a result of confounding. In the TRICC trial,
however, patients randomly assigned to a more restrictive

transfusion threshold received fewer units of RBCs (mean,
2.6 vs. 5.6; p < 0.01) and had a significant decrease in hos-
pital mortality (22.8% vs. 28.1%; p = 0.05) and an increase
in respiratory failure, which suggests that RBC transfu-
sions may indeed cause harm.6 The prolonged storage of
the RBCs is a potential cause for the increase in adverse
events associated with higher transfusion rates, but this
study was not designed to look at the effects for prolonged
RBC storage.

A number of retrospective clinical studies have exam-
ined the association between prolonged storage times and
adverse clinical outcomes and they have documented an
increase in mortality,96,114,115 pneumonia,96,103 serious infec-
tions,96,105 multiorgan failure,115,116 and length of stay
(LOS)96,99,115,117 in many patient populations including crit-
ically ill patients, multiple trauma victims, and patients
undergoing cardiac surgical procedures (Table 3). Martin
and associates99 observed a significant association
between the transfusion of aged blood (>14 days old) and
increased length of ICU stay (p = 0.003) in 698 critically ill
patients. In patients receiving a transfusion, aged RBCs
was the only predictor of LOS (p < 0.0001). In survivors,
from this analysis, only the median age of blood was pre-
dictive of LOS (p < 0.0001). Purdy and coworkers114 dem-
onstrated a negative correlation (r = −0.73) between the
proportion of RBC units of a given age transfused to sur-
vivors in patients admitted to the ICU with a diagnosis of
severe sepsis (n = 31). Purdy and coworkers also noted that
these latter units were more likely to be older.

With a prospective database of trauma victims, Zallen
and colleagues116 and Offner and colleagues105 have exam-
ined the influence of the age of the transfused RBCs in
trauma victims who received between 6 and 20 units of
RBCs in the first 12 hours after injury. The mean age of
units of RBCs and the mean number of units greater than
14 and 21 days, respectively, were greater in patients
(n = 63) with multiple organ failure.116 The number of units
greater than 14 days old (odds ratio [OR], 1.13; confidence
interval [CI], 1.01-1.26) and the 21 days old (OR, 1.13; CI,
1.00-1.27) were also independent risk factors for serious
infection (n = 61).105 In a separate study of 86 trauma
patients who received transfusions in the first 48 hours
of admission and were discharged alive, Keller and
coworkers117 demonstrated a significant association
between the number of RBC units older than 14 days and
hospital LOS (p = 0.02), but not ICU stay or duration of
mechanical ventilation.

In cardiac surgery patients, Basran and associates115

demonstrated an increase in in-hospital mortality and
out-of-hospital associated with increased mean age of
RBCs transfused. Additionally, the age of the transfused
RBCs was associated with increased ICU length of stay
and acute renal dysfunction. Vamvakas and Carven103

found an increased risk of pneumonia of 1 percent for
each additional day in the mean storage time of the trans-
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fused RBCs. Additionally, Leal-Noval and coworkers104

described an increase of 6 percent in the risk of pneumo-
nia for each additional day of storage of the oldest unit of
RBCs transfused. Duration of RBC storage and changes in
postoperative pneumonia rates, however, were not asso-
ciated with a prolongation of mechanical ventilation or
ICU or hospital stay.104,118

Unfortunately, all cohort studies evaluating pro-
longed RBC storage will invariably be subject to the con-
founding influences of factors such as the number RBC
units transfused, the mixture of storage times from the
multiple units transfused throughout a hospital stay, and
patient factors including severity of illness. Inferences
related to the clinical consequences of transfusing RBCs

TABLE 2. Association of RBC transfusions with mortality and morbidity in critically ill in observational studies
Study: 
first author, 
year Population Design Number Outcomes
Ciesla, 2005113 Trauma Prospective cohort 1,344 Increased multiorgan failure
Gong, 2005106 ICU patients Prospective cohort  688 Increased risk of ARDS*
Lebron, 2005109 Liver transplant Retrospective cohort  241 Increased early postoperative renal failure
Shorr, 2005107 ICU patients Prospective cohort 3,502 Increased ICU acquired bacteremia
Silverboard, 2005,112 Trauma Prospective cohort  102 Increased risk of ARDS
Smith, 2004108 Subarachnoid hemorrhage Prospective cohort  441 Worse outcome with intraoperative transfusions
Vincent, 20045 ICU patients Prospective cohort 1,136 Increased ICU, hospital and 28-day mortality

