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Executive Summary 

 

The Air Force and the other military services are increasingly interested in using models of the 
behavior of humans, as individuals and in groups of various kinds and sizes, to support the development 
of doctrine, strategies, and tactics for dealing with state and nonstate adversaries, for use in analysis of the 
current political and military situation, for planning future operations, for training and mission rehearsal, 
and even for the acquisition of new systems. In this report we refer to this broad class of models as 
individual, organizational, and societal (IOS) models. There are many lines of research on such models, 
which span several disciplines, have different goals, and often use different terminologies. 

The National Research Council was asked by the U.S. Air Force to review relevant IOS modeling 
research programs in the various research communities, evaluate the strengths and weaknesses of the 
programs and their methodologies, determine which have the greatest potential for military use, and 
provide guidance for the design of a research program to effectively foster the development of IOS 
models useful to the military.  The formal statement of task for the study includes the following specific 
items: 

• Review the state of the art of the subset of the social sciences perceived as having the greatest 
payoff in terms of informing future computational model developments.  

• Review the state of the art in societal1 modeling applications serving the U.S. Department of 
Defense (DoD) and related agencies, with special emphasis given to computational modeling 
and simulation based approaches.  

• Review the state of the art in the three computational modeling communities outside DoD 
(cognitive science and individual behavioral modeling, network analysis and multiagent 
organizational modeling, and multiresolution modeling and simulation) and identify strengths 
and shortcomings in each. 

• Identify how gaps in societal behavioral modeling applications serving DoD and related 
agencies might be filled by conceptual models in the social sciences; computational modeling 
approaches now under way in the social science community; and closer linkages between the 
cognitive science community, the network/ organizational modeling community, and the 
multiresolution modeling and simulation community. 

• Develop a research and development roadmap to fill current application gaps, for the near-, 
mid-, and far term. 

 
Today’s military missions have shifted away from force-on-force warfare—fighting nation-states 

using conventional weapons—toward combating insurgents and terrorist networks in a battlespace in 
which the attitudes and behaviors of civilian noncombatants may be the primary effects of military 
actions.  These new missions call for agile, indigenously sensitive forces capable of switching quickly and 

                                                 

1In this study, the committee broadened the scope to include individual and organizational models as well, because of 
the inseparability of all three, given the intended usage. 
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effectively from conventional combat to humanitarian assistance and able to defuse tense situations 
without, if possible, the use of force.  IOS models are greatly needed for planning, supporting, and 
training for these forces and for evaluating the technology with which they fight.   Models of human 
behavior in social units—teams, organizations, cultural and ethnic groups, and societies—are needed to 
understand, predict, and influence the behavior of these social units.   

For example, models could be used to predict the effects of actions intended to disrupt terrorist 
networks, to predict the response of insurgents and the local population to the presence of friendly forces 
in a given area, or to predict the effects of alternative diplomatic, military, and economic courses of action 
on the attitudes and behaviors of the population in a region of interest. Models could also be used in 
training and mission rehearsal to create simulation environments in which military units could, for 
example, experience the effects of their actions on the (simulated) behavior of a crowd that might either 
disperse or turn hostile.  Models could also be used to evaluate the likely results of proposed changes 
intended to make military command and control organizational structures more agile and adaptive, and to 
assess the effects of introducing new technology capabilities on the performance of these organizations. 

CONCLUSIONS 

We use a framework of modeling pitfalls, lessons learned, and future needs to characterize our 
major conclusions in a way that will be most useful to the sponsors in the design of future research 
programs.  The problems or pitfalls identified by the committee are organized in terms of five major 
categories:   

1. Modeling strategy—matching the problem to the real world: Difficulties in this area are created 
either by inattention to the real world being modeled or by unrealistic expectations about how 
much of the world can be modeled and how close a match between model and world is feasible.   

2. Verification, validation, and accreditation:  These important functions often are made more 
difficult by expectations that verification, validation, and accreditation (VV&A)—as it has been 
defined for the validation of models of physical systems—can be usefully applied to IOS models. 

3. Modeling tactics—designing the internal structure of a model:  Problems are sometimes 
generated by unwarranted assumptions about the nature of the social, organizational, cultural, and 
individual behavior domains, and sometimes by a failure to deliberately and thoughtfully match 
the scope of the model to the scope of the phenomena to be modeled. 

4. Differences between modeling physical phenomena and human behavior—dealing with 
uncertainty and adaptation:  Problems arise from unrealistic expectations of how much 
uncertainty reduction is plausible in modeling human and organizational behavior, as well as on 
poor choices in handling the changing nature of human structures and processes. 

5. Combining components and federating models:  Problems arise from the way in which linkages 
within and across levels of analysis change the nature of system operation.  They occur when 
creating multilevel models and when linking together more specialized models of behavior into a 
federation of models. 

To summarize, IOS modeling is a complex, emerging science with roots in many different 
disciplines.  Its advancement requires that researchers maintain awareness of each other’s work and build 
on each other’s results, yet the multidisciplinary nature of IOS modeling has created a fragmented field.  
For the field to advance, researchers need better frameworks and forums in which to compare, discuss, 
and evaluate their results.  The field currently features a multitude of complex models created using 
different data and different theories to address different problems, making comparative analysis nearly 
impossible.  Common datasets and challenge problems are needed in order to learn which modeling 
approaches and sets of variables are most useful for specific types of problems. 
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It seems clear there is no single right model and probably will never be.  The committee thinks 
that a federated modeling approach, in which different models at different levels are linked together and 
component submodels can be swapped in and out, is promising for attacking complex IOS modeling 
problems.  Considerable research needs to be done to make this federated vision a reality, however.  
Standards, architectures, methods, and tools are needed to lower the barriers for developing, linking, and 
validating federated models. 

Different modeling purposes require different types of models.  In the committee’s judgment, the 
purpose of the model should drive the appropriate variables to be included in the model.  To do this 
successfully requires a clear specification of model purpose and criteria for usefulness for that purpose, 
which in turn requires that model developers work closely with the eventual users of the model. 

The committee also recommends validation for action, in which the purpose of the model drives 
its validation criteria.  IOS models cannot be validated “in general”—they must be validated for a specific 
use.  A cross-disciplinary community of interest needs to establish and promulgate accepted standards for 
validation of IOS models.  Triangulation methods that combine expert judgment, qualitative results and 
theoretical work, and quantitative results should be further refined and more widely used.  Common 
challenge problems and datasets are needed to facilitate docking of models for comparative purposes. 

Finally, models of human beings and their individual and collective behaviors necessarily include 
a large amount of inherent uncertainty.  This uncertainty is not a flaw of the model and cannot be 
designed out of the model.  Human behavior is dynamic and adaptive over time, and it is impossible at the 
moment (and into the foreseeable future) to make reliably exact predictions about it.  Researchers need to 
develop ways to estimate the probability of plausible outcomes and express those estimates in ways that 
are clear and meaningful to model users, who can then judge whether the results meet their needs.  It is 
important also to avoid raising expectations about the capabilities of IOS models beyond what can 
realistically be expected. 

RECOMMENDATIONS 

Recommendations for an IOS modeling research and development program fall into three broad 
categories: (1) large-scale, integrated cross-disciplinary research programs, focused around representative 
challenge problems and common datasets; (2) research in six independent areas that will advance the 
capabilities to address these integrated  problems; and (3) multidisciplinary conferences, workshops, and 
other information exchange forums, with attendees to include not only model developers but also 
government program managers and military decision makers. 

Integrated Cross-Disciplinary Research Programs 

We suggest the funding of multiple large-scale, multiyear research programs that focus on 
comparing and, if appropriate, integrating models from different disciplines, different perspectives, and 
different levels of detail.  The goal would be to create a level playing field on which the capabilities of 
different approaches could be compared and the strengths of each assessed.  The ultimate goal is to move 
IOS modeling science forward through the process of comparison, docking, and integration. 

It is essential for all participants in each program to focus on the same well defined challenge 
problem instantiated in a common testbed and to use a common dataset.  At the heart of each program 
would be a representative problem that is critical for military operations, defined in detail.  We have 
chosen five representative problems as a starting point for choosing the problems to be addressed. 

The research teams for these efforts should be multidisciplinary, and the program team should 
also include military users with operational experience in the domain for which the models are to be 
developed.  These users will be ultimate judges of whether model results are useful and will provide 
advice on how the results can best be presented.  The use of a common challenge problem and a common 
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testbed will facilitate the “docking” of the different models for purposes of comparison.  The development 
of challenge problems should be a major focus early in the development of research programs. 

These integrated programs will encourage mutual education between modelers and operational 
users.  Results should be presented at workshops for program participants and other interested parties and 
at public conferences as well as published in the open literature. 

Independent Research Thrusts 

In support of the integrated programs we recommend, we have identified six independent areas in 
which research is needed.  Progress in each of these areas could increase the ability to develop the 
integrated modeling capabilities that are needed to address military problems.  In each area, we suggest 
the funding of multiple research teams from multiple perspectives, with periodic workshops for 
researchers to exchange results.  We also suggest that operational users as well as government program 
managers participate in these workshops.   

 

Thrust 1: Theory Development 

Models should be conceptually correct and grounded in the underlying fundamentals of what is 
known about individual human and group social behavior.  However, current theory in this area does not 
answer all of the questions needed to structure models that address relevant issues.  Basic research is 
needed for theory development, especially for the low-level social behaviors that are the building blocks 
for larger scale social behavioral patterns.  This theory development work must involve multiple 
disciplines and perspectives with periodic workshops to exchange results. 

Theory development challenge problems should be defined to guide the work, but these can be 
nonmilitary and need not involve the level of military detail necessary for the integrated problems 
discussed in above.  A series of workshops should be conducted with researchers to identify key theory 
gaps. 

Academic institutions are key players for theory development, but they need information, 
incentives, and funding to address these theoretical issues.  There is a need to educate researchers in 
military domains, establish conferences and journals in which their results can be presented, provide 
postdoctoral support, and provide funding that allows researchers to spend time learning about military 
domains in depth. 

 

Thrust 2: Uncertainty, Dynamic Adaptability, and Rational Behavior 

Models must deal with the inherent uncertainty and the dynamic adaptation that characterizes 
human behavior.  Models must also be capable of modeling both rational and nonrational behavior.  

Basic research is needed in each of these areas.  Issues include 

• How should models capture the “uncertainty-in-the-small associated with individuals and 
small groups?  How can model structures and parameters capture this variability, and 
how much of this variability must be included for the purposes of the model? 

• How should models capture the “uncertainty-in-the-large” associated with populations 
and variations in population distributions?  How much variability must be included for 
the purposes of the model? 

• How can models capture adaptation and learning over time and as the results of actions 
by others?  For example, people have multiple overlapping identities and allegiances.  
How can these be captured in a model, and how can one estimate the effects of actions 
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and events on the primacy of these multiple allegiances as they affect decisions and 
actions? 

• What are the factors that contribute to rational, adaptive behavior, and what factors 
induce behavior that appears irrational?  Models of both rational and nonrational behavior 
must capture all the key factors -- cognitive, affective, cultural, and contextual—that 
motivate and shape behavior of specific individuals in specific situations. 

Better techniques are needed for understanding the implications of diversity and variability for 
model-based sensitivity analysis.  Better automated technology is needed to put the model through its 
paces to explore the parameter space effectively and produce robust results. 

 

Thrust 3: Data Collection Methods  

The difficulty of obtaining data is an ongoing challenge for IOS modeling.  Research is needed to 
develop better data collection processes through field studies, experiments, and potentially massive 
multiplayer online games (MMOGs). 

Although a variety of ethnographic data collection techniques are currently in use, they need to be 
better tailored to the needs of IOS models.  For field data collection, it is necessary to bring modelers and 
data collectors together to develop data ontologies, joint specifications, and data collection methodologies 
and tools that are specifically tuned to IOS models.  

MMOGs are a potential untapped resource for collecting social and behavioral data on a large 
scale.  We recommend the creation of a MMOG facility and the funding of basic research to determine if 
MMOGs can be used to test, verify, and validate IOS models.  We recommend that funding be put into 
developing the science of MMOGs.  We note that funding MMOGs is a risky endeavor, but we think that 
the potential benefits outweigh the risks. 

 

Thrust 4: Federated Models 

It is a fundamental conclusion of the committee that no single modeling approach can provide all 
the capabilities needed by DoD.  We recommend a federated approach in which modeling components are 
created to be interoperable across levels of aggregation and detail.  For example, a federated model might 
include a detailed representation of a few key individuals, linked to group-level models of different 
cultural groups and terrorist organizations, linked to geographic sector–level models of the level of unrest 
in a city.  This approach is flexible and extensible, allowing the addition or subtraction of models at 
different levels of detail as needed for the problem to be addressed. 

Combining model components to create federated models in the sense being recommended 
requires deep semantic interoperability (i.e., theoretical consistency) and presents difficult challenges.  To 
create semantic interoperability, it is necessary to recognize that the links among components are 
themselves elements of the model.  Research is needed on: 

• How to ensure that the models being federated embrace compatible assumptions 
regarding concept abstractions, entity resolution, time scale resolution (tempo), 
uncertainty, adaptability, docking standards, input/output, semantics, etc. 

• How the components of the federated model should be encapsulated, and which elements 
must be exposed to other components. 

• How specific classes of models should be linked (e.g., cognitive models to social network 
models). 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

 

Prepublication Copy 

ES-6 

• How to ensure dynamic extensibility. 

In addressing these issues, IOS modelers should maintain awareness of research and development 
in model federation in the larger modeling and simulation community. 

 

Thrust 5: Validation and Usefulness 

Current verification, validation, and accreditation (VV&A) concepts and practices were 
developed for the physical sciences, and we argue that different approaches are needed for IOS models.  
Specifically, we recommend that a “validation for action” approach be used that assesses the usefulness of 
a model for the specific purposes for which it was developed.  It is thus very important that the purpose(s) 
and criteria for judging success be clearly stated a priori for all models.  We recommend organizing 
national workshops to agree on appropriate processes for VV&A of IOS models and to outline a roadmap 
for developing improved processes and standards.  On the basis of the results of this workshop, we 
recommend that a DoD-wide authority develop and disseminate VV&A processes and standards for IOS 
models. Basing model validation on the usefulness of the model for specific problems requires that model 
purposes be clearly stated by model users and clearly understood by model developers.  We suggest that, 
as part of developing a VV&A standard for IOS models, clear guidelines be developed for specifying 
model purpose. 

 

Thrust 6: Tools and Infrastructure for Model Building 

It is important to reduce the barrier to entry for developing models, modeling tools, frameworks, 
and testbeds.  Scientists should be able to build and validate models without the large overhead currently 
associated with many DoD modeling and simulation investments.  It should be possible to easily tailor 
existing models for specific purposes. 

Sharing of IOS modeling knowledge across disciplines, as facilitated by the conferences and 
workshops recommended below, will support this goal.  Work is also needed in developing an 
infrastructure for IOS modelers, including a national network of possible collaborators, common 
databases for model development and testing, and frameworks and toolkits for rapid model development. 

The limited data that exist for IOS models are often not accessible to model developers.  We 
recommend national web-accessible data repositories that are open to researchers who seek to inform and 
test models.  For militarily relevant domains in which some data are classified, we recommend an 
investment in automated tools to sanitize the data. 

We also recommend the development and maintenance of an online web-based catalog of general 
approaches, models, simulations, and tools. The notion is to develop something along the lines of 
DMSO’s Modeling and Simulation Resource Repository or the clearinghouse at Carnegie Mellon’s 
CASOS site (http://www.casos.cs.cmu.edu). To be effective, the envisioned site needs careful 
consideration in terms of organization, content, currency, and usability.  This cannot be a one-time effort.  
It needs significant startup funding and continued support over its lifetime.  

Multidisciplinary Conferences and Workshops 

A number of the issues and problems identified by the panel were the results of the failure of 
different disciplines to exchange information, or they resulted from misunderstandings among 
government funders of model development efforts, military users of models, and model developers.  
Because of the diversity of this group, there is no natural forum for them to exchange information.  We 
recommend the organization of special-purpose workshops around the integrated research programs 
recommended above, as well as workshops for the independent research thrusts described above. 

IOS modelers need to be educated on: 
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• The nature of the military decisions for which models are relevant. 

• Desired model functionality. 

• The most useful form for presenting model results. 

• The value of work performed by others outside their discipline. 

• Feasible and appropriate VV&A approaches for IOS models. 

 

Operational users and managers need to be educated on: 

• The value of multidisciplinary approaches and the need for review of models from 
multiple perspectives. 

• The inherent uncertainty associated with model predictions. 

• The value of models for sensitivity and trade-off analysis (versus the one right answer). 

• The design of virtual experiments to assess results over a range of conditions. 

• Reasonable definitions of validation for IOS models, feasible approaches for VV&A 
testing, and why these approaches differ from those used for physics-based models. 

The recommended workshops should involve model developers, operational military users of the 
models, and government personnel making funding decisions regarding model development.   

Roadmap for Future Research and Development 

The committee recommends a use-driven research program to extend the state of the art in IOS 
modeling, focused around a series of challenge problems—clear specifications of the uses to which the 
model is to be put, defined to be relevant to military needs, and expanded over time as progress is made in 
modeling approaches, tools, and technologies. The purpose of the model, as captured in the challenge 
problems, drives the theory to be applied, the data to be used, and the model development.  Model 
development is made easier by modeling tools and infrastructure and relies on federation standards to 
ensure the interoperability of model components.  Once the model is developed it is validated by asking 
the question: Is the model useful for its intended purpose?   

The recommended program proceeds in a cyclical fashion. Based on the answers to the question 
“Is the model useful?” new models may need to be developed, new theory and new data (and new types 
of data) may be needed, and new interoperability standards, tools, and infrastructure may be required. 
Depending on the results, the problem itself may need to be redefined, clarified, or expanded.  These 
challenge problems, combined with periodic workshops and conferences to compare and exchange results, 
serve as a unifying force and a common ground for the fragmented field of IOS modeling, providing a 
foundation on which scientific progress can be made. 
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1 
Introduction 

 
 
 
 
In 1951, Isaac Asimov published a science fiction novel, Foundation, that imagined a future 

world in which a maverick genius, Hari Seldon, invented a new science—psychohistory—that was 
capable of mathematically predicting “the reactions of human conglomerates to fixed social and economic 
stimuli” (Asimov, 1951, p. 19). In Asimov’s novel, Seldon’s psychohistory equations are used to predict 
the collapse of a galactic empire, allowing a band of scientists (the Foundation) to act to preserve human 
knowledge and greatly shorten the period of chaos that follows the galactic collapse. 

Asimov’s vision has inspired generations of scientists. Today scientists find themselves at the 
edge of what he imagined—working on computational mathematical models of aggregate human 
behavior that allow them to understand, assess, and, to a very limited extent, predict “the reactions of 
human conglomerates.” This report assesses how close they have come to that vision and what still 
remains to be done. 

The study was requested by the Human Effectiveness Division of the U.S. Air Force Research 
Laboratory, with additional funding from the Air Force Office of Scientific Research (AFOSR).  The Air 
Force and the other military services are increasingly interested in using models of the behavior of 
humans, as individuals and in groups of various kinds and sizes to support the development of doctrine, 
strategies, and tactics for dealing with state and nonstate adversaries, in support of military planning and 
operations, acquisition programs, and as training and simulation tools. In this report, we are calling them 
individual, organizational, and societal (IOS) models. There are many lines of research on such models, in 
academia, industry, and the military, and it would be difficult for a military program office staff to 
become thoroughly familiar with all of them or to evaluate the potential of each research program for use 
by the military.  The modeling efforts span several disciplines, have different goals, and often use 
different terminologies. 

The Air Force therefore asked the National Research Council (NRC) to review several relevant 
IOS modeling research programs, evaluate the strengths and weaknesses of the programs and their 
methodologies, determine which have the greatest potential for general military use (i.e., not just Air 
Force specific), and provide the Air Force with guidance for the design of a research program to 
effectively foster the development of IOS models useful for the military.  One of the great strengths of the 
NRC is its ability to convene committees of experts from a broad range of disciplines and facilitate their 
cooperative work on the study of a cross-disciplinary topic like this one. 

 
STUDY TASK AND OBJECTIVES  

 
 
 

The formal statement of task from the cooperative agreement between the NRC and the Air Force 
for this study is as follows: 

 
• Review the state of the art of the subset of the social sciences perceived as having the greatest 

payoff in terms of informing future computational model developments. These will include: 
 
 

o Key conceptual models in the areas of anthropology, sociology, social psychology, 
political science, organizational theory, and similar social sciences specialties 

 
 

o Efforts in developing computational models, “artificial life” simulations, and the like 
being undertaken by these communities 
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• Review the state of the art in societal1 modeling applications serving the Department of Defense 
(DoD) and related agencies, with special emphasis given to computational modeling and 
simulation based approaches.  

 

• Review the state of the art in the three computational modeling communities outside DoD, and 
identify strengths and shortcomings in each: 

 

o Cognitive science and individual behavioral modeling 
 

o Network analysis and multi-agent organizational modeling 
 

o Multi-resolution modeling and simulation 
 

• Identify how gaps in societal behavioral modeling applications serving DoD and related agencies 
might be filled by: 

 

o Conceptual models in the social sciences 
 

o Computational modeling approaches now underway in the social science community 
 

o Closer linkages—via shared research, common development frameworks, interlinked 
computational models and the like—between the cognitive science community, the 
network/organizational modeling community, and the multi-resolution modeling and 
simulation community 

 

• Develop a research and development roadmap to fill current application gaps, for the near, mid-, 
and far term.2 

 
NATIONAL ACADEMIES’ RESPONSE 

 
The National Research Council (NRC), an operating arm of the National Academies, responded 

by appointing a committee of 13 experts, drawn from the social sciences and from several human 
behavior modeling communities and disciplines, following the procedures mandated for all NRC 
committee appointments.  These procedures are designed to ensure that committee members are chosen 
for their expertise, independence, and diversity and that the committee’s membership is balanced and 
without conflicts of interest.  The appointments were finalized after the discussion of sources of potential 
bias and conflict of interest at the committee’s first meeting in April 2005.  Brief biographies of the 
committee members appear in Appendix D.   

 
 

THE COMMITTEE’S APPROACH 
 
The committee developed its approach to the task at the first meeting.  We discussed each 

member’s expertise and identified information needs in several domains, including the military’s needs 
and uses for IOS modeling, research now under way under military contracts (and often not available in 
the open literature), and the current state of the art of modeling efforts in the social science and 
computational modeling communities listed in the task statement.  We developed plans for obtaining and 
analyzing the needed information and for organizing the report.  The committee also discussed the scope 
of its task and determined what would and would not be attempted.  

                                                 

1In this study, the committee broadened the scope to include individual and organizational models as well, because of 
the inseparability of all three, given the intended usage. Additional discussion appears in the Concepts and Definitions section 
below, as well as in chapters following. 

2In our recommendations, we distinguish actions to be taken in the first year, years 2-4, and beyond.  These may be 
interpreted to correspond to near-, mid- and far-term horizons. 
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Defining the Project Scope 
 
To achieve the objectives of the study, the committee needed to review the state of the art in 

several modeling disciplines and communities of practice.  We decided that it would be neither feasible 
nor useful, for the purposes of this study, to produce an exhaustive literature review.  Rather we decided 
to summarize relevant knowledge in each of the modeling areas, and to organize our summary review of 
each area using a template of significant features developed by the committee.  The template focused on 
the applicability of each type of modeling approach to the DoD’s IOS modeling needs. 

 
Gathering Data 

 
The committee used a variety of data-gathering methods, mainly over the period of the first three 

meetings.  We reviewed pertinent literature, scholarly and applied, including publicly available military 
documents, such as the Quadrennial Defense Review (U.S. Department of Defense, 2006), with each 
committee member concentrating on his or her area of expertise.  We invited the sponsor and other 
military experts to brief us on the particulars of DoD’s needs for IOS models and on the expectations of 
potential model users, and we invited managers of DoD modeling research programs to tell us about their 
programs.  We appointed three military operations experts with some knowledge of IOS modeling as 
consultants to the committee, enlisting their help in developing representative scenarios of situations in 
which models might be used by DoD, as one way of understanding the need for IOS models. 

 
Data Analysis and Review 

 
In our later meetings, the committee discussed the information we had found, developed a 

framework for presenting our findings and conclusions, and developed recommendations for the study 
sponsor.  The report structure is straightforward:  we discuss DoD’s need for modeling and the current 
knowledge and capabilities (state of the art) in the modeling community.  We then highlight the important 
gaps between the state of the art and the identified needs and discuss ways to bridge the gap in a research 
program. 

 
CONCEPTS AND DEFINITIONS 

 
Because the field of IOS modeling is spread among several disciplines and domains, the same 

terms are often used with different meanings by different authors.  We felt it necessary to agree on 
common definitions for some important terms and then to use the terms in only the defined senses. 

First, what should we call this area of modeling that spans the range from individual actors who 
are members of a small group to whole nations, societies, or ethnic groups?  We are using the term 
“individual/organizational/societal” (IOS) modeling to convey this broad meaning, to cover the modeling 
communities that are concerned with the full span of human behavior, including individuals, teams, small 
groups, large groups (including different cultures and ethnic/religious groups), societies, nations, and 
national coalitions. We are of course not viewing this as merely a one-dimensional progression in the size 
of the “human conglomerate,” but rather as a rich tapestry of many dimensions that are complexly 
interlinked via relationships that are only now being recognized, let alone understood. Through the course 
of this report, we hope to point out some of the key relationships, as well as the considerable distance 
there is to go in terms of understanding the fundamental interdependencies and interactions that exist, in a 
manner that supports meaningful and useful models. 
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Second, what should we call these different levels of “knowledge representation” that starts with 
empirically based observations of human activity3 and ends with computational instantiations 
(specifically, computer-based simulations) of human behavior, often referred to simply as “models”?  It is 
certainly beyond the scope of the committee to develop an ontology of human behavior representation, 
but we think that it is appropriate to attempt to identify at least four levels that proliferate in the modeling 
community. Going from the general to the specific, there are: 

o Theory:  This is an explanation of how something works, in this case how one of the 
human conglomerates behaves for a given set of traits (or culture), in a given situation or 
environment. Theories may be global (e.g., at the individual level, a “unified theory of 
cognition”), or they may be local (e.g., the decay of working memory). Theories may be 
formal or informal, mathematical or verbal, well formed and founded, ill formed and 
unfounded, and everything in between. 

 

o Architecture:  This is a more specific statement of a theory, one that places a structure 
under it, and attempts to either: (a) break down the theory into smaller and perhaps more 
readily understood components or subtheories (e.g., at the individual level again, a 
“cognitive architecture” or (b) link the theory with collateral theories to explain behavior 
at a larger scale or in more complex environments (e.g., an architecture to link cultural 
influences on social networks). “Good” architectures attempt to maintain as much 
generality as possible (i.e., are parameter-free, domain independent, etc.), so as to be able 
to accommodate the broadest set of behaviors and situations.  

 

o Model:  This is a yet more specific representation of the human conglomerate, one that 
can be directly derived from a corresponding theory, or, more indirectly, instantiated 
from an associated architecture, in which the specific instantiation takes into account, for 
the entity being modeled, that entity’s inherent characteristics (e.g., personality traits, 
religious beliefs, social connectivity, etc.), the associated domain-specific knowledge 
base (e.g., knowing the local village streets), and the specific situation and environment 
of interest (e.g., crowd formation in a village).4 Like theories, models can be global or 
local, and well founded or not. 

 

o Simulation:  This is a still yet more specific representation of the human conglomerate, 
this time instantiated in executable software. Simulations can be developed directly from 
theories (e.g., by coding up, say, a mathematical equation embodying a particular theory), 
from architectures (by developing a simulation within the software/system development 
environment (SDE) associated with a particular architecture, if available), or from models 
instantiated for a specific situation (giving rise to the term “computational models”).5 The 
power of a simulation is several-fold: simulated “data” can be compared with empirically 
collected data for model validation purposes; simulations can be used to explore the 
range of potential outcomes; and simulations can be used to drive new theory 

                                                 

3Although not always: some might argue that one starts with internalized theoretical constructs that shape what one 
observes, rather than the other way around. 

4Although models can be directly instantiated from theories, there is a trend toward increasing use of “intermediate” 
architectures, driven both by the practical benefits gained by the model developers in being able to instantiate well-grounded 
models quickly for specific situations and by the lessons learned gained by the architecture developers with each new model 
instantiation. 

5Again, the trend in the well-established modeling and simulation (M&S) community is to discourage “direct coding” 
from theory to simulation and instead move through the levels outlined here, because of the advantages gained from established 
architectures and model-specific databases (which may be reused), although clearly the development overhead is higher. 
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development and empirical data collection efforts, via the generation of new hypotheses 
based on simulation-based “experiments.”6 

 

Again, we emphasize that this is not intended to be a definitive ontology of behavior modeling and 
simulation, but merely an attempt to clarify terms somewhat, terms that are often used interchangeably in 
the literature (including, occasionally, this report). 
 

CAUTIONS FOR IOS MODELING 
 
In our discussions with military personnel, and in interactions outside the committee deliberations, 

the committee became aware that many people may have unrealistic expectations of what a model or 
simulation of human behavior is able to do.  No model is ever likely to be able to predict exactly what an 
individual or group will do, except in a situation so constrained, with alternatives so well understood, that 
a model is not needed.  Human behavior, individually and in groups, is governed by so many variables, 
including many that are not likely to be susceptible to capture in a model, that the best any model will do 
is to narrow the range of plausible behavioral outcomes of a defined situation.  For example, a model may 
be able to forecast the most likely range of outcomes of a potential course of action.  It may be able to 
direct attention to situational variables that are known to be important but may have been overlooked in a 
particular engagement.  A well-designed model may draw a decision maker’s attention to possible 
unintended consequences (“second-order effects”) of a planned course of action.  But it will not be able to 
make point predictions, such as “If we take Action A, the adversary will attack at Point B early tomorrow 
morning with three simultaneous improvised explosive devices (IEDs).”  So we speak of models 
forecasting a range of outcomes, rather than making precise predictions.  Certainly models that can 
produce such forecasts are a worthwhile objective.  They can serve many useful purposes, from 
supporting training, to serving as tactical decision aids, to examining possible outcomes of alternative 
strategies or policies. 

Some of the known difficulties of developing and implementing models are discussed later in the 
report, but a few may bear mention at this point.  The most desirable data to put into a model that would 
provide the most accurate forecasts often will not be available:  the data may not be accessible, may not 
be in a usable form, or may not be verifiably accurate, timely, or complete.  In fact, it is common 
knowledge that adversaries will often attempt to provide false data (disinformation) if they think it will be 
believed and used.  So the development of a model, in itself, is only a small part of the work that must be 
done to use it, and there is never a guarantee that good information will be available to implement the 
model when it is needed.  These issues must be taken into account in the design of models.   

The work of developing models of adversary behavior is never complete, because any worthy 
adversary, once it realizes that its modus operandi is known and defenses are being used against it, will 
make changes in its organization, operations, etc., designed to invalidate the model.  So we have the ever-
changing methods used by insurgencies to attack friendly forces7 or innocent citizens in the Middle East: 
car bombs, IEDs, suicide bombers, each adapted or supplanted by a different method as soon as effective 
countermeasures are devised.  This means that a modeling effort must include ongoing maintenance and 
updating functions if it is to remain useful. 

Another challenge is that some of the research on modeling for military purposes must 
necessarily be conducted at high security levels, in secure environments.  It is likely that much of the 

                                                 

6In addition to the other uses identified in Chapter 2. 
7The term “friendly forces” is used to refer to forces that are either formally or informally allied with the United States 

and that support its objectives.  It may thus refer to the armed forces of allied nations or to forces representing nonstate 
organizations or factions. 
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fundamental research for the design of modeling methods and tools can be done in open venues by 
researchers with low or no security clearances, but any work that includes specific and current field 
information on individuals or groups, specifics on friendly or adversary force capabilities, or detailed 
operational plans must of necessity be highly classified to prevent the adversary anticipation, adaptation, 
and/or exploitation discussed above.   

Finally, it is important to recall that the predecessor report by the NRC in this area (National 
Research Council, 1998, p. 8) noted that “the modeling of cognition and action by individuals and groups 
is quite possibly the most difficult task humans have yet undertaken.  Developments in this area are still 
in their infancy.” This situation has not changed significantly in the mere 10 years since the publication of 
that report. But the world has, and, as a result, it has become ever more clear that human behavioral 
modeling at all levels is critical to DoD specifically and to the nation more generally. 

 
ORGANIZATION OF THE REPORT 

 
The report is organized into three parts.  Part I provides background information and explains the 

need for organizational models. Chapter 1 gives the background of the study and the committee’s 
approach to the work.  Chapter 2 discusses evolving missions of the military and the applicability of IOS 
modeling to those missions.  It includes an introduction to a set of military scenarios that are used 
throughout the report as exemplars of situations that could benefit from the use of modeling. 

Part II contains extensive descriptions of the major modeling methodologies and model types the 
committee reviewed.  Models take many forms, ranging from loose conceptual models to precise 
mathematical models (Lave & March, 1975).  They include agent-based models, cognitive models, expert 
systems, dynamical systems, and input-output models.  The diverse expertise of the committee members 
contributed greatly to the completeness of this review but also made it challenging to agree on an 
organizing framework for presenting the review results.  Refined through multiple iterations, the 
organizing framework that we developed represents a significant product of the study, as discussed in the 
introduction to Part II. 

Chapter 3 presents conceptual and cultural (verbal) models.  The subsequent model descriptions 
are then organized according to the level of granularity of the models.  We have differentiated “macro” 
models that describe organizations and their behaviors on a large scale (Chapter 4); “micro” models 
dealing on a level as detailed as the individual actors within groups or organizations (Chapter 5); and 
“meso” or intermediate models somewhere between these two, as well as integrated, multilevel models 
(both in Chapter 6).  We discuss games separately in Chapter 7, because, although they incorporate 
formal models, they do not easily fit into any of the other categories. 

For each methodology, we describe the method and its current state of development, often with 
some history of the field.  We review the applicability of the methodology to the modeling requirements 
identified in Chapter 2, its major limitations, issues of data, verification and validation, and needs for 
continued research and development. 

  The discussions of models and methodologies are not exhaustive.  We have attempted to provide 
an overview of a broad range of model types and modeling methods, although the committee members, 
chosen for their range of modeling expertise, naturally discussed in greatest depth the areas which they 
are most familiar.   

In Chapter 8 we discuss some generic issues, such as integration across levels of models, 
modeling frameworks and tools, model verification and validation, and data sources and quality.  Chapter 
9 summarizes the state of the art of IOS modeling as presented in Part II and its utility for the applications 
discussed in Part I. 
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In Part III we identify the gaps between the current modeling capabilities and the military’s 
modeling needs, and, in Chapter 10, discuss common problems or pitfalls that may impede the 
development and application of models or reduce their utility.  In Chapter 11 we present 
recommendations for a research roadmap, a program of use-inspired IOS modeling research and 
development designed to reduce the gaps and develop the needed capabilities. 

The report ends with four appendices. Appendix A provides a list of acronyms and abbreviations 
used in the report, spelled out, with some information on their meanings. Appendix B contains detailed 
military scenarios that served as exemplars for considering how models could be used for military 
purposes.  Appendix C provides detailed material relevant to the discussion in Chapter 8 of 
DIME/PMESII modeling paradigms. Appendix D provides biographical sketches of committee members 
and staff.    
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2 
 

Military Missions and How IOS Models Can Help  

 
Computational modeling and simulation technology have long been useful military tools, 

although these models have focused primarily on physical effects, such as the predicted capabilities of 
sensors or weapons systems. Today, the changing nature of military missions is driving the need for new 
types of computational models that focus on human behavior, specifically on human behavior in social 
units, such as organizations and societies. 

The military has traditionally made use of computational modeling in three broad areas of activity: 

• Analysis and forecasting for planning. Models are used for the fusion of fragmented and 
incomplete information about enemy activities and capabilities. For example, models of enemy 
equipment can be used to interpret fragmentary data on the performance of that equipment (e.g., 
what capabilities in the equipment could have resulted in the observed performance). Forecasting 
models are used to develop courses of action (COAs) based on the desired outcomes and their 
estimated likelihood of achieving those outcomes.  At a simple level, for example, models are 
used to forecast the effectiveness of different types of weapons against different kinds of targets. 

• Simulation for training and rehearsal. Models are used in simulations that create training and 
rehearsal environments.  For example, pilots practice complex and dangerous combat maneuvers 
in simulators before encountering them in exercises or combat, and tank commanders practice 
ground combat missions before an actual engagement. In both situations, considerable effort goes 
into modeling the environment (e.g., aerodynamics and terrain), simulating the dynamics of the 
friendly and enemy sensors and weapons systems, and providing the critical performance 
feedback to trainees needed for skill improvement and “learning to criterion.”    

• Design and evaluation for acquisition.  When a system is designed, built, and acquired, models 
are used throughout the process to predict performance and make design decisions based on cost-
benefit trade-offs. For example, detailed physical and electronic models can be used to predict the 
additional range of a sensor accruing from a proposed enhancement (and increased cost), to 
support a cost-benefit trade-off. 

 

In this chapter we argue that the successful performance of all three of these activities in today’s 
military environment requires not only the traditional set of physically based models and simulations now 
used, but also computational models of human behavior, particularly computational models of human 
behavior in social units. We begin by describing today’s changing military missions in order to explain 
why—in the current environment—analysis, planning, training, and acquisition require models of human 
behavior at many levels: at the individual level, at the team or organizational level, and at the societal 
level. We then give specific examples of how these individual, organizational, and societal (IOS) models 
could be used by the military.  Finally, we briefly review current military IOS modeling efforts and 
summarize the major challenges involved in meeting current needs.  Subsequent chapters provide a 
broader review of state-of-the-art IOS behavioral modeling approaches, assess the extent to which those 
approaches have the potential to meet military needs, identify major shortfalls and gaps, and recommend 
a plan of action to address them. 
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MILITARY MISSIONS NOW AND INTO THE FUTURE 

This section reviews the changing nature of today’s military missions to explain why effective 
forecasting, training, and acquisition require computational IOS models. 

 

Overarching Strategy and Operational Enablers 

The changing nature of current and future military missions is made quite explicit in the 
Department of Defense’s (DoD) 2006 Quadrennial Defense Review (QDR)  (U.S. Department of Defense, 
2006). Coming out of a long tradition of “attrition-based” conventional warfare and backed ultimately by 
nuclear-based mutual assured destruction (MAD), DoD is now undergoing a shift of tectonic proportions 
to operationalize the National Defense Strategy of “fighting the long war” and has identified five critical 
operational enablers: 

• Defeating multinational multiethnic terrorist networks that “seek to break the will of nations that 
have joined the fight alongside the United States by attacking their populations” and “use 
intimidation, propaganda and indiscriminate violence in an attempt to subjugate the Muslim 
world under a radical theocratic tyranny” (U.S. Department of Defense, 2006). 

• Defending the homeland in depth against both terrorist networks and hostile states with weapons 
of mass destruction (WMD) capabilities. Globalization enables “the spread of extremist 
ideologies” and “the movement of terrorists” and “empowers small groups and individuals” with 
the result that “nation-states no longer have a monopoly over the catastrophic use of violence” 
(U.S. Department of Defense, 2006). 

• Shaping the choices of countries at strategic crossroads to protect the “future strategic position 
and freedom of action of the United States, its allies and partners” by shaping the choices of 
“major and emerging powers . . . in ways that foster cooperation and mutual security interests” 
(U.S. Department of Defense, 2006). In addition to the Middle Eastern region, countries of 
particular concern are India, China, and Russia (U.S. Department of Defense, 2006). 

• Preventing the acquisition or use of WMD by hostile states (e.g., Iran) or nonstate actors (e.g., 
Osama bin Laden). “Based on the demonstrated ease with which uncooperative states and non-
state actors can conceal WMD programs and related activities, [we] must expect further 
intelligence gaps and surprises” (U.S. Department of Defense, 2006, p. 45). 

• Refining DoD’s force planning construct for wartime to move gradually from a two-front 
conventional campaign capability to more loosely defined “distributed, long-duration operations, 
including unconventional warfare, foreign internal defense, counterterrorism, counterinsurgency, 
and stabilization and reconstruction operations” (U.S. Department of Defense, 2006, p. 36). 

This is a remarkable shift in emphasis since the terrorist attacks in the United States on September 
11, 2001, and may very well be a turning point away from more than 50 years of conventional force 
planning (backed by MAD) and the start of a much more agile and indigenously sensitive force. The 
United States is no longer fighting nation-states using conventional weapons but instead is fighting a very 
different kind of organization—terrorist networks—in a battlespace in which effects may be defined by 
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the attitudes and behaviors of civilian noncombatants rather than by bombs on targets.1  In order to 
analyze, plan, train, and acquire effective technology for this new battlespace, models are needed to help 
people understand and interpret fragmentary information about terrorist activities and understand the 
likely effects of U.S. actions on the attitudes and behaviors of diverse multicultural civilian populations.  
People need to understand the forces that drive individuals to join terrorist organizations, how these 
organizations function, and how they organize action.  People need to understand the factors that 
contribute to the stability of neighborhoods and regions and how military actions as well as political, 
diplomatic, and economic actions contribute to that stability.  People need to understand complex shifting 
cultural allegiances and how U.S. actions affect those allegiances. Models of sensor and weapons systems 
are not adequate tools for fighting this long war. The nation’s defense planners need IOS models that 
capture the richness of individual, team, organizational, societal, and cultural influences that can help to 
address the key dimensions of the new battlespace. 

Dimensions of the New Battlespace 

In this section we examine some of the drivers of the changing DoD mission to gain insight into 
what this shift in mission means for IOS modeling requirements. 

The Impact of Urbanization 

One of the key drivers in this shift has been the growing recognition that fundamental world 
demographics are changing: “The world’s urban population reached 2.9 billion in 2000 and is expected to 
rise to 5 billion by 2030. Whereas 30 per cent of the world population lived in urban areas in 1950, the 
proportion of urban dwellers rose to 47 per cent by 2000 and is projected to attain 60 per cent by 2030. . . 
. At current rates of change, the number of urban dwellers will equal the number of rural dwellers in the 
world in 2007” (United Nations, 2002). The military implications of this fact are explored in depth in two 
recent RAND studies (Glenn, 2000; Vick et al., 2002). Key issues and implications that emerge from 
these studies and others include: 

 
• Most, if not all, of the future conflicts the nation will face will have an urban component, based 

both on historic precedent and on the fact that the adversaries are no match for U.S. forces in 
“open field” engagements. 

• It will no longer be sufficient to avoid urban and surrounding built-up areas during military 
operations, as has so long been U.S. doctrine. According to a 2002 Joint Chiefs of Staff report, 
“urban areas are the natural battleground for terrorists: the effects of terrorist acts are greater and 
more noticeable and the terrorist groups more difficult to locate and identify” (Joint Chiefs of 
Staff, 2002, p. III-27). From a “hearts and minds” standpoint, there is also a clear political 
advantage of having a close connection with the noncombatant urban population. 

• Urban operations are extremely difficult, with the operational environment characterized by high 
densities and tempos, inherent complexity, and constraints. The battle tempo can be extremely 
high, forcing rapid assessments, decisions, and actions. Collateral damage issues covering critical 
infrastructure losses, damage to symbolic edifices, and noncombatant loss of life are critical. 

                                                 

1A note of caution is appropriate here. Although it is true that at the time of this writing the United States is not 
engaged in a conventional war— that is, not to say that it will not be engaged in one at some point in the future. Thus, there is 
always the danger that the nation will be “preparing for the last war” (e.g., today’s Afghanistan and Iraq campaigns) via a 
wholesale shift in focus to nonconventional strategies, tactics, and weapons systems. DoD recognizes this, as noted in the fifth 
“operational enabler” cited above (U.S. Department of Defense, 2006, p. 36), identifying the desire to “move gradually 
[emphasis added] from a two-front conventional campaign capability ….”  Clearly, the operative issue is how long this transition 
takes and to what extent it transforms the services’ force structure. 
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Urban operations are also complicated by the fact that mission objectives can vary dramatically in 
both time and space, running from all-out conflict to infrastructure rehabilitation. This spatiotemporal 
nonuniformity has been referred to as the “three-block war” by the former commandant of the Marine 
Corps, General Charles C. Krulak: “In one moment in time, our service members will be feeding and 
clothing displaced refugees, providing humanitarian assistance. In the next moment, they will be holding 
two warring tribes apart—conducting peacekeeping operations—and, finally, they will be fighting a 
highly lethal mid-intensity battle—all on the same day . . . all within three city blocks. It will be what we 
call the ‘three block war’” (Krulak, 1997, p. 139). 

In these stability and support operations (SASO) stages, it becomes increasingly important to 
interact with and not alienate the local population, get their support to identify social networks of 
adversaries (and potential allies), and anticipate first- and second-order effects (i.e., unintended 
consequences) of actions that are within the scope of the unit’s capabilities (i.e., executing a search-and-
destroy mission) but that may be highly counterproductive in the long run. It also follows that as the 
mission becomes dictated less by military objectives than by social and political objectives, there is a 
need to ensure greater interaction with other organizations outside the local unit’s normal sphere of 
interest. Not only does this imply a greater reliance on joint operations (coordinating the sister services), 
and increasingly a reliance on coalition (non-U.S.) partners, but it also implies greater interagency 
coordination, both national (e.g., the State Department, the intelligence agencies, the organs of public 
diplomacy, U.S.-based nongovernmental organizations, NGOs), international (e.g., sister intelligence 
services, non-U.S. NGOs), and private-sector economic interests  As a consequence, in order to address 
and achieve the peacemaking objectives in the new theaters of war, planners must somehow consider and 
assess the aggregated complex interactions of entire social systems, both regional in behaviors and global 
in influence, at resolutions of fidelity neither needed nor attempted in prior military history.2   

The objectives and technologies of peacemaking in this environment are very different from those 
of conventional warfare, most notably, a substantially increased emphasis on peace-keeping, disaster 
relief, and nation-state building (see, for example, the Urban Sunrise study of the Air Force Research 
Laboratory, 2004). The urban operational environment serves to transform what was once viewed as a 
strictly military (and tactically difficult) engagement into something that is now considerably more 
holistic and focuses primarily on social, organizational, and cultural factors involving key individuals, 
nonmilitary groups, local crowds, and indigenous populations, all within a rich tapestry of a complex 
local infrastructure overlaid by local, national, and transnational economic markets, organizational and 
social structures, traditions, cultures, and religious beliefs.  

The Growing Importance of Pre- and Post-Conflict Operations 

The changing nature of military missions is putting increasing focus on operations that occur 
before and after periods of overt conflict. These pre- and postconflict operations may persist much longer 
than the conflict itself, as is all too well illustrated by the current situation in Iraq. 

In the doctrine for Joint Urban Operations (JUO) (Joint Chiefs of Staff, 2002) five phases are 
recognized—understand, shape, engage, consolidate, and transition (USECT, emphasis added):  

• Understand: “The JFC [joint forces commander] evaluates the urban battlespace, including the 
urban triad [the physical terrain, the urban infrastructure, and the population] and the threat, to 

                                                 

2While the military is the branch of the U.S. government having primary responsibility for projecting U.S. power 
overseas, it may be a classic case of “mission creep” for the military to be taking a leading role in economic development, 
political reconstruction, diplomacy, disaster relief, and intercultural communication. But this is exactly what is happening in 
today’s conflicts, with young Army lieutenants serving effectively as “mayors” of Iraqi villages. [reference?]  And this is likely 
to remain the case until other U.S. agencies or NGOs can take the lead, or the United States successfully transitions these 
functions back to the local population. 
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determine the implications for military operations. This evaluation extends from complex terrain 
considerations to the even more complex impact of the sheer number of actors operating in an 
urban battlespace. On one hand there may be adversary military troops, criminal gangs, 
vigilantes, and paramilitary factions operating among the noncombatant population. On the other 
hand, especially in MOOTW [military operations other than war], the situation may be further 
complicated by the presence of nonmilitary government departments and agencies, to include 
intelligence, law enforcement, and other specialized entities” (Joint Chiefs of Staff, 2002, sec. II, 
p. 8-9). 