Increased organ dysfunction
Leal-Noval, 2003104 Cardiac surgery Prospective cohort  103 Increased ICU LOS, mechanical ventilation, and 

pneumonia
Malone, 200398 Trauma Prospective cohort 15,534 Increased mortality
Chelemer, 2002100 CABG Prospective cohort  533 Increased bacterial infections
Claridge, 2002110 Trauma Prospective cohort 1,593 Increased infection
Corwin, 20024 ICU Prospective cohort 4,892 Increased ICU and hospital LOS

Increased complications
Taylor, 200295 ICU Retrospective cohort 1,717 Increased nosocomial infections, ICU LOS, and 

mortality
Vamvakas, 2002111 Cardiac surgery Retrospective cohort  416 Increased postoperative ventilation associated 

with volume of RBC supernatant
Leal-Noval, 200196 Cardiac surgery Prospective cohort  738 Increased ICU LOS, mechanical ventilation, and 

pneumonia
Chang, 200097 Colorectal surgery Retrospective cohort  282 Increased postoperative infection

Increased mortality
Carson, 1999101 Hip fracture Retrospective cohort 9,598 Increased risk of serious bacterial infection and 

pneumonia
Offner, 1999105 Trauma Prospective cohort  61 Increased infection
Vamvakas, 1999103 Cardiac surgery Retrospective cohort  416 Increased postoperative infection (5% /unit)
Carson, 1998141 Hip fracture Retrospective cohort No change in mortality or morbidity
Moore, 1997102 Trauma Prospective cohort  513 Increased multiorgan failure
Martin, 199499 ICU Retrospective cohort  698 Increased mortality

* ARDS = acute respiratory distress syndrome.

TABLE 3. Association of RBC storage with clinical outcomes: observational studies
Study: 
first author, 
year Population Design Number Outcomes
Basran, 2006115 Cardiac surgery Retrospective cohort 321 Increased mortality associated with mean age of RBC units and 

age of oldest RBC unit
Leal-Noval, 2003104 Cardiac surgery Prospective cohort 897 Increased pneumonia associated with oldest unit
Keller, 2002117 Trauma Retrospective cohort 86 Increased LOS with number of RBC units >14 days
Offner, 2002105 Trauma Prospective cohort 61 Increased infections with number of units >14 and 21 days
Vamvakas, 2000118 Cardiac surgery Retrospective cohort 268 No change in LOS or mechanical ventilation associated with age 

of RBC units
Vamvakas, 1999103 Cardiac surgery Retrospective cohort 416 Increased risk of pneumonia with median age of transfused RBC 

units
Zallen, 1999116 Trauma Prospective cohort 63 Increased multiorgan failure with number of units >14 and 21 days
Purdy, 1997114 Septic ICU Retrospective cohort 31 Increased mortality associated with older median age of RBC units
Martin 199399 ICU Retrospective cohort 698 Increased LOS with number of units >14 days
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with a storage time of less than 8 days are also limited by
a small sample size and imbalances in clinically important
baseline characteristics. Additionally, all the published
studies demonstrate an adverse effect associated with
prolonged storage of RBCs, which may reflect a publica-
tion bias.

Recently, two small randomized controlled trials in
adults examining the effects of the storage time of trans-
fused RBCs have been reported. Walsh and colleagues119

evaluated changes in gastric intramucosal pH (pHi), a
measures of gastric perfusion, in 22 mechanically venti-
lated critically ill patients who required a RBC transfusion.
In this study, the authors were not able to detect any
adverse consequences on pHi and changes in the arterial-
gastric mucosal CO2 gap with a storage time exceeding 20
days as compared to patients receiving RBCs less than 5
days. These results contradicted earlier observations in a
before and after study conducted by Marik and Sibbald68

who documented an inverse relationship between the age
of transfused RBCs and gastric intramucosal pH(r = −.71;
p < 0.001) in a prospective trial of 23 critically ill ICU
patients (Fig. 7). The former trial differed from the latter
as patients received filtered leukodepleted RBCs and were
not septic and stable enough to withhold RBC transfu-
sions for 12-18 hours while consent was obtained. We
recently completed and published a second study of pro-
longed RBC storage.120 The goal of the pilot study was to
ensure that blood banks could comply with requests for
fresh RBCs, adhere to the inventory management strate-
gies and to ensure that our approach would result in clear
separation of RBC storage times. In the 57 patients stud-
ied, the number of units transfused averaged 5.5 ± 8.43
RBC units in the experimental group as compared

3.3 ± 3.27 RBC units in the standard group (p = 0.25). The
median storage time was 4 days in the experimental group
as compared to 19 days in the standard group (difference
of 15 days, interquartile range of 12-16 days, p < 0.001).
Overall, 91 percent of patients allocated to the fresh group
received RBCs with storage times below 8 days. The group
receiving RBCs less than 8 days of age tended to be older
on average (68 ± 8.5 years vs. 63 ± 15.3 years, P = 0.13) and
have more comorbid illnesses (85 percent vs. 65 percent,
P = 0.09). In total, 27 percent of patients in the experimen-
tal group died or had a life-threatening complication as
compared to 13 percent in the standard group (p = 0.31).
There were no differences in prolonged respiratory, car-
diovascular or renal support after randomization (all
P >0.05). This pilot trial demonstrates the feasibility of
performing a large randomized clinical trial to evaluate
the effect of prolonged RBC storage. The small sample
does not allow for any conclusions to be reached regard-
ing the adverse effects of RBC storage on mortality and
morbidity.

Four neonatal trials conducted in critically ill prema-
ture infants have also evaluated prolonged RBC storage in
the context of dedicated RBC units (multiple aliquots from
a single unit are transfused to the same infant over time)
programs.121-124 These programs involve prolonged storage
as a consequence of approach rather than specifically
examining the hypothesis of fresh versus stored blood. A
meta-analysis of these four randomized trials121-124 showed
that infants receiving fresh blood were exposed to just over
2 more donors than those receiving stored blood (weighted
mean difference of 2.31 donors, 95 percent CI 1.09-3.53;
p = 0.0002) (Fig. 8). Unfortunately, all studies were of small
sample size and none of the four trials evaluated clinically
important outcomes. Thus, conclusive evidence on out-
comes can not be ascertained. Finally, a recent study pub-
lished in The New England Journal of Medicine (p.e.) found
that fresh whole blood for cardiopulmonary bypass pump-
priming in children less than 1 year of age offered no
advantage over reconstituted blood products.125

PROPOSED MECHANISMS LINKING 
PROLONGED STORAGE OF RBCS AND 
ADVERSE CLINICAL CONSEQUENCES

Evidence from laboratory studies that prolonged RBC
storage may result in either (1) an impaired ability of
stored RBCs to transport or deliver oxygen as described
above; or (2) stimulation of the inflammatory cascade by
the transfused blood product. Once initiated, either
mechanism may exacerbate or eventually lead to organ
failure and death in the critically ill. As a consequence or
as a direct cause of critical illness, there are a number of
potential events that result in an altered host immune
function, either initiating a pro-inflammatory or anti-
inflammatory response. The Systemic Inflammatory

Fig. 7. In 13 septic patients who received 3 units of RBCs, there 

was no evidence of increased oxygen as determined by gastro-

nomic tonometry measurements of gastric pH (pHi). Transfu-

sion of older blood (>15 days) was associated with evidence for 

gastric mucosal ischemia.68
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Response Syndrome (SIRS), as an example, may result
from a variety of insults to the human host including
severe pancreatitis, cardiopulmonary bypass, trauma,
burns and infections.126 Transfused RBCs and platelets
products may not only be a trigger but could potentially
prime the body so that subsequent insults are much more
significant (second hit hypothesis).127 There is also evi-
dence that transfused RBCs may have pro-inflammatory
activities.128-136 Many pro-inflammatory molecules are
detected in RBC units, including cytokines,128,132,134-136

histamine,132 lyso-phosphatidyl-choline species,129 and
other bio-reactive substances, which may initiate, main-
tain or enhance an inflammatory process. The altered
immune responses following RBC transfusions may pre-
dispose critically ill transfusion recipients to SIRS, sepsis
syndrome, nosocomial infections,60-65,129,137 and multion-
gan failure,67,70,103,114 which may ultimately result in higher
mortality rates.70 Through changes in RBC units following
prolonged storage, older RBCs may result in endothelial
injury and possibly activation.