• Shape: “Shaping includes all actions that the JFC takes to seize the initiative and set the 
conditions for decisive operations to begin. The JFC shapes the battlespace to best suit 
operational objectives by exerting appropriate influence on adversary forces, friendly forces, the 
information environment, and particularly the elements of the urban triad. Methods of shaping 
may include . . . the phased deployment and employment of joint forces. Rather than deploying 
combat forces initially, the JFC may, in many cases, need to deploy non-combat forces early, 
such as civil affairs (CA), public affairs (PA), medical support, and psychological operations 
(PSYOP) units. . . . Critical to shaping operations is the isolation of the urban area to support the 
campaign” along physical, informational, and moral dimensions (Joint Chiefs of Staff, 2002, p. 
II-11). 

• Engage: “To engage, the JFC brings the full dimensional capabilities of the force to bear in order 
to accomplish operational objectives. Engagement can range from full combat in war to FHA 
[foreign humanitarian assistance] and logistic support for disaster relief operations. It consists of 
those actions taken by the JFC against a hostile force, a political situation, or a natural or 
humanitarian predicament that will most directly accomplish the mission. In all cases, the speed 
and precision with which the JFC engages will largely determine any degree of success. . . . 
[S]uccessful engagement requires . . . the seizure, disruption, control, or destruction of the 
adversary’s critical factors,” which include their “capabilities, requirements, and vulnerabilities” 
and may include:  

o “tangible components of the infrastructure such as power grids, communications centers, 
transportation hubs, or basic services.”  

o “intangible socio-economic or political factors such as financial centers and capabilities, 
particular demographic groups and sites, and cultural sensitivities.” 

In addition, “both offensive and defensive JUOs will probably entail heavy use of IO 
[information operations] and CMO [civil military operations]” (Joint Chiefs of Staff, 2002, p. II-12). 

• Consolidate: “In war and MOOTW, the focus of consolidation is not just on protecting what has 
been gained, but also retaining the initiative to disorganize the adversary in depth. . . . 
Consolidation may place heavy emphasis on logistic support and CMO. The nature of the urban 
triad ensures that the JFC will have to contend with issues concerning physical damage, 
noncombatants, and infrastructure as part of consolidation. CMO and PSYOP units may continue 
to be especially critical in this aspect, as well as engineering efforts ranging from destruction to 
repairs to new construction. Equally important are the expected issues of infrastructure collapse 
and the tasks of FHA and disaster relief” (Joint Chiefs of Staff, 2002, sec. II, p. 12-13). 

• Transition: “In general, the end state of JUOs is the termination of operations after strategic and 
operational objectives have been achieved. This may include the transfer of routine 
responsibilities over the urban area from military to civilian authorities, another military force, or 
regional or international organizations. . . . In JUOs, transition may occur in one part of an urban 
area while engagement still is going on in another [three-block war]” (Joint Chiefs of Staff, 2002, 
p. II-13). 

Note the overall emphasis on the social and organizational interactions of a diverse set of actors, 
including noncombatants, noncombat forces, and local and multinational civilian agencies.  There is also 
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a focus on the effects of informational, socioeconomic, and political factors on attitudes and behaviors in 
the urban battlespace. 

Changes in the Nature and Scale of Intervention Operations  

Urbanization and the broader view of military USECT interventions yield a dramatic expansion 
of considerations of scale, in both spatial and temporal dimensions, as well as an expansion in the nature 
and types of intervention to be considered. 

In the spatial dimension, urban operations demand a much finer view of the battlespace: it is no 
longer sufficient to consider high-level aggregates of large units and large geographic areas of 
responsibility, such as one might do in planning conventional operations at the division level and above. 
Instead, the urban domain demands a block by block (if not building by building) geographic focus, at 
squad-level units consisting of only a few individual soldiers. At the other end of the spectrum, the broad 
considerations of USECT phasing of an engagement call for understanding wide-ranging geopolitical 
factors, including the nation-states involved, and the associated ethnic, cultural, religious, and economic 
factors in the region. These are typically not small or geographically focused but may in fact encompass 
huge spatial overlay regions of the potential battlespace (e.g., the Middle East). As a consequence, there 
are simultaneous demands to have a very fine spatial focus (at, say, the building level) while 
simultaneously being highly sensitive to the very large regional characteristics of the battlespace.  

In the temporal dimension, a similar situation exists. The fine-scale urban focus, with its short 
“interaction distances,” typified by an improvised explosive device (IED) or a rocket-propelled grenade 
(RPG), demand a very fine-grained temporal view of events for assessment, planning, and execution. 
Planning horizons are short, and urban operations demand a high temporal resolution of activities if 
operations are to succeed.3 The time available to plan operations is likewise compressed, and planning 
windows are compressed, often down to minutes. At the other end of the spectrum, USECT phases can 
take months or years to accomplish and are often characterized by considerably slower temporal 
dynamics and windows, in both the planning and the execution of activities. Thus, as in the situation with 
the spatial dimension, there is a simultaneous stretching of the temporal dimension from both ends, from 
very quickly occurring events at a high temporal resolution (e.g., building clearing), to activities that 
evolve at a considerably slower pace, demanding low temporal resolution but long time horizons (e.g., 
nation-building). 

A key issue for modeling IOS behavior is the spatiotemporal “coverage” that must be 
accommodated in models. One can clearly no longer expect that a high-level aggregate model of, say, an 
armored division covering miles of open plain will be up to the challenge of anticipating the outcome of a 
fast-paced short-range small-unit urban engagement. Nor will the small-unit model be any indicator of 
overall outcome in the big picture outcome of the overall military engagement. And neither is up to the 
challenge of anticipating outcomes in the larger USECT tableau, with its many other dimensions beyond 
the application of military force. 

Growth of the spatiotemporal scale is also accompanied by an expansion of intervention options 
available in urban operations over the several USECT phases.  This is a natural consequence of the 
additional dimensions and structures that make up the urban environment and its indigenous population, 
as illustrated in the deliberately simplified three-layer structure of Figure 2-1. Shown here is the 
conventional physical structure (and infrastructure) that is the focus of traditional military campaigns, on 
which is superimposed an information structure associated with elements of the underlying physical 
entities, in turn superimposed by a cognitive structure characterized by individual and group perceptions, 
beliefs, intentions, plans, and actions (Air Force Research Laboratory, 2004). 

                                                 

3This is perhaps best illustrated with the detailed step-by-step choreography that goes into the planning of a simple 
room clearing by a four-man squad.  
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The focus for planning military operations is increasingly on understanding and forecasting4 
“nonkinetic” effects. Kinetic effects are associated with the use of “kinetic weapons”—that is, 
conventional bullets and bombs. Nonkinetic weapons and defenses are associated primarily with 
information operations (IO), which includes the triad of electronic warfare, computer network operations 
(both defensive and offensive), and influence operations, which include psychological operations 
(PSYOPS), military deception, and operations security (OPSEC). Nonkinetic options also include the use 
of nonlethal weapons at the individual or crowd level (e.g., high-powered microwaves) and at the 
population level (e.g., disabling or destroying one or more components of, say, an urban infrastructure). 

In this expanded battlespace, planning and executing effects-based operations (McCrabb, 2001) 
require analysis of the potential effects that a given set of diplomatic, information, military, and economic 
(DIME) actions will have across the full range of the political, military, economic, social, information, 
and infrastructure (PMESII) context. To be useful for analysis and planning, behavioral models must 
capture not only the separate effects of each action in each of these areas but also the interactions of these 
factors. 

 

HOW IOS BEHAVIORAL MODELS CAN HELP THE MILITARY 

 
The changing nature of DoD’s mission has greatly increased the need for individual, 

organizational, and societal models that capture the cognitive, organizational, societal, and cultural factors 
that are critical in the urban battlespace.  IOS models are needed across the full spectrum of operations, 
particularly during urban operations, as indicated by the number one recommendation of the recent Joint 
Urban Operations Workshop: “Employ high-resolution modeling, simulations, and other decision support 
tools that incorporate friendly, enemy, and neutral forces, plus the urban population in order to conduct 
rehearsals, assess courses of action, and make better decisions faster than the enemy in an urban 
operation” (Mahoney, 2005, [page no. for quotes] ).  

This section reviews how IOS models can contribute to today’s missions in the three broad areas: 
(1) analysis and forecasting for planning, (2) training and rehearsal, and (3) design and evaluation for 
acquisition.  Another view of such applications is found in Axelrod (2004). 

Potential Use of IOS Models for Analysis, Forecasting, and Planning 

In general military operations, COA development and planning has been traditionally a 
completely manual operation, with a heavy reliance on staff experience and seat-of-the-pants “mental 
models” of the adversary and its likely response to potential military activities. Consequently, it is often 
the case that only a few COAs are generated, evaluated, and planned for—often with only minimal 
computer-based support.   

                                                 

4We introduce the term “forecasting” here, in place of predicting, to reemphasize the difficult problem of anticipating 
individual or organizational behavior (see Chapter 1), in comparison to that of  anticipating the consequences of well-understood 
physical or engineering laws, the latter operating under conditions in which there is neither agency nor feedback involved (e.g., 
when you swing a hammer, the hammer does not deliberately try to avoid the nail in order to dissuade you from further swinging, 
so that your dynamic model of the muscle-hammer system is reasonably “predictive”). The term “forecasting” is also loaded with 
weather analogies, serving to remind us of how weather “point predictions” (in time and space) are almost always wrong and 
how “bounding envelope forecasts” are much more likely to capture the future trajectory of the weather, especially as the spatial 
and temporal resolution grows more coarse (i.e., with larger geographic areas covering “climate zones” and longer time windows 
covering “seasonal variations.”  See also the extensive discussion of forecasting in Chapter 8. 
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Figure 2-2 illustrates the essential closed-loop nature of military planning and operations5 and 
indicates where models could be of use. A walk around the loop begins with the external world or 
battlespace shown at the bottom of the figure. Many actors populate the space, including blue (friendly) 
forces, red (adversary) forces, and a range of others depending on the particular environment (e.g., 
whether it is urban or not). Some of the blue assets include sensors and data collection systems that pick 
up incomplete and uncertain information about the battlespace and, via associated communications assets, 
transmit it to a variety of data processing facilities and data storage centers. Some support relatively short-
term data needs (Intelligence [INTEL] data) for current operations, while others may support long-term 
development of background data and knowledge bases. 

The INTEL data supports “inner loop” situation assessment—that is, short-term assessment of the 
state of the battlespace—to estimate the current situation in the face of collected information that is 
incomplete, noisy, and stale, which may also be compromised by reporting errors, communications 
failures, and deliberate disinformation on the part of the adversary. This is clearly a complex estimation 
process. Given this estimate of the current situation, decisions can be made and orders/requests can be 
modified or generated, triggering a set of general action requirements defining how to use a range of blue 
assets (data collection systems, weapons platforms, etc.), thus closing the loop.  

Also shown in the figure is the use of background data and long-term knowledge bases to support 
“outer loop” situation forecasting6 of the future evolution of the battlespace, based on the inner loop’s 
current assessment of the situation and any available behavioral, cultural, or historical knowledge 
pertinent to the conflict, geography, and population. This is clearly another complex process fraught with 
uncertainty, both because of the attempt to forecast into the future based on knowledge of the current 
situation and the reliance on uncertain information stored in the knowledge bases and generated by the 
inner loop situation assessment activity. The objective is to generate an estimate of the future situation (or 
envelope of future situations) at different time scales and geographic resolution, so as to be able to plan 
accordingly, across a range of time horizons, areas of responsibility (AORs), and military functional 
specialties (INTEL, OPS, logistics, etc.). The net results of this process are COAs and plans generated at 
all echelons, to support the inner loop action generation activities, as indicated in the figure. 

Whether focusing on the inner loop or outer loop activities, it should be clear that current 
estimates and future forecasts must naturally rely on IOS behavior models of some sort. They may be 
implicit seat-of-the-pants mental models held by the personnel performing the intelligence, planning, and 
operational functions, or they may be explicit and simplified computational models (possibly instantiated 
at vastly different time scales or spatial resolution), but they all implicitly attempt to forecast behavior by 
using a model as an “extrapolation engine” operating on the current assessed state of the situation, using 
the best available information and knowledge collected from the battlespace, and knowing what future 
blue asset activities are likely to be.7 

IOS behavior models, their associated simulations, and model-derived tools are needed to track, 
identify, and target critical individuals and resources and to assess the relative ability of various courses 
of action to influence adversary behavior and to win the hearts and minds of the indigenous population. 
Whether the issue is mapping the human terrain (Kipp, Grau, Prinslow, and Smith, 2006; Schaffer, 
2005),8 or understanding the atmospherics, evaluating the impact of interventions to promote or inhibit 

                                                 

5This is essentially a more detailed version of the OODA (observe, orient, decide, act) loop of Colonel John Boyd, 
USAF (Ret.). For more information about John Boyd and his writings, see Defense and the National Interest (2007). 

6The term “prediction” is shown in the figure to be consistent with the original USAF study from which the figure is 
adapted.  

7This last component supporting the forecasting process assumes that blue assets behave according to plan and is 
predicated on the notion that “the best way to predict the future is to create it” (The Drucker School, Claremont Graduate 
University, 2008). See <http://www.cgu.edu/pages/4181.asp>.  

8See http://www.army.mil/professionalwriting/volumes/volume4/december_2006/12_06_2.html.  
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state failure, forecasting hot spots of activities in urban settings, or providing more cultural and cognitive 
situation awareness, IOS behavior models and their derivatives (simulations and tools) are clearly  needed. 

Models for Understanding, Forecasting, Shaping, and Responding to Adversary Behavior 

Reliable anticipation and forecasting of individual human and collective organizational behavior 
on the part of the adversary is the highest goal of all military commanders. This view is embraced by the 
Army and the Marine Corps, in their call for doctrine and tools that enable “predictive analysis” (Kasales, 
2002), especially as potential future engagements become more asymmetric and urban, less influenced by 
traditional formalisms of conventional military doctrine, and more determined by the contextual 
influences of society: political and military organizations, ethnic groups, national cultures, and 
transnational religious organizations (Vaukery, 1996; Brown, 1997; Lwin, 1997; Staten, 1998). A similar 
view is held by a host of military and other groups:  

• the Air Force Scientific Advisory Board’s (SAB) Predictive Battlespace Awareness Study (U.S. 
Air Force Scientific Advisory Board, 2002a, 2002b),  

• a more recent SAB study on the need for behavior modeling in urban operations (U.S. Air Force 
Scientific Advisory Board, 2005), 

• ongoing science and technology efforts being conducted by the Defense Advanced Research 
Projects Agency (DARPA) (e.g., the RAID, Integrated Battle Command, and Integrated Crisis 
Early Warning System programs),  

• and the services, such as the Office of Naval Research’s Affordable Human Behavior Modeling 
program (see http://www.onr.navy.mil/sci_tech/personnel/342/training_afford.asp), 

• the USAF Commander’s Predictive Environment program (Miller, 2006; see 
http://www.wintersim.org/abstracts06/Mil.htm),  

• JFCOM’s Urban Resolve program (see http://www.jfcom.mil/about/experiments/uresolve.htm 
and the like),  

• and conferences and workshops focused on the problem (e.g., the 2003 DMSO-sponsored 
conference on organizational simulation, see https://www.dmso.mil/public/);  

• the 2003 Army Research Institute–sponsored Workshop on Cognition and Multi-Agent 
Interaction, the AFOSR Workshop on Culture and Adversary Modeling, 2005, 2006;  

• and the Annual International Conference on Complex Systems (ICCS), see 
http://necsi.org/events/conferences.html). 

 

Before and during military operations, IOS models can serve as decision aids and as guides for 
data collection.  Models can, have been, and should be developed to support tactical, operational, and 
strategic missions. Key uses for IOS models include model-based INTEL fusion and situation assessment, 
forecasting (projecting), planning (COA development and assessment), mission rehearsal, execution 
monitoring, and postexecution assessment.  IOS models can be used to gather information (“see”); assess 
or evaluate the current state (“identify”); explain, understand and forecast behavior (“think”); shape, 
manage, and disrupt oneself or the enemy (“do”); and aid in decision making or strategizing (“reflect”). 
IOS models hold the promise of aiding the war-fighter by providing a better toolkit for knowing the 
enemy. 

From the tactical to the strategic levels, there is a need to forecast adversarial reasoning.  IOS 
models can be used to provide guidance on the space of actions that the adversary might take and why, 
thereby reducing surprise.  Moreover, these models can suggest what actions are the most probable and 
provide insight into the general order of actions.  Such models, however, do not and should not be 
expected to provide guidance on exactly what action will be taken when (as we discuss later).  The 
deployment of IOS models needs to be accompanied by training in their appropriate use and in the 
interpretation of the results generated. 
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Models for Understanding, Forecasting, and Shaping Societal Behavior 

Increasing military involvement in military operations, peacemaking, and peacekeeping is 
creating a need for the military to understand, forecast, shape, and respond to the larger context of societal 
norms, expectations, perceptions, and behavior. Examples abound as to this need: 

• Understanding the local society, its history, and its current overlapping networks increases the 
likelihood that one might be able to identify those who would harbor terrorists or turn to terrorism. 

• Understanding the local culture and its homogeneity or lack thereof, is necessary for planning 
effective PSYOPS campaigns, and assessing the impact afterwards. 

• Shore leave has repercussions for the local population, including increasing the monetary inflow 
that can stabilize some local businesses while leading lead to an increase in corruption and a 
change in the power base. 

 

IOS models, in general, hold the promise of enabling the identification of geographic locations where and 
periods when threats are likely to emerge as a function of current events and action (or inaction) by U.S. 
and coalition forces. Two notable DARPA-sponsored programs have focused on the identification of 
potential global hot spots and the forecasting of their likely evolution over time: the Pre-Conflict 
Anticipation and Shaping (PCAS) program (described later in this chapter),9 directed at forecasting the 
likelihood of a nation-state collapse (Popp et al., 2006), and the follow-on Integrated Crisis Early 
Warning System, which has as its goal “the development of state-of-the-art computational modeling 
capabilities that can monitor, assess, and forecast, in near-real time, a variety of phenomena associated 
with country instability” (see http://www.darpa.mil/ipto/solicitations/open/07-10_PIP.pdf).    

Multiagent models and system dynamic simulations that take social and cultural factors into 
account could be used to assess the likely consequences of the COAs executed by the U.S. military and 
coalition forces on state stability. They could be used to assess the potential impact of a multipronged 
initiative with diplomatic, information, military and economic dimensions (DIME), and to assess the 
consequences in political, military, economic, social, informational, and infrastructural dimensions 
(PMESII). This is exactly the focus of an ongoing DARPA-sponsored program in Integrated Battle 
Command (see http://www.darpa.mil/sto/solicitations/IBC/).  

IOS models could also be used for identifying what COAs will have the least negative or most 
positive effects on civilians and neutrals.  In all cases, the value of such models and simulations could be 
enhanced if information on the underlying social and organizational networks and available resources 
were taken into account and if the models were combined with effects-based operations models.  Models 
could also be used to determine the effects of U.S. information operations activities designed to influence 
attitudes and behaviors of individuals in different cultures.  In this case, the effectiveness of these 
information activities is likely to be enhanced by linking social network models with psychological 
profile information, cultural models, and psychosocial models. 

Models for Understanding Enemy Command and Control Structures  

Understanding enemy command and control structures through IOS behavioral models enables 
the identification of vulnerabilities and strengths before planning friendly activities. This was pointed out 
in a previous study on human behavioral modeling (National Research Council, 1998) but has only 
recently been acted on because of the post–9/11 focus on counterterrorism and the rapid development and 
dissemination of supporting tools.  
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In particular, support tools, such as text and data mining facilities, are beginning to be used for 
extracting information from open sources (e.g., news articles, websites, etc.) to identify events and 
structures that enable the detection and recognition of terrorist and insurgent networks and organizational 
structures. Much of this work is classified, but significant insight can be gained from parallel efforts 
ongoing in the commercial world (see, for example, the growing conference on “text analytics” at 
http://www.textanalyticsnews.com/usa/program.shtml). 

However, the strength of these tools could be considerably increased if they were combined with 
social and dynamic network modeling techniques, to enable a model-based approach to text and data 
mining and information fusion.  Such tools could then be used in an “alert” mode to identify what data 
should be collected, as well as in an “evaluate” mode to suggest the impact of various courses of action.  
Given an understanding of the enemy’s command and control structure, targets could be identified for 
disrupting the enemy, and various courses of action developed to achieve those goals. COAs that are 
intended to demoralize, disrupt, or inhibit action or recruitment on the part of the enemy could then be 
evaluated if behavioral models incorporated realistic affective, social, and cultural influences. These 
models could be made even more effective if they were placed in data-farming environments so that the 
space of COAs could be more effectively mapped. 

Models for Training and Mission Rehearsal 

IOS behavior models have the potential for providing significant benefit to U.S. and coalition 
forces in training (of general skill sets) and mission rehearsal (for mission-specific expertise), based on 
years of experience of simulation-based training in more conventional areas (e.g., flight training, tank 
tactics training, etc.), the critical dependence of learning on performance feedback and “after action 
review” insight, and, perhaps most importantly, the opportunity to learn from errors that might be 
devastatingly fatal in the real-world. Key uses of models for training include model-based simulation of 
virtual actors (including simulated entities, such as teammates, adversaries, and noncombatants), games to 
provide immersive experiences, and models to preassess potential new training tools.  Model-based 
training simulations and systems can provide training that: 

• Supports a number of activities, such as teaching individuals how to be more culturally aware, 
training teams how to coordinate and fight as a unit, training commanders how to evaluate the 
organizational health of their battalion, and so on; 

• Enables live, large-scale war-gaming with truly dynamic enemies. These training systems can be 
constructive or done using virtual reality or gaming systems.   

• Takes into account social, cultural, or organizational factors and can be used for realistic training 
of individuals, teams, or organizations; 

• Crosses operational activities and enables joint or coalition training. 
 

Training at all levels, up to and including higher headquarters staff, is vital to ensuring successful 
joint and coalition operations.  New demands are being placed on training and rehearsal systems that 
increase the need for modeling to support training.  Effective training and rehearsal systems immerse the 
trainee in realistic scenarios, provide information about roles and responsibilities, enable the development 
of technical skills, and provide experience working in joint or coalition task forces, facing new, dynamic, 
and culturally distinct enemies.  The problem is providing such an immersive training environment in less 
time, for less money, for more personnel, using models and simulations that can be rapidly adapted to 
changing missions and new adversaries.   

The changing nature of military missions and the increased emphasis on peacekeeping, disaster 
relief, and nation-state building means that training systems are needed for more than conventional 
training in weapons usage, war-fighting tactics, and basic survival.  Indeed, there is now a need for 
training in cultural awareness, crowd behavior, negotiation, management, and city planning.  Training 
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systems need to be more flexible to capture the changing nature of the enemy from nation-states to 
insurgents, from one monolithic actor to federations of loosely aligned tribes, and from large-scale 
weapons to improvised explosive devices.  Finally, new training technologies are required due to changes 
in military staffing, such as fewer, more computer-savvy recruits, increased use of reserves, and just-in-
time training.   

Massive multiplayer online games can, in principle, provide such an immersive environment.  
The value of such systems for mission rehearsal will be increased if the cultural and social models 
embedded are more socially realistic than those in current games.  Dynamic network models hold the 
promise of providing a dynamic adversary for war-gaming, and the value of such systems will be 
increased if links can be made between the network models and models of action, planning, and goal 
attainment.   

Training can be provided for teams and larger units by populating scenarios with socially and 
culturally realistic artificial actors as team members, but there is a need for simulation infrastructure to 
rapidly develop socially realistic and culturally differentiated artificial actors.   

Training for future scenarios can be provided by using system dynamic and multiagent 
computational models that allow the user to look ahead and do what-if analysis of alternate scenarios, 
such as the impact of tsunamis or hurricanes on various regions of the world or the impact of avian flu on 
military personnel.  The value of these systems will be increased if they move beyond military and 
economic factors to consider social, political, diplomatic, and information factors.   

Expert systems and cultural models can be used to increase cultural awareness and train military 
personnel in crowd control behavior.  The value of these systems will be increased if they can be rapidly 
populated with data as new adversaries arise.   

In general, IOS behavioral models can be used effectively for improved training, but more 
realistic models of actors, groups, and nation-states are needed.  A key aspect of the current training and 
rehearsal process is that, during training, military personnel are provided access to people (or their model-
based surrogates) with whom they will be working in the field.  For example, at joint war games, Air 
Force, Army, Navy, and Marine personnel meet, plan, and execute together.  This increases their 
transactive knowledge of who knows what and who can do what, which in turn improves group 
performance. If IOS models can help support this function, war games can be reduced in size, conducted 
more frequently, and tuned to specific individuals and organizations needing specific training or rehearsal. 

Models for Military Systems Development, Evaluation, and Acquisition 

DoD is in the midst of two revolutionary changes (Frost, 1998): a revolution in military affairs 
(RMA) and a revolution in business affairs (RBA). The RMA involves the military requirements and 
concepts envisioned in light of the threat environment and advances in technology (Joint Chiefs of Staff, 
2000). The RBA addresses how to leverage technology and commercial business processes to the how-to-
buy problem. The use of modeling and simulation (M&S) has been recognized as a key facilitator to 
addressing military training and education and the acquisition of military systems (Office of the Secretary 
of Defense, 1996). For example, the Air Force’s Modeling and Simulation Strategic Plan (Johnson, 2004) 
spells out a number of points of focus to meeting the challenges of RMA and RBA by providing a 
persistent synthetic battlespace infrastructure to support the exploration, design, development, analysis, 
and testing of new war-fighting systems and concepts (as well as more conventional military training and 
mission rehearsal activities). 

Inherent in the necessary M&S infrastructure to support system acquisition is the requirement to 
provide realistic representations of battlespace entities (blue, red, and neutral), natural and cultural 
features (terrain, locale), and physics-based effects (sensor processing, missile flyout, etc.). Such an 
infrastructure must provide a framework to support the rapid integration of these synthetic representations 
across all simulation levels (i.e., campaign, mission, engagement, engineering). In the Air Force, this 
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M&S capability has direct relevance to important acquisition programs, such as the Joint Strike Fighter 
(JSF), the Multi-sensor Command and Control Constellation (MC2C), the Joint Distributed Engineering 
Plant (JDEP), and the Distributed Mission Operations/Mission Rehearsal (DMO/MR) initiative. The other 
services have their own acquisition programs in which M&S capabilities are directly relevant to effective 
acquisition. As a consequence, a substantive effort is needed to develop the requisite modeling and 
simulation components to address the evolving threat environment. 

IOS behavior models that could support automated means to generate and adapt red 
strategies/tactics in line with asymmetric warfare can be a key enabling component for meeting the 
objectives needed to support acquisition.  Key uses here are to preevaluate the value of new technology in 
a variety of scenarios that are both physically and culturally accurate, assess the need for particular skills 
in soldiers, and assess how generational changes in soldiers may lead them to need or utilize technologies 
differently from their predecessors. Realistic IOS models could also be put to good use while systems are 
under development, especially as more acquisition programs adopt the “spiral development” paradigm, in 
which the requirements for each new spiral are determined not only by the evaluation results of the past 
spiral, but also by the changing battlespace requirements generated by an adaptive and resourceful 
adversary (the counter-IED development work is an excellent example of rapidly changing tactics and 
countertactics; see http://www.nationaldefensemagazine.org/issues/2006/jan/adaptive_foe.htm). 

Models for Enabling Command and Control Weapons Systems 

In the current network-centric operating environment (Alberts and Hayes, 2003), command and 
control (C2) organizations and the information infrastructure that supports them are becoming 
increasingly important.  One could say that C2 organizations, their information architectures, and their 
underlying communication infrastructures have in fact become the new weapons.  This was underlined in 
2004 when General Jumper, then Air Force chief of staff, officially designated the Air and Space 
Operations Center as a weapons system. And it has been formally recognized with the newly formed 
Cyber Command in the Air Force. As stated by the organization’s first commander, General Elder: “The 
Air Force now recognizes that cyberspace ops is a potential center of gravity for the United States and, 
much like air and space superiority, cyberspace superiority is a prerequisite for effective operations in all 
warfighting domains”  {Buxbaum 2007 #6190}. 

The Army and the Navy similarly recognize the leverage obtainable from effective C2 systems, 
especially given the Army’s commitment to the networked Future Combat System (FCS) program10 and 
the Navy’s effective invention of the term “network-centric warfare” through Admiral Cebrowski’s 
leadership,11 but it is fair to say that all three services have tended to focus on the hardware and software 
infrastructure (communications pipes, fusion algorithms, decision aids, visualization techniques, etc.), 
with less emphasis on the human and organizational component of effective C2. 

What is becoming increasing clear, especially in light of the current conflicts in Afghanistan and 
Iraq, is that there is a critical need for the rapid design and redesign of military units, including the 
architecture of their command and control (C2) systems, to meet changes in missions and to respond to 
innovations in enemy activities.  Related to this is the need to be able to identify vulnerabilities in current 
C2 structures.  IOS models have significant potential for assessing, designing, and evaluating the impact 
of new technologies or new C2 procedures on potential vulnerabilities, strengths, shared situation 
awareness, work distribution, and adaptability to enhance friendly operational effectiveness, while 
defending against enemy actions, across a full spectrum of cultures, nations, and nonnation-state actors.  
Using such models has the potential for moving the military beyond logistics planning to organizational 
planning, facilitating improved recruitment strategies, and enabling just-in-time team design.  

                                                 

10See http://www.army.mil/fcs/. 
11See http://www.oft.osd.mil/biographies/cebrowski_with_pic.cfm. 
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Military personnel often remark that, as soon as they get to the field, the plan goes out the 
window.  One way of building in flexibility (or resilience) is to support the design and redesign of the 
various units to take into account changes in mission, changes in technology, attrition, rotation, or 
incorporation of joint and coalition forces.  Many times such design needs to be made on the fly as the 
situation changes.  In this case, the commander is faced with the problem of identifying experts quickly 
and incorporating them in a “tiger team.” A related problem is assessment of the unit’s organizational 
health, its vulnerabilities, its shared situation awareness, and its overall war-fighting effectiveness. 

A traditional approach to organizational design has been to identify structures that are optimized 
to meet some organizational criteria.  This approach is insufficiently flexible in many cases, as the 
military needs to operate in a responsive and adaptive mode.  Criteria for designing adaptive units are 
under investigation, and emerging behavior modeling efforts are beginning to afford new possibilities for 
organizational design (Levchuk, Yu, Levchuk, and Pattipati, 2006, 2004; Pattipati, Meirina, Pete, 
Levchuk, and Kleinman, 2002; Neal Reilly, 2006; Levchuk, Levchuk, Meirina, Pattipati, and Kleinman, 
2004; Levchuk, Levchuk, Luo, Pattipati, and Kleinman, 2002a; Levchuk, Levchuk, Luo, Pattipati, and 
Kleinman, 2002b; Entin, 1999). 

IOS models, simulations, and assessment tools could be used to preevaluate the impact of new 
technology on the unit, identifying potential ways in which the unit’s structure should change in response 
to this insertion.  Dynamic network models linked to various databases with streaming information on 
personnel could enable real-time assessment of shared situation awareness and organizational health.  
Text mining tools and shared mental model assessment tools could be used to improve information flow 
and rapidly process incoming data.  IOS models of unit needs could be used to form a “smart” command 
center that could be used to push information to people only when they need it.  Design tools and smart 
command center tools are well within the reach of current technology.  The key problems are those of 
scalability, handling streaming data, and linkage of noninvasively collected data to dynamic network 
metrics of organizational health and text-mining evaluations of information flows. 

Representative Model-Addressable Problems in a Scenario Context 

We now illustrate how different behavioral models might be used to address specific questions 
raised by the commander and his staff during the course of operations, how models might be used to train 
for particular skill sets and missions, and how models might be used to help specify an “optimal” 
organizational design for a given mission. The intent is not to be exhaustive but merely illustrative, with 
the goal of motivating a closer look at the use of detailed behavioral models in a range of military 
activities. 

To orient our analysis and review of IOS modeling approaches, we developed scenario elements 
that are derivative of the one detailed in TRADOC PAM 525-3-90 O&O 22 JUL 2002 (U.S. Army, 2002), 
which describes a mission in the trans-Caucasus region. Three vignettes are developed to provide a 
construct for the purpose of addressing the potential of behavioral models supporting operations of a 
brigade combat team (BCT) as part of a joint campaign. These vignettes center around 

• Tactical operations in entry operation (entry),  
• Operational maneuver by air, combined arms operation for urban warfare (transition),   
• Secure portion of a major urban area (JUO). 

 
Details of the scenarios and vignettes are given in Appendix B. In conjunction with an Army subject 
matter expert, we have specified representative model-addressable questions for portions of three 
vignettes. We think that these vignettes and the associated model-addressable questions only begin to 
scratch the surface in terms of providing suitable challenge problems to stimulate the modeling 
community and to provide a common reference frame for discussing alternative approaches to the same 
problem. In fact, we propose, in Chapter 11, that an initial effort in a large-scale, multiyear research 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 

 2-15  

program—focusing on comparing and integrating different disciplines, perspectives, and levels of 
detail—be dedicated to the definition of a number of well-defined and highly focused challenge problems 
that can serve as a common basis for comparing and contrasting different approaches. If the vignettes and 
questions presented here can serve as a launching point, some effort might be saved in the long term, but 
the primary purpose of presenting these in this study has been to focus the committee on relevant military 
problems and to provide the reader with some sense of the broad range of challenges that exist in the 
military domain. 

Box 2-1 shows the resulting representative high-level model-addressable questions. Given these 
representative problems and issues, a number of more specific questions were generated, to illustrate the 
kinds of specific questions that might be asked during the unfolding of the vignettes. 

 

OVERVIEW OF CURRENT DOD IOS MODELING EFFORTS  

 
In this section we briefly review major IOS behavioral modeling efforts under way to address 

military questions such as those described above, pointing out some of the major challenges that confront 
these efforts. 

The DMSO Master Plan for Modeling and Simulation 

In 1995, DoD published a master plan for modeling and simulation, in an attempt to unify efforts 
across all services, identify needed areas of development (gaps), and minimize duplication of efforts 
(overlaps). The plan was “the Department of Defense’s first step in directing, organizing, and 
concentrating its M&S capabilities and efforts on resolving commonly shared problems”  (U.S. 
Department of Defense, 1995, p. i). The Defense Modeling and Simulation Office (DMSO) was given six 
major objectives under this plan, including “provide authoritative representations of human behavior” 
(U.S. Department of Defense, 1995). The DoD M&S master plan also specified a set of more detailed 
subobjectives for achieving these goals, as well as a detailed timetable for initiating and concluding some 
of these activities. 

The lofty goals and aggressive timelines of the DMSO master plan have not been achieved, 10 
years after they were first promulgated.12 A quick review of DMSO’s Modeling and Simulation Resource 
Repository (MSRR) at http://www.msrr.dmso.mil/ would appear to demonstrate this. The MSRR system 
is maintained by the Modeling and Simulation Information Analysis Center (MSIAC).  It includes five 
nodes representing the three services (Army, Navy, and Air Force), the DoD system, and the Defense 
Intelligence Agency and provides “retrieval of metadata descriptions of modeling and simulation 
resources” (Defense Modeling and Simulation Office, 2007), including models, simulations, 
frameworks/toolkits, background reference material, and the like. The following bullets summarize the 
results of a recent (December 2006) search of the three service nodes: 

• The Army node (see http://www.msrr.army.mil/) indexes 926 models, simulations, and simulators. 
Of these, fewer than 20 relate to individual human cognition, behavior, or performance. Of those, 
four focus on human visual performance (e.g., VISEO), three on human-in-the-loop (HIL) 
simulators, one on anthropometry (Jack), and the remaining few on four distinct behavior models: 
                                                 

12It is beyond the scope of this study to attempt to do a forensic analysis of DMSO performance in this area. A number 
of factors may have contributed: a problem scope that was simply “too big” for the funding and personnel resources available to 
DMSO; an S&T portfolio decision that emphasized simulation engineering issues over basic science and technology; a 
political/economic environment that pitted DMSO against the entrenched M&S agencies in the services (Army, Navy, Air Force) 
and other agencies; etc. But it certainly would be worth revisiting the office’s past history, should recommendations be made to 
rejuvenate the office or to create a new one with similar responsibilities. 
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IMPRINT, IUSS, MATREX, and OneSAF (more on these later). Of the same 926 modeling 
resources, only 3 relate to group or organizational modeling: C3GRID (built on MATREX), a 
crowd model based on diffusion kinetics (RDEBBSM), and a software tool for building an 
organizational model (C3TRACE). Searching for models associated with the keywords 
“culture/cultural,” “economic,” “ethnic,” “political,” “religion/religious,” and “social” yielded no 
hits on the database.13 

• The Air Force node (see http://afmsrr.afams.af.mil/) indexes 54 models, 39 simulations, and 26 
simulators. Of these, less than a dozen relate to individual human cognition, behavior, or 
performance, and of these, two refer to HIL simulators, one to anthropometry 
(INTERMEDIATE), one to decision aiding (for target prioritization), and the remaining few on 
generic frameworks (DIAS, ICET, FLAMES) or distinct behavior models (CART/IMPRINT, 
JSAF, and OMAR, and STELLA). Searching for models associated with the keywords “political” 
and “social” called up the DIAS generic framework and the IO suite for command and control 
warfare, both developed by the Air Force Agency for Modeling and Simulation (AFAMS), but 
neither explicitly representing human behavior. Models associated with economic features were 
focused on acquisition, and no models were associated with the terms “culture/cultural,” “ethnic,” 
or “religion/religious.” 

• The Navy node (see http://nmso.navy.mil/) indexes 832 models and simulations. Of these, fewer 
than a dozen relate to individual human cognition, behavior, or performance, with most focusing 
on HIL simulations or human visual performance. Only one distinct (cognitive) behavioral model 
is called out:  the Air Defense Commander (ADC) simulation (full name Autonomous Agent-
Based Simulation of an AEGIS Cruiser Combat Information Center Performing Battle Group Air-
Defense Commander Operations), which models small-team performance in C2 (Navy Modeling 
and Simulation Office, 2004). Searching for models associated with the keywords 
“culture/cultural,” “economic,” “ethnic,” “organization/organizational,” “political,” 
“religion/religious,” or “social” yielded no hits on the database.14 

 
One might be led to conclude on the basis of these results that the modeling and simulation 

community is not active in developing models of individual and group behavior. This is not the case. 
Rather, MSIAC is simply not keeping pace with the explosive development and application of behavioral 
models that started in the mid-1990s and continues to grow today, both inside DoD and in the behavioral 
research and computational modeling community. And no one else is keeping pace with the M&S effort 
either, even within DoD. There simply is no comprehensive archive or summary of all human behavioral 
models developed for or applied by DoD, although several organizations have specialized “snapshots” 
with associated information on their state of technical readiness, limitations, availability, etc. Clearly, an 
across-DoD survey, maintained in a regularly updated fashion, would be particularly valuable, especially 
if it went beyond a simple verbal description and attempted to describe each M&S resource in a common 
ontology or framework, so that comparisons could be made across models and simulations. 

 
 

                                                 

13The term “economic” did identify two tools not related to human economic behaviors, and the “social” search term 
did identify the SPECTRUM facility at the National Simulation Center at Ft. Leavenworth, which claims to “use a subject matter 
expert developed database to describe the political, economic, and social characteristics of the region being simulated” for use in 
human-in-the-loop war-gaming simulations. The SPECTRUM description was last updated in 1998. 

14The “organization/organizational” keyword did identify several organization-level trainers used by the Navy and 
dependent on HIL operation but not organization-level behavior models. 
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Selected Current DoD Behavioral Modeling Efforts 

 
A complete survey of the state of IOS model development and application (both inside and 

outside DoD but having potential for use in DoD applications) goes beyond the charge of this committee. 
We can, however, give a brief overview of some of the more visible efforts15 on the basis of surveys 
conducted outside MSIAC and on the basis of the committee’s knowledge of the domain. It is appropriate 
to note that our focus here is not on the traditional M&S tools used by the military operations research 
(OR) and training communities (e.g., AASPEM, CASTFOREM, CBS, CCTT, CSSTSS, EAGLE, 
EAAGLES, EADSIM, JANUS, JCATS, JCM, JWARS, MTWS, TACBRAWLER, TACSIM, 
WARSIM2000), which focus on the physical aspects of the battlefield and the associated 
sensor/weapon/C2 systems. Instead, it is on the complex behaviors generated by the individuals, teams, 
and organizations of people populating the battlespace.16  In fact, few IOS models are being used on a 
daily basis by war-fighters, military planners, or military trainers.  Most existing models accredited17 for 
use by military personnel are large-scale models of physical systems that do not take social, cultural, 
organizational, or affective factors into account.  Key exceptions are identified in Appendix Table 2-A1 at 
the end of this chapter, which tabulates some of the major current efforts in this latter area of militarily 
relevant IOS behavioral modeling. In the paragraphs that follow, we describe only a few of these 
activities to provide a general sense of the overall effort—since a full review is beyond the scope of this 
study. 

OneSAF Family of Models and Simulations  

The OneSAF family of simulations includes One Semi-Automated Forces (OneSAF); OneSAF 
Objective System (OOS); OneSAF Testbed (OTB); Joint Semi-Automated Forces (JSAF); and ModSAF 
(Modular Semi-Automated Forces) and provides some capabilities for modeling human behaviors that 
vary by culture. Underlying this is the OneSAF Test Bed, which is a model derived from ModSAF 
({Gugel and Miller 2003 #2650}; Parsons and Wittman, 2004). OneSAF has behavior representations that 
are effectively implemented in code and facilities that enable the user to rapidly develop instantiated 
models of new groups, communities, etc., considering a set of social, economic, and political factors. 
Although OneSAF is more flexible and provides better culturally sensitive modeling than was previously 
possible, it still has limitations. One is that OneSAF is still under development but is nearing government 
acceptance testing for the initial operating capability. A second limitation is that it is not clear at this time 
how alternative models could be linked to or federated with OneSAF.  Finally, the structure by which 
cultural variables are included in OneSAF may limit the type of cultural factors that can be included.   

Task Network Models and Tools 

Task network models describe actors’ behaviors in terms of interdependent tasks to be 
accomplished in order to achieve an overall goal. These models have their foundations in the Navy’s 
PERT18 chart development in the early 1950s and owe their popularity to the ease of constructing them 

                                                 

15Many are classified or simply buried in organizational stovepipes, leading to significant overlap or duplicative 
activity. 

16A brief overview of these military simulations is given in {National Research Council ,1998, pp. 33-50). 
17 Verification, validation, and accreditation (VV&A) is a well-defined DoD process; an overview of this overall 

“certification” process is given in the section entitled “Military Approaches to Verification and Validation” in Chapter 8. In 
simple terms, accreditation occurs when the accrediting agency (the owner of the simulation) places its stamp of approval on the 
validation results. 

18PERT stands for Program Evaluation Review Technique, a methodology closely related to the Critical Path Method 
(CPM) used to identify bottlenecks in overall task progress. 
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and the clear visualization they afford in terms of task interdependencies and task completion progress. 
MicroSAINT19 popularized their use in the 1970s in modeling human performance in tasks via task 
networks by (1) adding simple human performance parameters to each block in the network (the 
likelihood of correct task completion, time to complete, etc.); (2) making graphical task network 
construction easy to do by the nonspecialist; and (3) providing a discrete-event standalone simulation 
environment for exercising the model over time. 

Many task network models have been developed for simulating military tasks, and the basic 
MicroSAINT language has been extended by development supported by ARL under the IMPRINT 
program, as well as by subsequent extensions by the Air Force Research Laboratory (AFRL) under the 
CART program, to support embedding into other simulation environments. Several derivatives have been 
developed by the behavior modeling community, including C3HPM, which builds on IMPRINT, and 
C3TRACE and HOS, which build directly on MicroSAINT. More sophisticated researchers, particularly 
from the ACT-R community, have made efforts to integrate MicroSAINT models with more traditional 
cognitive architectures. 

Cognitive and Cognitive-Affective Architectures and Models 

A wide variety of cognitive and cognitive-affective architectures and models are represented in 
Table 2-1. Although their history may not be as long as the task network models (going back perhaps 25 
years to the pioneering work of Anderson, 1983), they are remarkably diverse in their underlying 
structures, their associated computational implementations and development tools, and their applications, 
both military and nonmilitary.  This includes the “pure cognitive” architectures/models, which tend to be 
standalone and used within their own communities (ACT-R, CLARION, COGNET, EPIC, OMAR and 
D-OMAR, SAMPLE, and Soar); the “hybrid cognitive” architectures/models, which bridge the gap 
between communities by combining models (IMPRINT-ACT-R, EPIC-ACT-R, Soar-EPIC, and others); 
and the cognitive-affective architectures, which extend the pure cognitive into the affective domain 
(MAMID, MINDS, and PMFServe). 

One major commonality among all of the architectures/models is that they were developed—
initially at least—with the goal of modeling the individual human faced with dealing with some sort of 
cognitive task. That focus on the individual has been maintained while extensions have been made in 
many different directions (perception, motor control, affect, memory, multitasking, among others). It is 
only recently that significant effort has begun to be devoted to dealing with modeling groups of 
individuals, from small teams to large organizations. As described in the agent-based modeling (ABM) 
section of Chapter 6, one of the primary barriers to representing the behaviors larger groups of individuals 
using cognitive and cognitive-affective models are the computational constraints: these models tend to be 
very fine-grained, and running a large number of them on a single host quickly brings the simulation to a 
grinding halt. However, this is expected to be less of a problem as the hardware’s computational speed 
increases, and better use can also be made of parallelism across multiple platforms. But a more 
fundamental problem exists: the lack of social knowledge in most of these representations. Cognitive 
modelers are keenly aware of the need to incorporate mental models of the environment they are 
interacting with, but they seem to be less so inclined regarding the mental models of the other agents they 
are interacting with, perhaps because of the infinite regress involved. This is clearly a needed direction for 
further research if this category of ABM is to succeed in modeling larger collections of cognitive and 
cognitive-affective agents. 

 

                                                 

19See http://www.adeptscience.co.uk/products/mathsim/microsaint/. 
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Multiagent Systems 

Agent-based modeling environments and multiagent systems (MAS) trade off the complexity of 
individual cognitive-affective agents for an increase in the sheer number of agents and a concomitant 
increase in the complexities in interagent interactions. These are described in more detail in Chapter 6, but 
it is worth commenting briefly on the three multiagent models highlighted in Table 2-1 and how they 
have been extended and applied to DoD questions of interest. Construct is a multiagent network 
simulation framework that supports the modeling and analysis of dynamic agent networks that evolve 
over time as a function of agent-to-agent interactions, and it clearly has direct applicability to the growth 
of terrorist networks.  CORES is a multiagent environment that supports the inclusion of DIME/PMESII 
factors in the agent interactions, to support understanding of broader contextual factors in agent and 
network behaviors. BioWar combines multiagent models of social networks, disease models, and 
population demographics into a single integrated model of the impact of a biological warfare attack on a 
city. Additional multiagent models and frameworks developed at Carnegie Mellon University’s Center for 
Computational Analysis of Social and Organizational Systems include DyNet, NetWatch, OrgSim, and 
VISTA, and the reader is referred there for further information (see http://www.casos.cs.cmu.edu/). 

For truly large-scale multiagent model development efforts, a number of communities are 
developing domain-free MAS frameworks and toolkits. These include SWARM, developed in the Center 
for the Study of Complex Systems (http://www.cscs.umich.edu) at the University of Michigan; the Java-
based REPAST agent simulation environment (North et al., 2005; Tatara et al., 2006); and MASON, 
another Java-based multiagent simulation environment, developed at George Mason University 
(http://cs.gmu.edu/~eclab/projects/mason/). At the time of this writing, it is unclear what, if any, inroads 
have been made into the DoD M&S community. 

Massively Multiplayer Online Gaming (MMOG) 

America’s Army is a massively multiplayer online game (MMOG) developed by and for the 
Army (Zyda, Mayberry, McCree, and Davis, 2005).  The game was designed as a recruiting (Belanich, 
Sibley, and Orvis, 2004) and training (Farrell, Klimack, and Jacquet, 2003) tool to paint a realistic portrait 
of combat in the U.S. Army. The game falls into a first person shooting (FPS) game genre, and all the 
game features are based on the real world.  However, it goes well beyond being an FPS game (Nieborg, 
2004), since social and cultural factors are increasingly being embedded in both the scenarios and the 
attributes of the roles that the players can take on. Additional information on America’s Army is provided 
in Chapter 7.  