Other pathophysiological mechanisms may result in
adverse clinical outcomes. For example, it is known that
the concentration of free Hb increases with time in RBC
units. Free Hb reacts with endothelial nitric oxide, which
can lead to vasoconstriction.138 The binding and inactiva-
tion of nitric oxide may lead to increases in intravascular
thrombosis, WBC adhesion and diapedesis, endothelial
permeability, and smooth muscle proliferative responses
after vascular injury.139 Free Hb may also induce inappro-
priate vasoconstriction.118 The interaction between free
Hb and nitric oxide might explain why a significant drop
in arterial O2 tension (PaO2 of 32 mmHg) and in forced
vital capacity of 32 percent is observed in children with

thalassemia major following blood
transfusion.140 Through these mecha-
nisms (and others previously men-
tioned), one can also postulate that
prolonged RBC storage can result in a
failure to provide adequate oxygen to
vital organs which will eventually lead to
their failure. Other cellular by-products
may also have detrimental effects. Silli-
man and colleagues139 showed that the
plasma fraction of packed RBCs stored
for 42 days caused vasoconstriction and
lung injury; this may be caused by lyso-
phosphatidyl-choline species probably
released  from  the  cellular  membrane
of old RBCs.31 In summary, a number of
described storage related changes of
transfused RBCs adversely affects the
quality of stored blood and could poten-
tially explain the adverse clinical
consequences.

CONCLUSIONS

From our exhaustive review of the literature, we conclude
that (1) there is strong laboratory evidence suggesting that
prolonged RBC storage may be deleterious and (2) obser-
vational studies report a number of associations between
prolonged storage and adverse clinical outcomes such as
mortality and organ failure. Only two small adult trials
have been published assessing clinical consequences of
prolonged RBC storage. Given the importance of the ques-
tion and limited evidence in humans, further clinical stud-
ies are required to address these issues. While animal and
smaller clinical studies may further elucidate the RBC
storage lesions and possible mechanisms for harm, they
will never be able to determine if clinically important
adverse events are caused by the transfusion of older
RBCs. As a result, large definitive randomized controlled
trials with clinically important endpoints including mor-
tality are needed. Such trials will need to focus on the
comparison of fresh RBCs versus standard issue in patient
populations such as critical care patients who are most
likely to be adversely affected by the transfusion of older
stored RBCs. A comparison involving RBCs near outdate
would also be of scientific interest, but the current knowl-
edge of the RBC changes that occur during storage make
it ethically problematic to randomize patients to “old”
RBCs, which are possibly inferior to current standard
therapy.

Ideally, in any future clinical trial assessing the stor-
age lesion, the blood in the fresh arm of the trial should
be as “fresh” as possible. A minimum storage window,
however, is required to 1) allow sufficient time to complete
infectious disease testing and ship to hospitals, 2) ensure

Fig. 8. A meta-analysis of four randomized trials of neonates121-124 demonstrating that 

infants receiving fresh blood were exposed to just over 2 more donors compared to 

infants receiving stored blood.
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that there is sufficient inventory for the fresh arm of the
trial, and 3) allow for a shelf life for fresh units that would
be logistically possible to implement after the clinical trial.
A storage limit of less than 8 days for fresh RBC units
meets these practical considerations and, additionally, is
based on our current knowledge of the RBC storage lesion.
Both biochemical and biomechanical deterioration
occurs in RBCs by the second week of storage. The levels
of 2,3-DPG have fallen to near zero by the second week.22-

25 Although the levels are rapidly restored, the ability of
these RBCs to deliver oxygen is impaired in the first
24 hours after transfusion. Additionally, the percentage of
irreversibly deformed cells and overall deformability
remains stable from Storage Day 5 to Storage Day 733 but
significantly increases by Day 14.33,34

Randomized trials in potentially vulnerable patients
such as premature infants or critically ill patients may have
significant implications on blood procurement services.
Negative trials would reassure clinicians and blood bank-
ers regarding the effectiveness of prolonged storage. If no
clinical benefits were detected (null result or harmful effect
of RBCs stored less than 8 days), then blood banks would
have evidence to support current inventory management
strategies in adult who are critically ill. In addition, trauma
surgeons and critical care practitioners would no longer
be justified in requesting fresh blood. At least one positive
trial would confirm that prolonged RBC storage has clinical
consequences, either because prolonged RBC storage ren-
ders the product ineffective or because of direct toxic
effects of prolonged storage. Documenting improved out-
comes with fresh blood will provide much needed evi-
dence to determine the most important mechanism
leading to tissue injury and death. From a large study, we
would expect to document the overall benefits of fresh
RBCs, if present, and also better understand if fresh RBCs
might benefit some patients more than others. A positive
study would also result in a significant investment in
research on the prolongation of shelf life such as improve-
ments in storage media and rejuvenation solution, addi-
tional randomized controlled trials of RBC storage in
different patient populations, and a reevaluation of regu-
latory policies on RBC storage. In conclusion, a series of
clinical studies, regardless of their conclusions, will result
in a major change or affirmation of clinical practice, health
policy, and the management of the blood supply.
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