DIME/PMESII Models 

A number of behavior modeling efforts aimed at understanding large-scale behaviors—at the 
societal and nation state levels—are under way to explore the effects that diplomatic, information, 
military, and economic actions will have across the full range of the political, military, economic, social, 
information, and infrastructure context. These include DARPA’s IBC, PCAS, and ICEWS programs, the 
Air Force’s SROM effort, and JFCOM’s SEAS program. 

The Integrated Battle Command (IBC) program (Allen, 2004) emphasizes linked and networked 
behavior models that can support military planning and decision making for dealing with asymmetric 
threats embedded in an urban environment. The approach clearly recognizes the importance of obtaining 
and maintaining a clear understanding of the complex sociopolitical context. In terms of planning and 
executing effects-based operations (McCrabb, 2001), this translates into the analysis of the potential 
effects that a given set of DIME actions will have across the full range of PMESII variables.  The key to 
successfully executing such encompassing analyses lies in the development of the embedded behavior 
models representing the full range of PMESII variables and how they can be individually and collectively 
affected by specific DIME actions. 
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A conceptual representation20 of the model “space” is shown in Figure 2-3, in which the 
dimensions are the DIME dimensions, the PMESII dimensions, and the modeling paradigms themselves, 
this last shown as modeling “families.” As noted in the program description (Allen, 2004, see 
http://www.afcea.org/events/pastevents/documents/AFCEAIICPanel.ppt): 

 
Each model in the family may represent its portion of the domain in a manner and level of fidelity 
quite different from other models. . . . The Modeling Paradigms include techniques such as: 
concept maps, social network models, influence diagrams, differential equations, causal models, 
Bayesian networks, Petri nets, event-based simulation, and agent based simulation. The need for a 
variety of modeling paradigms also stems from the fact that the different domains of knowledge 
do not lend themselves to being represented by one common paradigm such as an influence 
network. Also, human subject matter experts have preferences in the use of different paradigms 
and different paradigms fit different styles of thought.21 

 
The figure also illustrates how different models in different families interact via their interconnections 
(inputs, outputs, and state interactions). An analyst may investigate the impact of a DIME action and a 
model may forecast a primary PMESII outcome, but that effect may also “stimulate another model that 
predicts an effect that stimulates another model and in a cascade manner, the family of models, in a 
symbiotic manner, may predict another effect. Such cascading can produce astonishing results because, 
while a human may grasp and master a single model, it is unlikely that a human can predict the complex 
interactions between models!” (Allen, 2004, see 
http://www.afcea.org/events/pastevents/documents/AFCEAIICPanel.ppt). 

As noted earlier, DARPA has sponsored two other programs focused on the identification of 
potential global hot spots and the forecasting of their likely evolution over time: the Pre-Conflict 
Anticipation and Shaping (PCAS) program, directed at forecasting the likelihood of a nation-state 
collapse (Popp et al., 2006, p. 000), and the follow-on Integrated Crisis Early Warning System (ICEWS), 
which has as its goal “the development of state-of-the-art computational modeling capabilities that can 
monitor, assess, and forecast, in near-real time, a variety of phenomena associated with country 
instability.” The latter program is in its early stages of development (see 
http://www.darpa.mil/ipto/solicitations/open/07-10_PIP.pdf). 

The Air Force’s Stabilization and Reconstruction Operations Model (SROM) (Robbins, Deckro, 
and Wiley, 2005) analyzes the organizational hierarchy, dependencies, interdependencies, exogenous 
drivers, strengths, and weaknesses of a country’s PMESII systems using a complex set of interdependent 
systems dynamics representations. SROM models a country system in a lumped-parameter fashion as a 

                                                 

20Clearly, this is not intended to represent modeling “reality” in any sense but is merely an attempt to illustrate (1) the 
concept of different modeling paradigms/families covering different portions of the DIME/PMESII modeling space; (2) the 
potential for their interacting (e.g., outputs of one driving the inputs of another; and (3) the possibility of uncovering “unintended 
consequences” through these interactions. But it must be recognized that, fundamentally, the figure is merely an illustration of the 
concept of multiple models interacting at multiple levels and nothing more. The two assertions made here are based on the 
program manager’s long experience in the M&S world and generally match what the modeling community has long known, 
namely, that (1) different domains often call for different modeling paradigms (e.g., modeling a social network is probably better 
represented by network modeling methods, than, say, by an argumentation framework) and (2) different domain experts have 
different preferences for representing their knowledge to others (e.g., some may be more expressive with a declarative expert 
system approach, while others may be more facile with a graphically based Bayesian network formalism). 

21The two assertions made here are based on the program manager’s long experience in the M&S world and generally 
match what the modeling community has long known, namely, that (1) different domains often call for different modeling 
paradigms (e.g., modeling a social network is probably better represented by network modeling methods, than, say, by an 
argumentation framework) and (2) different domain experts have different preferences for representing their knowledge to others 
(e.g., some may be more expressive with a declarative expert system approach, while others may be more facile with a 
graphically based Bayesian network formalism). 
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national model (NM), which is then defined in terms of its n regional submodels that interact with each 
other and the NM. Each regional submodule contains six functional submodels: the demographics 
submodel, the insurgent and coalition military submodel, critical infrastructure, law enforcement, 
indigenous security institutions, and public opinion. The utility of SROM has been demonstrated using 
Operation Iraqi Freedom as a case study. 

Simulation Frameworks and Tools 

In addition to these domain-focused modeling efforts, there are many efforts devoted to the 
development of general-purpose frameworks that make the modeler’s job easier. As noted in Table 2-1, 
these include the C2 modeling framework C3GRID, the team/organizational modeling framework DDD, 
the generic M&S frameworks FLAMES, ICET, and MATREX, the social network analysis tool ORA, 
and the collaboration decision aid framework SIAM. Many others exist in or are in development inside 
DoD, as well as outside in the academic and commercial worlds. Of particular note are the multi-agent 
development and simulation environments commented on earlier (e.g., SWARM, REPAST, and 
MASON). 

Other Efforts 

In addition to these large efforts, there are hundreds of development efforts either recently 
concluded or just under way, varying dramatically in scale and focus, to produce representative and useful 
IOS models for the military. At one end is the spectacularly unsuccessful and terminated JSIMS effort, 
which attempted to be all things to all people, serving as DoD’s general M&S environment. At the other 
is the IUSS/IWARS M&S program, which is successfully focusing on small-team behavior at the squad 
level. In between are efforts like the now concluded MIDAS effort of the National Aeronautic and Space 
Administration to build an “end-to-end” model of the human operator (of rotorcraft), and DARPA’s 
RAID program, aimed at forecasting adversary behavior in the urban environment. However, there is no 
general inventory of what models exist and at what level of technical readiness.  As a result there is 
duplication of efforts and too little effort at making these existing models interoperable. Furthermore, 
there is a trend for well-educated military personnel with some computational training to develop small, 
special-purpose IOS models that meet specific needs.  A little programming training, however, does not 
make a good modeler, especially when that modeler is unaware of the importance of cognitive, affective, 
organizational, social, and cultural factors. 

Major Challenges for Development of IOS Models for Military Applications 

The current status of IOS modeling in DoD is the result of the funding profile for modeling and 
simulation in the last 10-15 years.  Beginning in 1995, DMSO began centralizing funding and 
development efforts in modeling and simulation. The High Level Architecture (HLA) and the JSIMS 
systems are archetypes of efforts funded and managed by DMSO during that decade, with funding to 
other systems at the service level cut to focus on these centralized efforts. In the end, after spending some 
$1.8 billion in development funds, JSIMS was canceled and the services all had to try to recover from the 
loss of JSIMS plus the loss of development time, effort, and funding on service-specific modeling and 
simulation efforts.    

During this same decade, however, there was an increase in the funding of models at the basic 
and applied research levels.  This led to the development of a large number of models that are particularly 
relevant to the military and may even be used at commands, but that are generally not yet accredited.  
Examples of tools that evolved in this period are SIAM, ORA, and SEAS.  In addition, work in this 
period gave rise to the model-driven experimentation paradigm (MacMillan, Diedrich, Entin, and Serfaty, 
2005).  

Interoperability Challenges 

While some utility has been derived from HLA, its requirement that everything be statically 
defined ahead of time and its reliance on interoperability at the source code change level mean that the 
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interoperability of defense simulations and their ability to change as threats rapidly change are greatly 
diminished. Had a bit of time been spent in the mid-1990s to design a dynamically extensible, 
semantically interoperable simulation infrastructure, defense M&S interoperability would now be more 
advanced.  Furthermore, such an effort would have paved the way for incorporation of some of the IOS 
models now emerging.   

Another difficulty with the centralized approach is that it assumes that modeling needs can be 
predefined.  It is apparent that, as the military mission changes, M&S needs change, and new models are 
often needed immediately.  Hence, an alternative distributed paradigm is needed that enables rapid access 
to new models and enables the military to make use of the increasing number of model that exist even 
when they were not developed expressly for military purposes.  A possible alternative paradigm has a 
plug-and-play distributed infrastructure with data distributed across sets of servers with appropriate access 
controls; multiple models and simulations for different purposes with appropriate access control; and 
documentation, intelligent tools for aiding the user in determining which tools can be used with which 
data, and web enablement.  In this way, any developer could place a model in the distributed system 

Data Collection and Validation Challenges 

As noted in the Urban Sunrise report (Air Force Research Laboratory, 2004), most models to be 
used in real-world settings need to be tied to data.  For example, models of insurgents often need as a 
basis data on the insurgency, such as the number of insurgents, modus operandi, sources of support, 
means of interaction, weapons, and location of activities.  Data collection, however, is often done 
piecemeal by relying on subject matter experts to go out and collect data after a need for those data has 
been demonstrated, or opportunistically, as when a soldier, adversary, or civilian provides unsolicited 
intelligence (e.g., when an insurgent group posts a video of an IED attack on the web).  

This means that new ways of thinking about validation are needed, and it means that the models 
need to operate with uncertain and incomplete data, but the science of model creation and validation with 
incomplete and uncertain data does not exist.  The nature of the data that are, or can be, collected is often 
not consistent with the data requirements of the existing models.  For example, a model may require data 
on who actually interacts with whom when all that is available is who is known to have participated in 
what events.  

Applications-focused tools do not exist, such as expert systems for identifying for the user what 
models in their arsenal can be used given their data.  The data are streaming, and time and location 
information is critical for data to inform action.  For example, knowing the location and time of IED 
attacks is critical to identifying courses of action to protect U.S. soldiers from future attacks.  However, in 
many cases, databases do not contain the time and location data.  Moreover, even when the data exist, 
many types of models cannot make use of that information.   

Because important data are classified, many models are developed in a vacuum, without access to 
the real data.  Representative and unclassified data would be highly valuable and would get a wider range 
of model developers involved.  However, the disadvantage is that the models are often tested and 
validated using proxy data that are conceptually different from, and may not even have the same data 
fields as, the classified data. This can result in erroneous assumptions of model validity at the classified 
level and in erroneous assumptions by the modelers about what needs to be modeled. 

In addition, there are across-the-board needs for better modeling infrastructure, methods to link 
models to streaming data, and improved model visualization systems.  Finally, there is a need for socially 
intelligent tools for collecting and interpreting intelligence information, particularly on insurgents and 
terrorists.  IOS model-based fusion and data collection management techniques are needed.  IOS models 
for identifying potential missing or erroneous data should also be developed. 

A key to successful IOS models in this area is the development of measures and procedures that 
are robust with respect to scale and missing data.  For example, IOS models of the adversary may need to 
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be able to scale to 107 (ten million) actors.  Even when there are massive amounts of missing and 
erroneous data, IOS measures need to be robust, appropriate, and meaningful.  Adversarial models need 
to be sensitive to cultural factors, particularly to alternative goals, preferences for actions, and gender 
roles.   

 

CONCLUSION 

 
Current military missions and today’s operating environment have created a pervasive need for 

models that can capture and forecast the behavior of humans acting in social units, ranging from small 
groups and teams to neighborhoods, cultural and ethnic groups, and entire societies.  IOS models are 
needed to understand adversary and nonadversary behavior and to forecast the effects of alternative 
courses of action on that behavior.  Today’s broader missions focus not just on COAs for conventional 
combat with well-identified adversaries, but also on COAs for influencing the attitudes and behaviors of 
noncombatants at levels of detail ranging from block-by-block urban operations to the stability of nation-
states. The COAs to be analyzed include not just military actions but across the broader DIME/PMESII 
dimensions that may influence behavior.  IOS models are also needed for training and rehearsal, to create 
realistic environments in which the military may test planned COAs and learn new skills associated with 
cultural awareness, joint and coalition operations, and stability and support operations.  IOS models are 
valuable for design, evaluation, and acquisition as well.  They can support the evaluation of potential 
contributions of new technologies to effective operations as well as the design of command and control 
organizational architectures that are effective for rapidly changing missions and new environments. 

Efforts are under way to meet the military’s needs for IOS models, but they are fragmented and 
uncoordinated, with no central direction, little information sharing, and no mechanisms to guard against 
duplication of effort in multiple locations.  All of the current efforts face challenges for interoperability, 
with models developed from different perspectives unable to communicate in any meaningful way. 
Models also face data collection and validation challenges, with data collection efforts often piecemeal 
and unrelated to modeling requirements, and validation strategies frequently absent altogether. 

The chapters in Part II review the state of the art in IOS modeling to evaluate the extent to which 
current approaches can meet military requirements as outlined above.  On the basis of that review, we 
analyze where broad gaps exist and recommend a plan of action to fill those gaps. 
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Appendix TABLE 2-A1 Selected IOS Models 

Acronym Acronym 
Expansion 

Description Category Sponsor/ 
Research 
Center 

Reference/ 
Website 

ACT-R Adaptive 
Control of 
Thought 

A cognitive architecture in which a neural network 
activation system controls the activation of a rule-
based production system model for simulating and 
understanding detailed human cognition. ACT-R 
continues to evolve to perform the full range of human 
perceptual, cognitive, and motor tasks cognitive tasks, 
supported largely only in the academic community. 
Has been hybridized with other models, notably 
IMPRINT and Soar. 

Cognitive 
architecture 
and 
modeling 
framework 

ACT-R 
Research 
Group at 
Carnegie 
Mellon 
University  

http://act-
r.psy.cmu.ed
u/ 

ADC Air Defense 
Commander 

Models the operations of an AEGIS Cruiser Combat 
Information Center (CIC) team performing air defense 
duties in a battle group using Multi-Agent System 
(MAS) technology implemented in the Java 
programming language. 

Model SPAWAR
SYSCOM 

http://www.m
ovesinstitute.
org/~shcalfee
/index.html  

America's 
Army 

  Massive Multiplayer Online Game (MMOG), starting as 
a first-person shooter game and now evolving to more 
complex environments and tasks and used as a 
recruiting tool. 

Real-time 
game 
environment 

U.S. Army http://www.a
mericasarmy.
com/ 

BioWar  Combines computational models of social networks, 
communication media, disease models, 
demographically accurate agent models, wind 
dispersion models, and a diagnostic error model into a 
single integrated model of the impact of a biological 
warfare attack on a city. BioWar moves beyond 
existing epidemiological models, by accounting for the 
heterogeneity of social networks and the geographical 
distribution of people when forecasting disease 
outbreaks. 

Hybrid 
model 
incorporating 
social 
networks, 
disease 
models, 
dispersion 
models 

Carnegie 
Mellon 
University
, DARPA, 
CDC, 
NSF 

http://www.ca
sos.cs.cmu.e
du/projects/bi
owar/index.ht
ml 

C3GRID Command, 
Control, 
Communicati
on Grid 
Model 

Parametric C4ISR modeling capacity for network 
centric warfare. Provides the capability to simulate the 
common operating picture management for a given 
force structure at the platform level. 

Network 
modeling 
tool 

U.S. 
Army, 
RDECOM 

http://www.m
srr.army.mil/i
ndex.cfm?RI
D=MNS_A_1
001514 

C3HPM C2 Human 
Performance 
Model 

 Provides high-resolution modeling of individual human 
operators in terms of task performance and human 
decision processes in the execution of combat tactics, 
techniques, and procedures. Built on top of IMPRINT 
and operates in the MATREX simulation environment. 

Modeling 
framework 

Army 
Research 
Laborator
y (ARL) 

http://www.arl
.army.mil/AR
L-
Directorates/
HRED/imb/im
print/Referen
ces.pdf 

C3TRAC
E 

Command, 
Control, and 
Communicati
ons - 
Techniques 
for the 
Reliable 
Assessment 
of Concept 
Execution  

Network modeling tool to support the evaluation of 
different organizational structures and communications 
network topologies to evaluate overall C3 system 
performance. Built on top of MicroSaint. 

Modeling 
framework 

Army 
Research 
Laborator
y (ARL) 

www.hfes.org
/web/Bulletin
Pdf/bulletin04
05.pdf 

CART Combat 
Automation 
Requirement
s Testbed 

Network modeling tool initially applied to single-pilot 
model operating JSF and subsequently applied to a 9-
member time critical targeting (TCT) cell in an air 
operations center (AOC). Built on top of IMPRINT, it 
enabled one of the first instances of integrating 
MicroSAINT with an external world model simulation.  

Modeling 
framework 

USAF 
AFRL/HE 

http://www.m
aad.com/Maa
dWeb/ongoin
g_projects/on
projma.htm#
Combat 
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Acronym Acronym 
Expansion 

Description Category Sponsor/ 
Research 
Center 

Reference/ 
Website 

CLARION Connectionist 
Learning with 
Adoptive 
Rule 
Induction 
ON-line 

Cognitive architecture for connectionist/neural 
representation of implicit (subsymbolic or neural 
network) knowledge and semantic representation of 
explicit (symbolic chunks and rules) knowledge. 
Provides for explicit representation of static knowledge 
as well as acquisition of subsymbolic knowledge 
through learning over time. 

Cognitive 
architecture 
for individual 
entity 
modeling 

Dept of 
Cognitive 
Science, 
Renssela
er 
Polytechni
c Institute; 
Army 
Research 
Institute 
(ARI) 

http://www.co
gsci.rpi.edu/~
rsun/clarion-
pub.html 

COGNET/
iGEN 

Cognition as 
a Network of 
Tasks  

COGNET is an executable cognitive architecture and 
iGEN is the associated development environment. 
Both have been applied in a number of DoD-sponsored 
modeling exercises, most notably in the AFRL/HE 
AMBR air traffic control (ATC) human behavior 
modeling and simulation program and in the Navy 
TADMUS antiaircraft defense modeling effort. Little or 
no technical literature appears to be available 
describing the technical details and therefore used little 
outside CHI Systems, its commercial developer. 

Cognitive 
architecture 
and model 
development 
environment 

USAF 
AFRL/HE 
and Navy 
SPAWAR 

http://www.ch
isystems.com
/ 

Construct  A multiagent model of group and organizational 
behavior in which the agents communicate, learn, and 
make decisions in a continuous cycle, dependent on 
the perceptions and goals of the individual and the 
goals and culture of the group. When agents interact 
they communicate and learn both task knowledge and 
cognitive knowledge. These dynamic relationships are 
grounded in structuration theory, which is the notion of 
construction and reconstruction of the social system 
through human interaction based on rules and 
resources. 

Multiagent 
dynamic 
network 
model 

Carnegie-
Mellon 
University
, DARPA, 
ONR 

http://www.ca
sos.cs.cmu.e
du/projects/c
onstruct/inde
x.html 

CORES Complex 
Organization
al Reasoning 
System 

A multiagent network simulation model that uses 
organizational, social, political and economic dynamics 
to generate forecasts of the likely actions and 
responses of adversarial actors. Scenarios are 
represented in a framework consisting of actors, 
resources, goals, actions, effects and relations. Based 
on these entities, the model generates forecasts of 
likely actions and responses of actors. Potential areas 
of application include military intelligence and learning, 
political and corporate negotiation, disaster relief and 
crisis management, and business intelligence. 

Multiagent 
network 
model, 
incorporating 
DIME/PMES
II factors 

Carnegie-
Mellon 
University
, DARPA, 
NSF 

http://www.ca
sos.cs.cmu.e
du/, 
(Kowalchuck, 
Singh, and 
Carley, 2004) 

DDD Distributed 
Dynamic 
Decision-
making 

Focuses on team functions that drive performance, 
such as communications and coordination. Model 
users can specify allocations of people, equipment, 
and material, and specify performance 
objectives/constraints, such as job/mission objectives, 
timing, and coordination requirements. DDD models 
the resultant team/environment interactions based on 
empirically observed team/organization interactions 
and provides a simulation environment for calculating 
team performance metrics, based on a team 
performance model embedded in the simulator. 

Team/organi
zation 
performance 
modeling 
tool/environ
ment 

Aptima; 
AFOSR, 
AFRL, 
ARL, 
DOT, 
NASA, 
NavAir, 
ONR   

http://www.ap
tima.com/a-
sim.php 

DIAS Dynamic 
Information 
Architecture 
System 

Object-oriented framework for integrating disparate 
multidisciplinary simulation models, supporting legacy 
code reuse and modeling of cooperative behaviors of 
agents. 

Generic 
simulation 
framework 

Argonne 
National 
Lab, DIS 
Division 

http://www.di
s.anl.gov/DIA
S/ 
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EPIC Executive-
Process/Inter
active Control 

Cognitive modeling architecture for human information 
processing that accurately accounts for the detailed 
timing of parallel human perceptual, cognitive, and 
motor activity, in multitasking situations.  Primarily an 
academic tool for researchers interested in fine-level 
details of perception and cognition. Applied to 
operator-centered design of undersea ship systems 
and many other systems. 

Cognitive 
architecture 
for individual 
entity 
modeling 

University 
of 
Michigan, 
ONR 

http://www.ee
cs.umich.edu
/~kieras/epic.
html 

FLAMES Flexible 
Analysis 
Modeling and 
Exercise 
System  

A framework for developing constructive simulations 
and interfaces between constructive, virtual, and live 
simulations. It has applications that support scenario 
definition, scenario execution, scenario postprocessing 
and scenario visualization. 

Generic 
framework  

USAF 
AFRL/MN 
and NAIC 

http://www.ter
nion.com 

HOS Human 
Operator 
Simulator 

HOS V is a MicroSaint-based task level simulation 
language for the individual human operator. Invokes 
micro models for primitives like perception, decision, 
and action. The output of HOS V consists of task 
performance timelines, errors, user-defined system 
performance measures, and component, person, and 
other resource utilization. Has been incorporated into 
COGNET to support modeling of low-level operator 
activities. 

Language 
for individual 
operator 
task 
modeling 

Army 
Research 
Laborator
y (ARL) 

http://www.dti
c.mil/dticasd/
ddsm/closed/
ddsm0023.ht
ml 

IBC Integrated 
Battle 
Command 

The IBC framework provides a means of integrating 
disparate environmental and IOS behavior models to 
support the analysis of the potential effects that a given 
set of DIME actions will have across the full range of 
PMESII variables, at the nation-state level. Each model 
in IBC may represent its portion of the domain in a 
manner and level of fidelity quite different from other 
models. Modeling paradigms include such techniques 
as concept maps, social network models, influence 
diagrams, differential equations, causal models, 
Bayesian networks, Petri nets, event-based simulation, 
and agent based simulation.  

 Framework 
for 
integrating 
different 
DIME/PMES
II models 

 DARPA  http://www.d
arpa.mil/sto/s
olicitations/IB
C/index.htm; 
(Allen, 2004) 

ICET Integrated 
Concept 
Evaluation 
Tool  

Addresses modeling, simulation, and analysis of 
advanced cross-weapons communications concepts. 
Built on top of FLAMES. 

Generic 
framework  

USAF 
AFRL/MN 
and NAIC 

http://www.ter
nion.com 

ICEWS Integrated 
Crisis Early 
Warning 
System 

Goal is “the development of state-of-the-art 
computational modeling capabilities that can monitor, 
assess, and forecast, in near-real time, a variety of 
phenomena associated with country instability.”  This is 
a relatively recent start with no publications as of this 
date.  

Decision aid 
with 
embedded 
models of 
nation-state 
behaviors 

DARPA 
IXO 

http://www.da
rpa.mil/ipto/s
olicitations/op
en/07-
10_PIP.pdf 

IMPRINT Improved 
Performance 
Research 
Integration 
Tool 

A stochastic task network modeling tool for the 
individual soldier. Task analysis is used as a starting 
point to assess the interaction of soldier and system 
performance. A network is constructed representing 
the flow and performance time and accuracy for 
operational and maintenance missions. Workload 
profiles for crew members are generated so the 
workload distribution and peaks and valleys can be 
examined. The underlying engine is the MicroSAINT 
task network modeling environment. 

Human task 
modeling 
environment 

Army 
Research 
Laborator
y (ARL) 

http://www.arl
.army.mil/AR
L-
Directorates/
HRED/imb/im
print/imprint.h
tm 
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IUSS/ 

IWARS 

Integrated 
Unit 
Simulation 
System 
(IUSS) / 
Infantry 
Warrior 
Simulation 
(IWARS) 

Constructive, force-on-force model for assessing the 
combat worth of systems and subsystems for both 
individuals and small unit dismounted war-fighters in 
high-resolution combat operations. Early versions were 
labeled IUSS. Current version, IWARS, is being built 
on IUSS Version 4 and the AMSAA Infantry MOUT 
Simulation (AIMS) models. 

Modeling 
framework 
and specific 
small unit 
models for 
infantry 
behaviors 

Army 
Natick 
Soldier 
Center/A
MSAA 

nsc.natick.ar
my.mil/media
/fact/ss&t/IW
ARS.PDF 

JSAF Joint Semi-
Automated 
Force 

With its roots in the DARPA Synthetic Theater of War 
(STOW) program and derived from ModSAF, the JSAF 
simulation provides entity-level simulation of air, 
ground, and maritime forces in support of command 
and staff training and mission rehearsal. The JSAF 
federation provides a distributed modeling and 
simulation (M&S) framework composed of multiple 
federates to represent a realistic synthetic 
environment; model C2, logistics, and weapon effects; 
provide automated reasoning of entities via simple task 
behaviors and more advanced pilot behavior modeling 
via TacAir Soar; and interface with simulation and real 
world systems (e.g., DIS, HLA, C4I Gateways). Based 
on technology developed prior to OneSAF. 

Computer 
generated 
force (CGF) 
application 
for 
simulating a 
wide range 
of cross-
service 
military 
entities  

Joint 
Forces 
Command 
(JFCOM) 
Training 
and 
Analysis 
Center 

http://afmsrr.
afams.af.mil/i
ndex.cfm?RI
D=MDL_AF_
1000066 

JSIMS Joint 
Simulation 
Systems 

A federation of service-unique models of service-
specific entities, based on a high-level architecture, 
common standards, and common protocols. JSIMS 
was going to be the primary M&S tool to support future 
joint and service training, education, doctrine 
development, and mission rehearsal for the Army, Air 
Force, Navy, DIA, DISA, NASM, TRANSCOM, and 
SOCOM. JSIMS was going to be progressively 
developed into a robust, interactive joint synthetic 
battlespace (JSB) for training strategic national joint 
tasks and joint and service tactical tasks in all phases 
of operations (mobilization, deployment, employment, 
sustainment, and redeployment). After nearly seven 
years and $2 billion of investment, it was cancelled in 
2004. 

M&S 
environment 
for all DoD 
needs 

Joint 
Forces 
Command 
(JFCOM) 

N/A 

MAMID Methodology 
for Analysis 
and Modeling 
of Individual 
Differences 

An integrated symbolic architecture, models high-level 
decision making, with focus on the role of affective 
factors (emotions and traits) . MAMID models the 
cognitive appraisal process to dynamically generate 
emotions in response to incoming stimuli and models 
the subsequent effects of these emotions on distinct 
stages of decision making. Its parametric methodology 
supports the modeling of multiple, interacting individual 
differences and facilitates the rapid creation of distinct 
agent profiles. 

Cognitive 
architecture 
for individual 
entity 
modeling 

Army 
Research 
Institute 
(ARI; 
NASA; 
AFOSR) 

http://www.ps
ychometrixas
sociates.com/
hudl_mamid.
pdf 

MATREX Modeling 
Architecture 
for 
Technology 
Research & 
Experimentati
on 
(MATREX) 

The RDECOM-supported MATREX STO (science and 
technology objective) enables the integration of 
interoperable component engineering-level simulations 
and models that conform to a common architecture 
specification. MATREX is a framework, not a model, 
designed to integrate existing models into a robust 
representation of the battlespace (terrain, dynamic 
environmental effects, and physics-based modeling). It 
will be used to support and augment testing and 
training in either human-in-the-loop or constructive 
simulations. It will also support the integration of 
human behavioral models, such as IWARS, but does 
not support the direct construction of such models 

M&S 
environment 
for all Army 
needs 

Army 
RDECOM 

N/A 
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MicroSAI
NT 

Microprocess
or-based 
Systems 
Analysis of 
Integrated 
Networks 
(SAINT) 

A discrete-event network simulation language for 
developing task network models of humans performing 
well-defined sequential tasks. It combines the operator 
with the external world model entities (e.g., airplanes), 
making plug-in operator models difficult to implement. 
Many models have been developed for military 
simulations, and the basic language has been 
extended by development supported by ARL under the 
IMPRINT program and by subsequent extensions by 
AFRL under the CART program. The language is 
particularly popular with modelers having little 
background in human perceptual or cognitive 
processes because of its ease of use. More 
sophisticated researchers, particularly from the ACT-R 
community, have made efforts to integrate MicroSAINT 
models with more traditional cognitive architectures 

Simulation 
language 
and tools for 
developing 
task-network 
models of 
human 
behavior. 

Micro 
Analysis 
and 
Design; 
Army 
Research 
Laborator
y (ARL) 

http://www.m
aad.com/inde
x.pl/micro_sai
nt 

MIDAS Man-machine 
Integration 
Design and 
Analysis 
System 

Developed to support helicopter cockpit design for the 
Army, with a primary focus on anthropometry, physical 
layout of instrumentation, and operator workload. 
Primitive sensory models drive a production rule 
system to drive activity selection effected by simple 
motor models of the operator’s limbs. A Z-scheduler 
handles rule collisions, but its psychological basis is 
unclear. MIDAS was a standalone system with a single 
instantiation at NASA Ames, and little public 
documentation is available regarding the detailed 
cognitive structures employed. 

End-to-end 
workstation 
for the 
design of 
multicrew 
helicopter 
cockpits, 
with 
embedded 
operator 
models 

Army 
Aeroflight 
dynamics 
Laborator
y, NASA 
Ames 
Research 
Center 

http://caffeine
.arc.nasa.gov
/midas/New_
MIDAS_Desi
gn.html 

MINDS Modeling 
Individual 
Differences 
and 
Stressors 

The MINDS Behavior Moderator Engine (BME) has 
been developed as a plug-in for other cognitive 
architectures (e.g., ACT-R, OMAR, SAMPLE, Soar), as 
a means for generating personality- or stress-based 
moderators that can moderate structures or 
parameters of the target cognitive architecture, to 
emulate, for example, the effect of fatigue level on 
perception or fear on cognitive task performance. 
MINDS has been integrated with the SAMPLE 
cognitive architecture and embedded in the IWARS 
simulation environment to model infantry squad leader 
decision making. 

Generic 
behavior 
moderator 
engine for 
use in 
individual 
entity 
cognitive 
architectures 

Army 
Natick 
Soldier 
Systems 
Center 
(NSSC); 
Office of 
Naval 
Research 
(ONR) 

Neal Reilly, 
Bachman, 
Harper, 
Marotta, and 
Pfautz, J 
(2007)  

Neal Reilly, 
Harper, and 
Marotta 
(2007)  

 

ModSAF Modular 
Semi-
Automated 
Forces 

An outgrowth of the early semiautomated force (SAF) 
program to simulate red ground force entities (e.g., 
tanks) executing basic maneuvers and missions 
(attack, defend, etc) while engaging blue forces 
commanding simulated ground force entities (e.g.,  
tanks) in the simulation network (SIMNET) 
environment developed during the 1980s. The modular 
SAF (modSAF) was developed to support composable 
(red) SAF behaviors, to minimize recoding efforts 
needed for training under different battle conditions, 
tactics, etc. SAF behaviors can be operated by behind 
the scenes red entity operators. 

Computer 
Generated 
Force (CGF) 
application 
for 
simulating 
maneuvering 
ground 
entities 

Army 
Simulatio
n, 
Training, 
and 
Instrumen
tation 
Command 
(STRICO
M) 

N/A 
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OMAR, 
D-OMAR 

OMAR: 
Operator 
Model 
Architecture; 
D-OMAR: 
Distributed 
OMAR 

OMAR is a cognitive architecture and simulation 
environment to develop models of human operators 
interacting with a variety of other operators and 
nonhuman entities. The basic components are a 
production rule-based cognitive processor driven by 
inputs from production memory, long-term memory, 
and working memory, this last driven by auditory and 
visual inputs The architecture relies heavily on a 
centralized, synchronous production rule framework. 
An initial version was in programmed in LISP, limiting 
its usability; a more recent version is implemented in 
Java. OMAR has been used in a number of 
simulations, including military air traffic control.  

Cognitive 
architecture 
for individual 
entity 
modeling 

USAF 
AFRL/HE 

http://omar.b
bn.com/manu
al/index.html, 
http://omar.b
bn.com/ 

OneSAF, 
OOS,  
OTB 

OneSAF: 
One Semi-
Automated 
Forces; OOS: 
OneSAF 
Objective 
System; 
OTB: 
OneSAF 
Testbed 

OneSAF is a constructive modeling and simulation 
environment intended to replace entity-based 
simulations. OneSAF is designed for numerous M&S 
domain applications, including research, 
experimentation, training, COA analysis, and mission 
planning. OneSAF models automated and 
semiautomated behaviors for entities and units up to 
the brigade level and supports the full spectrum of 
military operations, including urban missions. Designed 
as an extensible architecture, the OneSAF distribution 
includes tools for creating new components and 
behaviors to meet future modeling and simulation 
requirements. OOS was the predecessor system for 
OneSAF. OTB was the predecessor program for 
developing new technologies for OOS, focusing on 
test, integration, and user feedback. ModSAF was an 
earlier predecessor of all the programs. 

Computer 
generated 
force (CGF) 
application 
for 
simulating a 
wide range 
of military 
entities  

Army's 
Program 
Executive 
Office for 
Simulatio
n, 
Training, 
and 
Instrumen
tation 
(PEO 
STRI),  

http://www.on
esaf.org/, 
http://www.on
esaf.net/ 

ORA Organization
al Risk 
Analyzer 

A risk assessment tool for locating individuals or 
groups that are potential risks given social, knowledge, 
and task network information. After building the 
network by connecting the nodes (people) via links 
(relationships) to other nodes (people), ORA conducts 
a form of social network analysis (SNA) to assess risk 
of individuals in the network. ORA is essentially a 
network development and analysis tool.  

Social 
network 
model 
building and 
analysis tool 

ONR, 
DARPA, 
ARL, 
NSF, 
AFOSR 

http://www.ca
sos.cs.cmu.e
du/projects/or
a/software.ht
ml 

PCAS Pre-Conflict 
Anticipation 
and Shaping 

A recently concluded DARPA program to investigate 
the effectiveness of different computational social 
science approaches to support forecasting the 
likelihood of a nation state failure (e.g., Sudan). The 
PCAS architecture consists of four modules for data 
collection, modeling, gaming/shaping tools, and 
decision support tools. Computational modeling 
approaches include system dynamics, multiagent 
systems, Bayesian influence models, diffusion models, 
and regression modes.  

Nation-state 
DIME/ 
PMESII 
modeling 
methodologi
es 

DARPA/I
XO 

(Popp et al., 
2006) 

PMFServ
e 

Performance 
Moderator 
Function 
Server 

An integrated framework that permits one to examine 
the impacts of stress, culture, and emotion on decision 
making. PMFserv has been used to create and 
simulate the people and objects of a number of 
scenarios, including crowd scenes (civil unrest in the 
United States, urban conflict in the Mideast), 
asymmetric threat leaders and followers, the Black 
Hawk Down recreation in the UnrealTournament™ 
game engine, and world leader modeling in a 
diplomacy and strategy game. Over the past five years 
the instructor has been sponsored by DMSO, ONR, 
IDA, GM, Army, DARPA, JFcom, and others 

Cognitive 
architecture 
for individual 
entity 
modeling 
and 
associated 
agent 
development 
environment 

University 
of 
Pennsylva
nia; 
DMSO, 
ONR, 
IDA, US 
Army, 
DARPA, 
JFCOM 

http://www.se
as.upenn.edu
/~barryg/HB
MR.html 
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RAID Real-time 
Adversarial 
Intelligence 
and Decision-
making 

Supports real-time forecast analysis of probable enemy 
actions in urban operations against irregular. RAID 
leverages novel approximate game-theoretic and 
deception-sensitive algorithms to continuously identify 
and update forecasts of likely enemy actions while 
continuously estimating likely deceptions in the 
available battlefield information. Significant effort in the 
program is being applied to evaluating the program’s 
performance relative to that of human analysts unaided 
by RAID. 

Decision-
aiding tool 
with game-
theoretic 
model for 
adversary 
behavior 
forecasting 

 DARPA 
IIXO 

http://dtsn.dar
pa.mil/IXO/pr
ograms.asp?i
d=43; (Kott 
and Ownby, 
2005) 

SAMPLE/ 
GRADE 

Situation 
Awareness 
Model for 
Person in the 
Loop 
Evaluation; 
Graphical 
Agent 
Development 
Environment 

SAMPLE is a cognitive architecture comprised of 
modules for fuzzy rule-based perception, Bayesian 
belief network-based situation awareness, and 
production rule-based decision making. GRADE is an 
agent development environment for rapidly creating 
SAMPLE models for different domains/tasks. Both 
have been used with JSAF, IWARS, the EAAGLES air 
combat simulation, the FACET ATM simulation, and 
the UnrealTournament™ gaming engine. 

Cognitive 
architecture 
for individual 
entity 
modeling 
and 
associated 
agent 
development 
environment 

AFOSR, 
AFRL, 
ARL, 
DARPA, 
NRC, 
NSSC, 
ONR    

www.cra.com
; (Harper, 
Ton, Jacobs, 
Hess, and 
Zacharias, 
2001) 

SEAS Synthetic 
Environments 
for Analysis 
and 
Simulation 

An agent-based software development environment 
that incorporates seven behavioral primitives: initiate, 
search, decide, execute, communicate, update, 
terminate. No attempt is made to model fundamental 
cognitive or social behavioral models, but a capability 
is provided for representing entities at the individual, 
organizational, and institutional level. Developers claim 
that the SEAS environment integrates multiple theories 
from various disciplines to program behaviorally 
accurate agents, but little has been available in peer-
reviewed journals to substantiate that claim. JFCOM 
has been a strong supporter, especially in the attempts 
to model large-scale, nation-state-level projections 
(DIME/PMESII input/output forecasts) and COA 
assessments. 

Software 
agent-based 
development 
environment 

Simulex; 
JFCOM 

http://www.si
mulexinc.com
/products/cas
e_studies/#s
eas-vis 

SIAM  A collaborative decision aiding tool to help multiple 
analysts and experts decompose and analyze complex 
problems. It consists of a user-friendly graphical 
interface that supports the development and exercising 
of influence networks, a utility function decision-
theoretic approach that builds on belief networks. SIAM 
allows each factor or influencing relationship affecting 
a decision to be examined separately, yet it optimizes 
understanding of the overall impact of, and the 
interrelationships among, the contributing factors. 

Visualization 
and decision 
aiding tool 

SAIC http://www.sa
ic.com/busine
ss/technologi
es/license/it/s
iam.pdf 

Soar, 
Soar-
EPIC 

 Soar is an operator modeling production rule system in 
which existing rules propose potential operators that 
might be used to solve the current goal or problem. It is 
focused on problem solving and has its roots in GOMS. 
Its lack of a perceptual front end and motor back end 
has motivated hybridization with EPIC to provide these 
services. Although its psychological basis is less well-
developed than other research-oriented models, Soar 
has been applied to a number of military systems 
modeling efforts (notably TacAir Soar).  

Operator 
modeling 
production 
rule system 

University 
of 
Michigan, 
SoarTech 

http://sitemak
er.umich.edu/
soar/home, 
http://www.so
artech.com 
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SPECTR
UM 

 Provides an environment with multicolored, multisided 
icons in an effort to simulate realistic situations that is 
conducive to MOOTW (SASO). Spectrum portrays the 
graphics and terrain of this environment and adds the 
human dimension, to account for the impact of 
economics, politics, regional populations, 
nongovernmental agencies (NGO), and humanitarian 
relief agencies. 

Socio-
cultural 
training 
system 

National 
Simulatio
n Center 
(NSC) 

http://www.m
srr.army.mil/ 

SROM Stabilization 
and 
Reconstructio
n Operations 
Model  

Analyzes the organizational hierarchy, dependencies, 
interdependencies, exogenous drivers, strengths, and 
weaknesses of a country’s PMESII systems using 
systems dynamics modeling techniques. SROM 
models a country in a holistic lumped parameter 
manner as a national submodel, which is then defined 
in terms of its n regions as a system of systems. Each 
regional submodel itself contains six functional 
submodels: demographics submodel, insurgent and 
coalition military submodel, critical infrastructure, law 
enforcement, indigenous security institutions, and 
public opinion.  

DIME/PMES
II regional or 
nation state 
modeling 
environment 

USAF 
AFRL/IF 

Robbins, 
Deckro, and 
Wiley, 2005 

 

STELLA  A simulation-based training environment to train 
soldiers in information operations. A cognitive model 
was constructed using Bayes inference nets and 
neural nets to guide combat models based on internal 
logic.  At the time of this review, fuzzy set theory was 
being contemplated for modeling the propagation of 
rumors, and a mathematical submodel of IW was being 
developed using q-analysis and Boolean nets to study 
the structure and dynamics of IW.  

Information 
warfare 
training 
system 

DISA, 
AFAMS 

http://www.di
sa.mil/  
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FIGURE 2-1 Heterogeneous structures that must be represented in the urban environment . 

SOURCE: Air Force Research Laboratory (2004, p. 10) 
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FIGURE 2-2 Models for behavior forecasting are fundamental to battlespace assessment, 

forecasting, and management  

SOURCE: Adapted from U.S.A.F. Scientific Advisory Board Study (2002). [need pg. #] 
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FIGURE 2-3 IBC modeling space.  

SOURCE:  Adapted from Allen (2004). 
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BOX  2-1 

Representative Model–Addressable Problems and Issues of Interest to the Commander 

(“We” in this box refers to the commander and his forces)  

Analysis and Forecasting for Planning 

 Disrupt terrorist networks. Fuse uncertain and partial information from multiple sources to identify the dynamic network structure 
of a terrorist organization.  How can we best disrupt those networks? 

• Tribal leader Muhkta is on the fence about whether or not to support the intervention. Which is likely to be the most 
effective way of gaining his support—overt recognition, overt financial reward, covert financial reward, covert protection 
of family, or a combination of methods? 

• We need to disable/disrupt the clan of followers of Sheik Mustafa while our troops are moving toward the city. If we 
ensure he is disconnected from his clan during this phase of the operations, is it likely to degrade the clan’s decision 
making as related to their willingness to conduct offensive military operations? 

• In order to reduce IED attacks, are the terrorist networks with their support base in our target city more vulnerable to 
selective attacks on their leadership or interruption of their recruitment programs? 

• Abdul X is the leader of a terrorist network. Mohamed is on the network council and more radical than Abdul X. If Abdul 
X is killed, how likely is it that Mohamed will become the leader of the network? 

Forecast adversary response to COAs. In an urban operation, forecast the likely response of local insurgents to friendly force 
movements, basing, and logistics. Identify likely counters to proposed COAs and identify early harbingers of those counters. 

• What will impact the local economy the least, denial of transportation fuels or denial of electricity? 

• The JTF can plan on placing its logistics support base either within the bounds of the city or in the adjacent countryside. 
Which population in the area, urban or rural, will be less hostile to the presence of the logistics base? 

• To establish crowd control early in the urban environment, is controlling an area, like the civilian neighborhood, or a point 
of special interest, like a mosque, more likely to mitigate crowd behavior? 

• In neighborhoods not committed to radicalism, what is the most influential means to insert forces, in combat vehicles or 
on foot? 

• JTF wants to use disinformation to partially protect our intentions of moving from forward operating base (FOB) to the 
city. Is the most effective point of insertion of the disinformation the few public media outlets or the informal rumor 
mill/the tribal network? 

Societal forecasting. Forecast the effects of alternative DIME (diplomatic, infrastructure, military, economic) courses of action 
(COAs) on attitudes and behaviors of residents in a region of interest. Assess the likelihood of state failure and identify actions that 
will lead to escalation of violence. 

• Troops give a lot of meals ready to eat (MREs) to locals. Considering the items in MREs and the local culture, will MREs 
be a better giveaway than basic grains and cooking oil? 

• Entry phase combat will be kept at the lowest level possible. Given local conditions and the impacts of the blockade, 
which will the locals respond better to initially, engineers/civil works or medical response teams? 

• Considering the effect of the blockade, which will have the psychological effect most supportive of our mission end state, 
overwhelming force or “helping hand” intervention? 

• Which approach will least offend locals as we travel from the initial entry area to the city, keeping civilian vehicles in a 
separate convoy or infusing them into tactical convoys? 

• Can we forecast the response by the local religious leaders to the presence of female soldiers on the streets of the city? 

• A specific Mosque is known to be the headquarters of a particular militia. Joint forces will destroy the mosque, in order to 
deny access by the militia. Which will produce the least negative impact in the neighborhood, announcing our intentions 
to destroy the mosque or destroying it unannounced? 

• How do attitudes differ between the tribal regions of the country and the urban area we are targeting? 

• What is the formal communication dynamic between the host national government (HNG) and the population? What is 
the informal communication dynamic?  (How do people get information on a day-to-day basis—coffeehouses, religious 
structures, etc.?) How great is the delta between formal and informal communication dynamics? 
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• What are the expectations of the population about the government’s ability to provide services?   

• Is the HNG a government on the road to collapse? 

• Are there indicators of popular support for the alternative power structure? Are they reflected in local media and among 
the local intelligentsia? 

Training and Rehearsal 

Crowd control training. Create an immersive virtual training environment in which soldiers can learn to take appropriate action 
based on the correct interpretation of the behavior of small groups of citizens and understand the triggering mechanisms for violent 
responses by the crowd. 

• To effectively control crowds we need to know where the leaders are. In this setting, are crowd leaders more likely to be 
leading from the front, urging from the rear, or not on site? Given the answer, should we use information operations or 
force to control the crowds? 

• Given the nature of the small villages along the route from our FOB to the city, is it likely there will be crowds along the 
route, are they likely to be friendly or hostile, and in either case will stopping to interact with them be likely to alter their 
feelings? 

Design and Evaluation for Acquisition 

Organizational Design:  Force Composition and Command and Control Architecture. The Army is moving toward modular 
forces focused on joint and expeditionary capabilities.  These units of action will be rapidly reconfigured and equipped for specific 
mission requirements.  The Navy is fielding expeditionary strike groups that include marine expeditionary units capable of 
amphibious operations attached to Navy ships.  The Navy and the Marines follow different doctrine and are in the process of 
defining flexible supporting and supported relationships that allow them to function effectively as a combined fighting unit. 

• Develop a recommended force composition (systems, equipment, units and personnel) for a humanitarian assistance 
mission.  

• What command and control architecture will be most effective for this mission? 

• What are the appropriate organizational coordination points for most effectively working with NGOs during the 
humanitarian assistance mission?   

• Is the force composition structure recently used for a humanitarian assistance mission appropriate for a disaster relief 
operation that requires immediate deployment? 

• Are new roles needed to take advantage of the information rich network centric environment?  For example, would an 
information commander/coordinator role result in more effective mission performance? 
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PART II  
STATE OF THE ART IN HUMAN BEHAVIORAL MODELING 

 

Part II reviews the multitude of individual, organizational and societal (IOS) modeling 
approaches, methods, and tools that are potentially useful for addressing the military modeling needs 
described in Chapter 2.  Models take many forms, ranging from loose conceptual models to precise 
mathematical models (Lave and March, 1975).  They include agent-based models, cognitive models, 
expert systems, dynamical systems, and input-output models.  Here we survey and explore many different 
types of models relevant to our questions.  We describe each, show their strengths and limitations, and 
discuss research and development efforts that could make the approaches more useful for addressing 
military modeling needs. 

The diverse expertise of the committee members contributed greatly to the completeness of this 
review but also made it challenging to agree on an organizing framework for presenting the review results.  
Refined through multiple iterations, the organizing framework that we developed represents a significant 
product of the study. 

CATEGORIES OF MODELS: INITIAL EMPIRICAL RESULTS 

As a first step in organizing our review, we took an empirical approach to organizing the various 
terms and approaches used in social modeling.  Using the methods of cultural domain analysis (see 
Chapter 3 for a description), we developed a perceptual map of the field of modeling based on committee 
members’ perceptions. 

Methodology 

The first step in our investigation was to collect “free lists” of models from each member of the 
committee.  Effectively, we asked “What are all the kinds of models you can think of?” A large number 
of unique “kinds of models” were elicited with little overlap, implying that the domain itself lacks a high 
degree of cultural coherence.  A total of 240 items were elicited, with approximately 35 items per member.  
Much of this lack of overlap was due to differences in the level of specificity for the kinds of models 
listed.  For example, some of the items were specified at the level of named models, such as DyNet, 
EpiSims, NetWatch, etc., while others were at a very general level, such as conceptual models or verbal 
models.  Aggregating across all lists, a master list of distinct terms was obtained after standardizing word 
forms.  Also, an attempt was made to keep all items at the same level of specificity, in this case at a more 
general level. 

The second step was to take the 38 most frequently mentioned items at a more general level of 
specificity and construct a pile-sorting task, in which each committee was asked to sort the items into 
piles according to how similar the kinds of models are.  They could use as many or as few piles as they 
wished.  The task was conducted online using interview software that simulated cards and allowed the 
virtual cards to be placed into piles.  When they were done, the program recorded the membership of each 
pile.  Then, an aggregate proximity matrix X, whose rows and columns corresponded to “kinds of 
models,” was constructed such that each cell Xij of the matrix recorded the number of respondents that 
placed the ith kind of model in the same pile as the jth kind of model. 

The final step was to visualize this proximity matrix using a standard network visualization 
package called Netdraw (Borgatti, 2002).  In this approach to visualization, a line is drawn to connect two 
items if the similarity of the two items exceeds a certain user-defined threshold (DeJordy, Borgatti, 
Roussin, and Halgin, 2007; Johnson and Griffith, 1998). 
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Results 

The resulting map is shown in Figure II-1.  In the map, a line is drawn between two modeling 
techniques if at least 28 percent of the respondents placed the items together in the same pile.  (A cutoff 
of 28 percent was chosen because above that level the main section of the network becomes disconnected.) 

The results show three basic clusters of modeling techniques.  The first cluster, at the top left of 
the map, consists of multiagent models in which the agents are connected to each other by social ties or 
interactions.  In these models, the combination of agents and ties forms a single interconnected and 
interdependent system.  For convenience, we refer to the models in this cluster as the computational 
network models cluster (although it contains some models for which this would not be the ideal name). 

The computational network models cluster is connected to the next cluster via the system 
dynamics node.  This new cluster consists of low-level statistical and mathematical techniques that have 
broad application across many different settings.  Although these techniques are often thought of as tools 
rather than models, statisticians would recognize that they do indeed constitute models.  For convenience, 
we refer to this cluster as the mathematical systems models cluster. 

Finally, at the bottom right of Figure II-1, there is another cluster of models focused on the 
cognition or culture of the agents.  We call these the cognitive models.  The difference between these and 
the computational network models at the top of the map is one of emphasis rather than substance.  The 
cognitive models are defined by their focus on the details of cognition.   The objective of the cognitive 
models is to understand the patterns of who believes or chooses what.  In contrast, the computational 
network models are defined by the processes that the modeler builds into the system and may not 
represent cognition at a detailed level.  The outcomes of the computational network models may well be 
the same as those of the cognitive models, and the processes of the cognitive models often involve the 
same multiagent interactions of the computational network models: it is only the focus of the 
investigation that is different. 

FOUR-PART ORGANIZING FRAMEWORK FOR MODELS 

On the basis of the empirical clustering results described above and further discussion, the 
committee developed a four-part categorization for reviewing modeling approaches: (1) macro models, (2) 
micro models, (3) meso models, and (4) integrated, linked micro-meso-macro models.  No single one of 
these approaches is the correct one, and the best modeling approach depends on the nature of the problem 
to be solved.  It is a common theme throughout this book that models constitute “use-driven research” 
(Stokes, 1997) and cannot be developed or evaluated without an in-depth understanding of the uses to 
which they are to be put. 

A macro model considers interactions between macro-level variables, such as unemployment, 
crime, education, poverty, and resources.  Macro modeling approaches like systems dynamics enable one 
to identify feedbacks and to see system-level effects without getting bogged down in details.  At the other 
extreme, one can model the cognitive or affective processes of individual actors or at least their 
outcomes—individual decisions and actions.  These more micro modeling approaches include cognitive 
models from psychology, expert systems models, and rational choice models, which include game theory 
and decision theory. 

Fifty years ago, this distinction between micro and macro would have been thought sufficient.  
One can look at the trees, or one can look at the forest.  Over time, social scientists have come to 
appreciate the importance of the level in between—the meso level (Miller and Page, 2007).  To complete 
the metaphor, one can think of stands of aspen trees with a shared root system.  The stand is a part of the 
forest, yet it does not function merely as the sum of its individual trees, given the sharing of resources.  
The social analog of a shared root system is social capital.  People join movements, participate in riots, 
and support government in part based on the actions of their friends and peers.  Predictions based on 
individual attributes can almost always be improved by adding in social factors.   
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We highlight two types of meso models: network models and agent-based models.  Both 
modeling approaches have produced flurries of attention over the past decade.  Network models allow one 
to formalize, measure, and test loose conceptions of social capital, centrality, and connectedness.  Agent-
based models allow one to include diverse, purposive agents who interact in space and time.  As the name 
suggests, agent-based models originate with the agents, but these agents can self-organize, creating 
emergent meso-level structures that take on meaning and have predictive value. 

The fourth category links micro, meso, and macro models.  Agent-based models, and to some 
extent game theory and network models, achieve this double linkage.  Yet only recently have researchers 
begun to create hybrid models that include agents who employ sophisticated psychological models and 
whose macro effects link to a systems dynamic model.  These hybrid models have great potential for 
addressing the needs identified in Chapter 2.  Thus, we make this linkage between levels explicit.  
Although we do not have a separate chapter on integrated models, agent-based models and network 
models are discussed in Chapter 6, and the challenges of achieving such multilevel model integration are 
discussed in Chapter 8.   

PART II GUIDE 

Chapter 3 discusses conceptual models and cultural models.  Adequate conceptual models 
provide the foundation for development of computational and mathematical models.  Cultural models 
occupy a special position in our review because our interest is in understanding people at multiple levels 
of aggregation.  The questions that concern us require the ability to model individuals, teams, 
communities, and entire societies.  At each of these levels, cultural factors are at work, so we first explain 
what we mean by culture and cultural effects. 

The discussion next turns to a review of formal modeling approaches (Chapters 4, 5, and 6) 
organized using the four-part framework described above.  For each modeling approach we describe the 
current state of the art, the most common applications of the approach, and its strengths and limitations 
for the problems described in Chapter 2, and we provide suggestions for further research and development. 

In Chapter 7, we turn to online games as a methodology.  Gaming, the creation of an environment 
in which real people can play against one another or against artificial players, can be thought of as a 
methodology, but as these gaming models apply many of the other types of models, and as they involve 
people interacting with the games, we set them apart.  Online gaming environments are both consumers of 
models—to create artificial players and the social effects of player actions—and potential testbeds for 
generating data to develop and test models of the communications and actions of large numbers of 
individuals interacting in a simulated world. 

Chapter 8 discusses important methodological issues that are common across many modeling 
approaches, including modeling frameworks, tools, and data, and it includes a discussion of model 
verification and validation.  Model validation is a key issue for complex social models, and we argue for a 
“validation for action” approach that considers how the model is to be used rather than attempting to 
evaluate model accuracy or model fidelity without considering context of use.  Chapter 9 summarizes the 
state of the art in IOS modeling and its applicability to the requirements and uses discussed in other 
chapters. 
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FIGURE II-1 Perceived similarities among types of models. 
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3 
Verbal Conceptual and Cultural Models 

 
In this chapter we discuss models that are not instantiated in formal algorithms or software, but in 

words.  Verbal conceptual models are presented first, followed by verbal cultural models.1  These models 
are important for their attempts to apply theoretical constructs to the behavior of individuals and groups.  
The models and the terms and constructs they encompass may provide a foundation for some of the more 
applied and formal models discussed later.  These models have been developed in the disciplines of social 
psychology, sociology, anthropology, and organizational behavior studies. 

VERBAL CONCEPTUAL MODELS 

What Are Verbal Conceptual Models?  

Verbal conceptual models characterize entities, variables, or events/processes/ mechanisms and 
the relations among them in words, not in equations or other mathematical or operational formulations.  
Although they may use mathematical terms—for example, Kurt Lewin’s statement that all behavior is a 
“function” of the person and the situation (1951)—the nature and form of relations described in a verbal 
model are commonly underspecified compared with formal models.  Verbal conceptual models include 
very general classifications or broad characterizations that provide the foundation for a new discipline, 
such as the brain-as-computer metaphor on which modern cognitive science was founded, and mid-level 
frameworks, such as “images” of organizations (Morgan, 1997) as machines, or organisms, or brains.  
Typologies or taxonomies, such as a taxonomy of emotional states (Borgatti, 1994) or a typology of small 
groups (Arrow, McGrath, and Berdahl, 2000) are another form of verbal conceptual model.  Most 
numerous of all are the small-scale models that characterize relations among variables or processes 
relevant for understanding a specific phenomenon.  The “progression of withdrawal” and “compensatory 
behaviors withdrawal” models, for example, are alternate models of job withdrawal (quitting and 
absenteeism) (Hanisch, 2000); another example is a two-variable model of how social norms emerge in a 
newly formed group, based on whether or not new members’ characterizations of the situation and the 
“scripts” they retrieve to guide behavior match (Bettenhausen and Murnighan, 1985). 

The use of such terms as “theory,” “framework,”  “model,” and “paradigm” in psychology and 
the social sciences is as informal as the models themselves.2  One person’s conceptual model is another 
person’s theory or framework. In this chapter, we use the term “conceptual model” (and, for brevity, 
sometimes just “model”) as a way to group theories, frameworks, ,and paradigms into rough classification 
systems based on common features in structure (for example, dual process models, dynamic models, 
threshold models) or relevant domain (group development models, organizational withdrawal models, 
visual attention models).  What verbal conceptual models have in common is that they tend to be “highly 
informal constructions, use the natural language system, are rich in metaphor, and use lavishly nuanced 

                                                 

1Note that, in general, both conceptual models and cultural models can be articulated in formal logical, mathematical, 
algorithmic, or computational forms. Our focus in this chapter is on verbal representations of conceptual and cultural models, as 
an initial stepping stone toward computational implementations in IOS models and simulations. 

2This is also true in the behavior modeling and simulation (MandS) community, which is why we attempted in Chapter 
1 to identify and differentiate four levels of representation: theory, architecture (here, framework), model, and simulation (here, 
paradigm). 
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statements” (Davis, 2000, p. 218).  If rendered as diagrams instead of in straight prose, they tend to be 
represented via two-by-two tables, labeled boxes with arrows drawn between them, or perhaps a 
flowchart for a process model. 

In psychology and the social sciences, theorizing about a problem typically begins with verbal 
conceptual models, which then may be elaborated and adjusted over time as relevant empirical data 
accumulates.  Formal mathematical models, computational models, statistical models, etc., rely on verbal 
conceptual models to specify variables and relations among them, although a host of extra assumptions 
and plausible estimates are typically needed to translate a verbal theory into a workable implementation.  
Hence a computational model of emotional response relies on a conceptual taxonomy of emotional states 
(Ekman and Davidson, 1995), and a process simulation model of jury decision making, such as DISCUSS 
(Stasser, 1988), relies on the guiding metaphor of “interacting minds” engaged in “collective information 
processing” (which represents the mind-as-computer metaphor generalized to groups-as-networked-
computers). 

State of the Art for Verbal Conceptual Models 

Sophisticated verbal conceptual models (whose authors often call them theories) are typically 
more specific about the nature of relations among variables or about the nature of processes described 
than are ad hoc models or global metaphor models.  They may also be more sophisticated in incorporating 
contingencies, dynamics, and multiple levels of analysis.  For example, in the study of leadership 
effectiveness, a very simple model, the leadership grid (Blake and Mouton, 1982), proposes that 
leadership effectiveness is explained by two dimensions, concern for people and concern for production, 
and the more a leader has of both, the better.  This model focuses entirely on the leader (single level), 
entertains no contingencies, assumes linear additive components, and has no dynamic elements. A more 
sophisticated model, situational leadership theory (Hersey and Blanchard, 1988), proposes that the 
optimal mix of task-oriented and relation-oriented behavior by leaders depends on the level of maturity 
and corresponding skill level of the subordinate, which is expected to change over time.  In a 
heterogeneous group of members at different levels, effective leadership will require that the leader tailor 
her style to individual members and adjust that style as each member progresses through four successive 
levels of maturity and autonomy. This model incorporates three levels (individual, dyad, and group), 
contingencies (different levels of member development), and change over time. 

Computational models are often used to model complex processes that unfold over time, so 
verbal conceptual models that include attention to dynamics are particularly useful as a resource for the 
implementation of more formal models.  Verbal conceptual models of groups and organizations can be 
arrayed along a continuum of increasing complexity using the four different levels of complexity in time 
research of Ofori-Dankwa and Julian (2001).3  First-level models focus on mean differences in, for 
example, how much time a process takes and assume stationarity (sometimes implicitly rather than 
explicitly).  Second-level models add change as a possibility, so that the rate of a process may speed up or 
slow down across time.  Third-level models incorporate more than one hierarchical level of a system.  For 
example, the rate of change at the member, small group, and organizational levels may be expected to 
differ systematically.  Fourth-level models allow for multiple simultaneous and potentially nonstationary 
processes at different levels. 

Zaheer, Albert, and Zaheer (1999) introduced the concept of “time-scale completeness” for a 
process model.  In essence, they define what a process model needs to specify to provide sufficient 
guidance in designing a research program.  Although their focus was on empirical data collection, the 
same desiderata apply for implementing a verbal model in a computational form. A theory is time-scale 
complete if it specifies time scale for all of its variables, relationships, and boundary conditions.  For 

                                                 

3The following summary is adapted from Arrow, Henry, Poole, Wheelan, and Moreland (2005, pp 313-368). 
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example, it needs to specify the time needed for a complete instance of the phenomenon to occur, the 
nature and rate of change in variables, and the duration and sequence of any subphases in the process.  
Otherwise researchers cannot make theory-driven choices of observation, recording, and aggregation 
intervals, and the criteria for evidence either in support of or contrary to model predictions remain unclear. 

Finally, state of the art conceptual models allow for conceptual “docking” with other models by 
clarifying how the terms used relate to other, closely related (or synonymous) terms in the literature, and 
note where other models might “plug in” (for example, a structural model might refer to possible plug-in 
models that address processes or mechanisms not included in but relevant to the structural model) and 
clearly specifying boundary conditions. 

Relevance to Modeling Requirements 

One way to demonstrate the relevance of verbal models is to give an example of how a well-
developed verbal conceptual model could be used for rapid cultural awareness training. The conceptual 
model is the cross-cultural framework of Fiske (1991, 2000), which proposes that human beings in all 
cultures coordinate their social interactions using a mix of fundamental relational models: communal 
sharing, authority ranking, equality matching, and market pricing. The four models are organized sets of 
associated concepts and rules that serve as a generative grammar for thinking about and coordinating 
relationships.4  When following the communal sharing model, people emphasize the common identity of 
group members and focus on what is good for the group as a whole.  The preferred model of decision 
making is consensus, and people pool resources and draw on the pool without keeping track of individual 
contributions and withdrawals.  Prototypical contexts and domains in which this model is used are family 
and food. Families commonly share food resources freely, and people who are defined as the “in group” 
in a particular context (such as invited guests at a party) are expected to help themselves to whatever food 
and drink they want.  Violations of the rules occur when out-group members attempt to access in-group 
resources (for example, someone crashes a party). 

In relationships organized by the authority ranking model, people structure their interactions 
according to status, position, and dominance hierarchy.  Military organizations commonly use this model, 
and personnel wear insignias of rank to signal status.  How people behave is strongly governed by 
whether they have the higher or lower rank of the two people in a given interaction.  In distributing 
resources, high-status members get more, and low-status members get less.  Rank also comes with 
obligations: superiors are expected to provide for or take care of inferiors.  Violations occur when lower 
status members are insubordinate, treating a higher ranked person as an equal, for example, or when 
higher status members abuse their rank and power and betray their obligations to lower status followers or 
dependents. 

When a relationship is governed by the equality matching model, people reciprocate favors after 
some delay and maintain a balance between giving and receiving.  This model is commonly applied 
among people who consider themselves to be of equal status, such as friends, classmates, or colleagues.  
People in equality matching relationships often respond to favors by saying “I owe you one” or “I’ll pay 
next time.”  Note the difference from authority ranking, in which a lower status person responds to favors 
with gratitude and loyalty, rather than reciprocating in kind.  If the relationship is using the equality 
matching model, however, the failure to reciprocate a favor (or to express one’s understanding of this 
obligation) would be a violation. 

In market pricing relationships, people seek the best deal for themselves and expect that others 
will do the same.  This model commonly governs trade and other social exchanges among strangers or 
acquaintances and is guided by the equity principle of proportionality—so that price, for example, should 

                                                 

4The following summary is adapted from Arrow and Burns (2004, pp. 176-178). 
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be proportional to value.  Self-interested or selfish behavior is not a violation (it is expected), but cheating 
or stealing (which violates the equity rule) is. 

Particular cultural implementations of these models organize social exchange, distribution, 
contribution, decision making, social influence, moral judgment, aggression, and conflict (Fiske, 1991).  
There is no practical limit, for example, to the types of objects or services that might be deemed 
appropriate or inappropriate to reciprocate the gift of a chicken or a radio.  This sort of idiosyncratic and 
culturally specific content can be provided only by an informant who is very familiar with a culture.  
However, more important to practical application in a field situation is simply detecting whether the 
context in which a chicken is received is one that calls for gratitude and acknowledgment of an in-group 
bond (communal sharing), expression of deference and humility (authority ranking) reciprocation with a 
favor of roughly equal value (equality matching), or direct payment (market pricing). Mistakes involving 
specific cultural content (reciprocating with an odd sort of gift) may invoke humor or surprise; violation 
of relational models (paying someone for a gift, failing to reciprocate) are more likely to give offense and 
damage the relationship. 

Major Limitations 

The strengths of verbal models are also their weakness.  Natural language is a flexible and 
nuanced instrument in which one can express highly sophisticated ideas, including multiple overlapping 
metaphors and embedded narratives.  However, because natural language is an encompassing sea in 
which we all swim, shadings of meaning and idiosyncratic clouds of associations allow four people to 
encounter the “same” verbal model and understand it in four different ways.  Some of the ambiguities and 
gaps that are common in verbal models may become evident when designing an experiment, and they are 
highlighted most sharply when one attempts to extract a set of formal relations from a natural language 
model. 

In psychology and the social sciences, the grand metaphors of conceptual models often govern 
the whole direction of a field, but metaphors always direct attention to some features and lead to the 
neglect of others.  Once a broad conceptual framework such as this becomes pervasive, scholars tend to 
forget that a metaphor is involved.  For example, the information-processing metaphor for the brain, and 
the researchers who focused on it, probably contributed to a pervasive neglect of research on emotional 
and social processes for the first several decades of cognitive science.5  Computers don’t have emotions 
and are not social beings.  So if the mind is not simply like a computer in some ways (simile with 
boundary conditions), but is a biological computer (unreflective metaphor), the ways in which minds are 
decidedly not like computers get overlooked, even by researchers engaged in intensively social activities 
about which they have strong feelings.  The same curious social blindness is evident in the early era of 
organizational research dominated by the organization-as-machine metaphor.  The related notion that 
workers are cogs in the machine led researchers to study the impact of physical conditions, such as 
lighting, on worker productivity while completely ignoring the possible impact of one human being on 
another (Mayo, 1960). 

Verification and Validation Issues 

Verbal conceptual models are sometimes specific enough that they can be tested and plausibly 
falsified, using empirical field studies or controlled experiments.  For example, in studies of subjects from 
Bengali, Chinese, Korean, Vai (Liberia and Sierra Leone) and U.S. cultures (Fiske, 1992), Fiske and 
colleagues have used social cognition experiments to demonstrate that people organize acquaintances in 
memory according to the dominant model that organizes the relationship and that for many subjects this 

                                                 

5A small pocket of researchers clearly forged ahead in this important area; see, for example, Ortony et al. (1988). 
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classification accounts for more variance in recall and substitution errors than such personal attributes as 
gender, race, and age. 

In contrast to such well-developed conceptual frameworks, broad metaphors (brains as 
information-processing devices, organizations as cultures) are not really subject to verification or 
falsification.  Whether or not they are used in a particular domain is likely to depend largely on face 
validity and established precedent.  In evaluating the usefulness of a verbal model of this nature, the 
yardstick is often not how well supported the model is, but how much interesting research it inspires.  
Even when a verbal model seems, in principle, to be subject to falsification, the underspecification of 
relations and processes often means that a rather broad array of different outcomes can be presented as 
“consistent with” the theory.  As Harris (1976) noted in “The Uncertain Connection Between Verbal 
Theories and Research Hypotheses in Social Psychology,” theoretical terms often are not defined, 
boundary conditions are unspecified, and, under various plausible interpretations of assumptions or 
conditions, several well-known theories include internal contradictions and inconsistencies (as cited in 
Davis, 2000). 

Future Research and Development Requirements 

Verbal conceptual models can be highly influential and generative and do not require intensive 
funding or technology to develop, yet the development of such models is often overlooked as a funding 
priority.  The scarce resource in improving verbal theory is intellectual time and energy.  Motivation may 
also be an issue when grant funding is available primarily for doing (conducting experiments, writing 
code, designing games, collecting reams of data) and not for thinking.  This can encourage the 
proliferation of low-level, poorly specified, ad hoc conceptual models that get spawned in discussion 
sections of journal articles to explain the results of a single set of studies and, if they survive, are later 
herded together in introduction sections of subsequent articles without actually being systematically 
integrated into more comprehensive integrated models.  That work is generally left for the writers of 
literature reviews who are trying to make sense of a mountain of facts and ideas and find a deeper order. 

Stronger theory is needed for domains that social scientists still don’t know how to think about 
and those in which numerous weak conceptions have not been integrated. Verbal conceptual models are 
essential building blocks for theory building. Bringing people together for conferences and funding edited 
books and special issues that explore themes and issues in depth are useful.  Measurable advances in 
theory should also be specified as a valuable deliverable for grants.  Think tanks could be funded for 
scholars to come together and work intensively for an extended period (three to six months) on theory 
development and integration for issues and areas in which it is increasingly clear not only that there are 
not enough data, but also that it is difficult to know how to conceptualize the problem.  Of course this sort 
of conversation is going on in labs and institutes around the country, but the focus on generating data (at 
least in psychology) seems to eclipse or marginalize the systematic development and integration of theory 
that goes beyond the highly specific area in which people tend to do research. 

 CULTURAL MODELING 

What Is Cultural Modeling? 

The term “cultural modeling” encompasses two broadly different areas of research.  One area is 
concerned with modeling growth and distribution of cultural phenomena, such as the evolution of norms 
or the diffusion of beliefs.  Research in this tradition typically treats culture (or, more accurately, some 
characteristic of culture) as an outcome and concentrates on the factors shaping those outcomes.  This 
kind of cultural modeling is distinguished from other kinds of modeling surveyed in this volume only by 
the domain of study—namely, an element of culture. It does not imply a particular modeling technique.  
For example, the evolution of norms may be studied using a variety of methods, including multivariate 
statistics, agent-based models, systems dynamics models, event history models, and so on.  This kind of 
cultural modeling is discussed in several chapters in this volume and is not discussed further here. 
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The other kind of cultural modeling, which is discussed here, is concerned with describing (and 
often formally representing) a group’s culture.  Work in this tradition typically does not concern itself 
with how the culture came to be but rather with how it is distributed in the population and, in the best 
cases, what the consequences of having that culture might be.  

Finally, it is appropriate to note that perhaps the most fundamental verbal cultural models are 
those that are implicit in a region’s or society’s language and history. It is abundantly clear—from 
Laurence of Arabia’s exploits to today’s attempts to “democratize” Iraq—that deep and broad  knowledge 
of the local history and language are still fundamental for the kind of high-level understanding of societal 
dynamics that is the main focus of this report and of today’s military.  This committee acknowledges the 
importance of both language and history as the foundational knowledge base for any cultural model 
development, and as perhaps the starting point for identifying “implicit” models embedded in the 
language and history—models that can be built on in successive formalization efforts. 

What Is Culture? 

Culture can be defined in a number of different ways.  Indeed, over 200 scholarly definitions have 
been documented (Kroeber and Kluckhohn, 1952).  Researchers have defined culture in normative, 
historical, biological, cognitive, functional, structural, categorical, and symbolic terms.  Definitions 
typically make use of some combination of the following elements: beliefs, behaviors, values, customs, 
artifacts, organizational orientations, preferences, experiences, attitudes, meanings, hierarchies, religions, 
perceptions, conceptions, material objects, possessions, symbols, motives, traditions, strategies, ideals, 
rules, habits, reasoning, identities, conventions, customs, and institutions, among others.  While 
definitions of cultures differ on which of these elements constitute culture, most view a group’s culture as 
an essential factor in problem solving, coping, and adapting to environmental changes. In addition, they 
generally agree that culture is something possessed by groups (such as societies, organizations, 
occupations, teams) and that it is learned, transmitted, and shared (albeit imperfectly and unevenly).  At 
the same time, scholars regard culture as being held in individual minds and do not consider it an 
oxymoron to talk about an individual’s culture. 

State of the Art of Culture Models 

There are four basic types of descriptive culture models popular today: cultural inventory models, 
dominant trait models, semantic models, and domain models 

Cultural Inventory Models 

Cultural inventory models are a way of describing cultures by listing which of a list of traits they 
do or do not possess.  Thus cultures are conceived of as distinctive bundles of features that can be 
represented as a string of 1s and 0s indicating the presence or absence of a trait.  A number of 
anthropologists have undertaken a compilation of cultural traits across human societies.  The best and 
most relevant example of such a compilation across cultures is the Standard Cross-Cultural Survey 
(SCCS) developed by George Murdock and others.  The database consists of 186 societies and 22 cultural 
categories involving almost 1,000 standard coded variables derived from ethnographic sources (Murdock 
and Morrow, 1970).  Essentially, a team of researchers has combed through ethnographies written by 
anthropologists and coded the cultures described using a universal codebook.  The ability to compare 
features across societies is critical for both developing models and testing theories concerning patterns of 
and associations among cultural traits, categories, and features.  Table 3-1 provides examples of some of 
the 22 cultural categories and associated variables and their codes. 

For military purposes (McFate, 2005), many of these traits may be irrelevant, while others would 
need to be gathered, such as information on cultural gestures (e.g., meaning of certain hand gestures), 
cultural greeting etiquettes (e.g., rules for properly entering a village), cultural norms surrounding conflict 
(e.g., cultural notions of courage, honor, and revenge), etc.  Such a database would considerably improve 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 

3-7 

the ability to interact in a satisfactory manner with natives and to accurately predict their reactions to 
stimuli. 

The key difficulty with cultural inventories is obtaining the necessary data.  Data need to be 
collected on an ongoing basis to ensure the quality and timeliness of information.  Also, it is important to 
recognize cultural boundaries and subcultures.  For example, a nation like China may form a single 
political unit but may contain many different cultures.  Furthermore, collecting new cultural information 
can be particularly difficult during periods of conflict, which means that the data needs to be collected on 
an ongoing basis regardless of whether it has immediate utility. 

Another approach is the cultural classification system developed by Karabaich, which is intended 
to cover the possible group types that might be encountered in a military, business or political context 
(Karabaich, 2004).  These group types are summarized in Table 3-2. 

Each group and its culture are characterized by a series of attributes, which were derived in part 
from Karabaich’s extensive experience in Army psychological operations and in part from the work of 
several political psychologists, most notably the work of Alexander George on operational codes (op-
codes) (1979, 1998), who in turn built on the work of Leites.  Op-codes capture the role of internal, 
subjective schemas (the operational codes) that guide individual (and group) behavior.  They include 
values, beliefs, perceptions, and goals and jointly define what the group considers important, its view of 
the world, what motivates its behavior, and how it goes about accomplishing its goals.  The assumption 
then is that these attributes will influence the individual members of the group in a manner similar to, but 
more powerful than, the influence of the national and ethnic groups to which the individual belongs.   

Table 3-3 shows a subset of the key attributes used to characterize groups, listing examples of the 
specific values for these attributes for three of the group categories: a political group, a religious group, 
and a militant group. 

Dominant Trait Models 

Dominant trait models are similar to cultural inventories but differ in the fundamental unit of 
analysis.  Whereas cultural inventory models are based on ethnographic assessments of the culture as a 
whole, dominant trait models are based on individuals’ responses to survey questions about themselves.  
This approach is based on the concept of modal personality developed by the cultural and personality 
school of psychological anthropology (Benedict, 1934; LeVine, 1982; Hsu, 1972). In this approach, 
culture is seen as “personality writ large.”  Cultures are described by the dominant psychological traits of 
the members of the culture.  If certain traits are more prevalent in one society than another, the cultures 
are said to be different in this respect. 

Perhaps the most famous advocate of this approach in modern times is Hofstede, who has 
identified five dimensions of culture that he regards as fundamental and that are thought to vary widely 
across cultures.  The five dimensions are power distance (degree of tolerance for uneven distribution of 
power), individualism-collectivism, femininity-masculinity (task versus process/people orientation), 
uncertainty avoidance, and short versus long-term orientation. 

This trait set was recently augmented by Klein and colleagues and termed the “cultural lens” 
model (Klein, Pongonis, and Klein, 2000; Klein and McHugh, 2005).  The cultural lens model adds 
several cognitively oriented factors to the Hofstede dimensions, including counterfactual thinking versus 
hypothetical reasoning and dialectical reasoning.  Other cultural trait sets have also been identified, 
including that of Schwartz, which consists of conservatism (degree of preference for status quo and 
established order); intellectual autonomy (independence of intellectual pursuits); affective autonomy 
(desirability for individual’s positive affective experience); hierarchy (same as power distance); 
egalitarianism (similar to Hofstede’s collectivism); mastery (getting ahead through active self-assertion); 
and harmony (fitting into the environment)(Schwartz, 1999).  
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Another trait-based approach focuses on the characteristic cognitive styles of a group’s members 
(Hudlicka, 2004; Hudlicka et al., 2004).  For example, one of the more striking findings in cross-cultural 
cognition research is the recognition that the “fundamental attribution error” (Ross, 1977) is in fact 
dependent on culture, and more common in Western, individualistic cultures, than Eastern, more group-
oriented cultures.  Fundamental attribution error refers to the individual’s tendency to attribute the 
behavior of others to individual dispositions rather than to environmental influences.  Similarly, Western 
subjects exhibit a greater focus on isolated objects than Asian subjects, who attend more to the gestalt of 
the situation and the interrelationships among the objects. 

Examples of findings from cross-cultural cognition research are listed in Tables 3-4 and 3-5.  The 
tables follow the categorization of inference types of Peng, Ames, and Knowles (2001). 

Finally, a large number of cross-cultural studies focus on emotion: its expression, recognition, 
and elicitation across cultures.  The specific data of interest for a particular modeling effort depend on the 
objective of the model (a training system designed to teach cultural awareness should provide information 
about acceptable expressions of particular emotions; a decision aid designed to improve behavior 
prediction needs to represent emotion elicitors, etc.).  As might be expected, there are significant 
commonalities across cultures in both emotion recognition and expression, particularly in the case of the 
more fundamental (basic) emotions, such as fear, anger, sadness, and happiness (Ekman and Davidson, 
1995).  For behavior prediction, the most significant differences are those in emotion elicitation; that is, in 
the specific situations and stimuli triggering particular emotions.  Variations were found both in the nature 
of the emotions elicited and the intensity of those emotions.  Some of these findings are summarized in 
Table 3-6. 

Semantic Models 

Semantic models are not researcher-based models but rather the models that ordinary people use 
to understand their worlds.  The models are often tacit, in the sense that individuals are not aware they 
have them.  Anthropologists discover the models by interviewing people and listening to their accounts of 
daily life.  They typically consist of chains of prototypical events that constitute plans of action.  
D’Andrade defined these sorts of models as “a cognitive schema that is intersubjectively shared by a 
social group” (D'Andrade, 1989, p. 809).  Semantic models are qualitative or conceptual rather than 
computational models. 

As an example of a semantic model, Naomi Quinn (1997) has analyzed hundreds of hours of 
interviews to discover concepts underlying American marriage and to show how these concepts are tied 
together.  She began by looking at patterns of speech and at the repetition of key words and phrases, 
paying particular attention to informants' use of metaphors and the commonalities in their reasoning about 
marriage.  For example, one of her informants said that "marriage is a manufactured product." This 
metaphor paints marriage as something that has properties like strength and staying power and as 
something that requires work to produce.  Some marriages are "put together well," while others "fall 
apart" like so many cars or toys or washing machines (Quinn 1987:174). 

The objective is to look for metaphors in rhetoric and deduce the schemas, or underlying 
principles, that might produce patterns in those metaphors.  Quinn found that people talk about their 
surprise at the breakup of a marriage by saying that they thought the couple’s marriage was "like the Rock 
of Gibraltar" or that they thought the marriage had been "nailed in cement." People use these metaphors 
because they assume that their listeners know that cement and the Rock of Gibraltar are things that last 
forever (i.e., they are intersubjectively shared) 

Quinn reasons that if schemas or scripts are what make it possible for people to fill in around the 
bare bones of a metaphor, then the metaphors must be surface phenomena and cannot themselves be the 
basis for shared understanding.  Quinn found that the hundreds of metaphors in her corpus of texts fit into 
just eight linked classes that she calls lastingness, sharedness, compatibility, mutual benefit, difficulty, 
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effort, success (or failure), and risk of failure.  For example, Quinn’s informants often compared 
marriages (their own and those of others) to manufactured and durable products ("it was put together 
pretty good") and to journeys ("we made it up as we went along; it was a sort of do-it-yourself project").  
Quinn sees these metaphors, as well as references to marriage as "a lifetime proposition," as exemplars of 
the overall expectation of lastingness in marriage. 

Other examples of the search for cultural schemas in texts include a study of the reasoning that 
Americans apply to interpersonal problems (Holland, 1985), a study of ordinary Americans’ theories of 
home heat control (Kempton, 1987), and a study of what chemical plant workers and their neighbors think 
about the free enterprise system (Strauss, 1997).  

Cultural Domain Analysis 

Cultural domain analysis refers to perspectives on and methods for analyzing culture drawn from 
cognitive anthropology (Borgatti and Everett, 1992).  A cultural domain is a collection of items that in 
some sense go together or are all examples of a kind of x (e.g., animals, plants).  Such domains are often 
linguistic categories (e.g., semantic domains or concepts) in that there is a simple name for the set of 
items, like fruit or vegetables.  What makes these domains cultural is that they are consensual.  There is 
general agreement on the part of cultural actors regarding membership of most items in the domain.  
However, like all human things, the boundaries of a domain can be porous or fuzzy.  There are items that 
are clearly in the domain, and items that are clearly outside, and many items that are in-between.  The 
general objective of this type of analysis and modeling is to understand the cultural domain, which means 
to know what items belong in it and how these items are perceived to relate to one another (i.e., the extent 
to which they are similar or different).  The data are collected and analyzed in a systematic manner using 
data collection techniques, such as pile sorts, sentence completion tasks, and triads tests (similar methods 
are referred to as repertory grid analysis in psychology; see Johnson and Weller, 2002), and analytical 
methods, such as hierarchical clustering and multidimensional scaling, to identify the conceptual 
organization and shared dimensions among concepts.  Analysis of domain items can also include their 
attributes (e.g., diseases and their symptoms).  A good example of a general principle stemming from this 
form of analysis comes from Stefflre (1972) in his proposition that people will behave similarly toward 
things they perceive as being similar. 

The importance of this approach lies in the ability to quickly assess the nature of cultural beliefs 
and conceptions, albeit for a rather narrowly delineated set of cultural items.  However, such an 
understanding can facilitate the ability to alter or change cultural beliefs and ultimately human behavior.  
These types of methods have been used in consumer research for both product development and 
marketing (Stefflre, 1972).  Johnson, Griffith, and Murray (1987) and Murray, Griffith, and Johnson 
(1987), for example, have used this approach in changing people’s beliefs about underutilized fish species, 
leading to increased consumption of fish that were traditionally considered “trash” fish. 

Another branch of cultural domain analysis is the cultural consensus model (CCM) of Romney, 
Weller, and Batchelder (1986).  The model originated as a theoretical exploration of the formal conditions 
under which similarity of beliefs would imply cultural knowledge.  It was shown that, in the context of a 
true/false questionnaire asking respondents to react to propositions of fact, the degree of knowledge of 
each respondent could be inferred when three conditions held.  First, that a single culturally correct right 
answer exists that is valid for all respondents in the sample.  Second, that conditional on the underlying 
cultural answer key, the responses of subjects are independent (i.e., when they did not know the answer to 
a question, their responses were uncorrelated).  Third, that the questionnaire contained questions about 
only one domain of knowledge (that is, a single competence level for each person sufficed to characterize 
their probability of answering any question correctly).  When these three conditions held, the model was 
capable of deriving both the culturally correct answer key and the cultural competence of each respondent.  
The model allows for a test of the degree to which cultural knowledge is shared, who has more or less of 
this cultural knowledge, and how it varies among a group of people in terms of, for example, gender, 
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levels of human capital, and social class.  It also allows for the construction of the culturally correct 
answers by working backward via Bayesian statistical techniques from the patterns of agreement 
concerning a series of related cultural propositions or statements. 

This approach has a number of advantages in terms of understanding and modeling culture, 
particularly with respect to modeling aspects of intracultural variation.6  CCM has been used in a variety 
of contexts, but it has been applied practically to solving policy and management issues, modeling 
indigenous ecological knowledge, and understanding people’s cultural beliefs concerning various aspects 
of health and illness.  It has recently been used to measure cultural consonance (i.e., the correspondence 
between cultural beliefs and actual behavior) that has been shown to correlate with health outcomes (e.g., 
low consonance is related to high blood pressure; see Dressler and Bindon (2000). 

The CCM approach can be used to empirically determine shared beliefs and knowledge that can 
be used in models incorporating cultural variables.  In addition, the approach can also be used to more 
finely tune an understanding of cultural beliefs and their variation that may be patterned in terms of 
different social attributes (e.g., gender, age).   Thus, cultural knowledge (the correct cultural response) or 
individual cultural competency can be treated as either a dependent or an independent variable in a model 
at various levels of analysis. 

Relevance to Modeling Requirements and Major Limitations 

For the purposes of this study, a key limitation of all the models reviewed in this section is that 
they were not built for military purposes.  The variables and dimensions they have focused on (such as 
power distance) have not been shown to be relevant for any given military situation.  More generally, 
different aspects of culture are relevant for different situations, and as a result a new model must be built 
for each substantially different military purpose and for each group of people (who have distinct cultures). 

Another limitation of these models is that they do not explicitly link culture and behavior and 
therefore do not provide direct guidance on how to intervene in a group in order to change the culture.  A 
partial exception is cultural domain analysis, which posits that people behave similarly to similar stimuli.  
As a result, it is possible to predict that people’s behavior toward a new course of action will be similar to 
their reactions toward other courses of action that are similar. 

Another difficulty with predicting behavior is that the behavior of interest to predict may often be 
that of individuals.  However, some models, such as the semantic models, unless they were based on a 
single individual, are not intended to apply to any single individual.  Other models, such as the trait-based 
models of Hofstede, are based on individuals but then aggregated to the group level.  Cultures are then 
described by the traits of the majority. 

Data, Verification, and Validation Issues 

Cultural inventory models rely on ethnographic observation and are therefore both time-
consuming to develop and highly subjective.  Having multiple independent observers helps ameliorate the 
subjectivity problem but is expensive. 

                                                 

6Understanding intercultural variations has benefited significantly from the approach taken by Heinrich et al. (2004), in 
which an economic “game” (such as the Ultimatum Game, Guth, 1982) is introduced across a number of different societies, and 
the resulting behaviors correlated (or “normalized”) with respect to the interaction pattern norms found in each society. As the 
authors note:  “We draw two lessons from the experimental results: first, there is no society in which experimental behavior is 
even roughly consistent with the canonical model of purely self-interested actors; second, there is much more variation between 
groups than has been previously reported, and this variation correlates with differences in patterns of interaction found in 
everyday life (p. 5).” Clearly there are implications for war games, understanding cultural biases with respect to aggression 
across cultures, and anticipating adversary tactics for a range of DoD IOS modelers. 
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Dominant trait models, such as the Hofstede dimensional models, can involve two sets of data.  
The first set of data is used to derive the dimensions.  These can be validated by a number of different 
statistical methods, such as factor analysis.  Once these are fixed, another set of data is obtained to score 
each new culture on the dimensions.  These data have to be obtained from willing natives of the culture, 
and the data have to be updated over time because cultures change. 

Future Research and Development Needs 

In a certain sense, cultural models are critical for all the computational models discussed in this 
volume, because the cultural models provide the principles to be embedded in those models.  For example, 
an agent-based model of crowd behavior needs to know the cultural rules for behavior that will govern the 
agents’ interactions. 

The biggest limitation of cultural models at present is that existing models were not designed with 
military purposes in mind.  As a result, a key research need is to develop models applicable to military 
needs.  This would include semantic models of how natives think about land, nation, war, foreigners, and 
so on, as well as cultural inventory models that include relevant variables.  Note that different models are 
needed for different cultures. 

The semantic models are particularly powerful for military applications.  However, they are 
currently not formal models, meaning that they are expressed verbally and not in ways that are 
immediately amenable to computational analysis.  As a result, another key research direction is to develop 
formal ways of expressing semantic models that are simple enough to be used by field researchers and 
subject matter experts. 
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TABLE 3-1 Examples of Cultural Categories and Coded Variables from the Standard Cross-

Cultural Survey  

Examples of 
Cultural Categories  

Examples of Labels for Variables Within Categories 

Subsistence 
economy and 
supportive practices  

Marital residence 
Matrilocal or uxorilocal—with wife's kin 
Avunculocal—with husband's mother's brother's kin  
Patrilocal or virilocal—with husband's kin  
Ambilocal—with either wife's or husband's kin  
Neolocal—separate from kin 

Political 
organization 

Political power— Most important source 
Direct subsistence production 
Warfare wealth 
Tribute or taxes 
Slaves 
Contributions of free citizens 
Large landholdings 
Political office 
Foreign commerce 
Capitalistic enterprises 
Priestly services 

Cultural complexity Fixity of residence 
Nomadic  
Seminomadic  
Semisedentary 
Sedentary, impermanent 
Sedentary 

Sexual attitude and 
practice 

Frequency of premarital sex—Male 
Universal 
Moderate 
Occasional 
Uncommon 

Relative status of 
women 

Mythical founders of the culture 
All male 
Both sexes, but the role of men more important 
Both sexes, and the role of both sexes fairly equal 
Both sexes, but female role more important, or solely female 

Cultural theories of 
illness 

Theories of soul loss 
Absence of such a cause 
Minor or relatively unimportant cause 
An important auxiliary cause 
Predominant cause recognized by the society 

Female power and 
male dominance 

Female economic control of products of own labor 
Absent  
Present 

Political decision 
making and conflict 

Conflict between communities of the same society 
Endemic: high physical violence, feuding, and/or raiding occur regularly  
Moderately high, often involving physical violence 
Moderate: disputes may occur regularly but tendency to manage them in a more or less 
peaceful manner 
Mild or rare 

Nature of warfare Value of war: Violence/war against nonmembers of the group 
Enjoyed and considered to have high value 
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Examples of 
Cultural Categories  

Examples of Labels for Variables Within Categories 

Considered to be a necessary evil 
Consistently avoided, denounced, not engaged in 

SOURCE: Adapted from Murdock and Morrow (1970). 
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TABLE 3-2 Summary of Karabaich Group Stereotype Taxonomy  

Group 

Stereotype 

 

Description 

Social Shared interest but no clear political agenda 

Religious Shared beliefs and goals based on shared faith in particular dogma  

Economic Seek advances in their economic objectives 

Professional Shared interests, problems and objectives concerning their livelihood and profession  

Political Shared goals in addressing particular grievance, or advance specific set of rights or benefits.  
Success requires interaction with existing societal/governmental power structure and group works 
“within the system” 

Militant Shared sense of threat to fundamental values, rights or benefits and a desire to fight against the 
existing power structure that they blame. Group is willing to use violence and therefore generally 
operates in opposition to the power structure, or without its overt support 

Military Goal is to defend existing system by threat of or actual physical force.  Individual members may 
have joined voluntarily, due to social pressure, or been forced.  

 

SOURCE: Hudlicka (2004, Table 5.1-1 from Psychometrix technical report #1402, p. 48). 
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TABLE 3-3 Examples of Group Stereotypes  

Attribute Group Categories 

 Political Religious Militant 

Goals Influence Acceptance, validation, 
advance dogma 

Protect livelihood and 
values, influence, defy 
authority 

Goal scripts Propaganda, street 
demonstrations 

Good works, proselytizing, 

humanitarian/education 

Propaganda, attack 
symbols of power, attack 
infrastructure 

Acceptable means Work within existing 
power structure 

Work within existing 
power structure  

Work against existing 
power structure, violence 

Historical data  

(past behavior) 

   

Values/beliefs    

World view Neutral Neutral/friendly Hostile 

Demographics Heterogeneous Homogeneous in belief Homogeneous in religion, 
ethnicity, or 
socioeconomic status 

Motivation for joining    

 

SOURCE: Hudlicka (2004, Table 5.1-2 from Psychometrix technical report 1402, pp. 48-49). 
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TABLE 3-4 Findings Regarding Cultural Differences in Human Inference: Inductive Reasoning 

(Ability to Generalize from Limited Data) (Hudlicka, 2004) 

Category of Inference Findings 

Covariation judgment 

(Identifying correlations 
between cues) 

Ji, Peng, and Nisbett (2000) 

Chinese versus Americans 

Simple stimuli presented on computer screen 

Chinese more confident about judgments 

Chinese more correct in judgments 

Chinese showed no primacy effect 

Americans showing strong primacy effect 

“East Asian cognition has been held to be relatively holistic; that is, attention is paid to 
the field as a whole. Western cognition, in contrast, has been held to be object focused 
and control oriented. In this study East Asians (mostly Chinese) and Americans were 
compared on detection of covariation and field dependence. The results showed the 
following: (a) Chinese participants reported stronger association between events, were 
more responsive to differences in covariation, and were more confident about their 
covariation judgments; (b) these cultural differences disappeared when participants 
believed they had some control over the covariation judgment task; (c) American 
participants made fewer mistakes on the Rod-and-Frame Test, indicating that they 
were less field dependent; (d) American performance and confidence, but not that of 
Asians, increased when participants were given manual control of the test” 

Causal attribution  
(Identifying causal 
relations between cues) 
Social 

Miller (1984) 
Americans versus Hindu Indians 
Fundamental attribution error evident in Americans 
Hindu Indians attribute behavior to social roles, obligations, physical environment 
Attributed to different beliefs regarding causality (content difference) 
Morris, Nisbett, and Peng (1995)  
Americans versus Chinese 
Fundamental attribution (mass murderers, computer animations of fish) 
Americans attributed behavior to individual dispositions 
Chinese attributed behavior to environment 
Lee, Hallahan, and Herzog (1996) 
Americans and Hong Kong Chinese 
Sportswriters’ descriptions of events 
American writers focus on individuals 
Hong Kong writers focus on situational factors 
Nisbett (2003); Jones and Harris (1967) 
Americans and Koreans 
Judgment of another person’s attitude 
Americans assume due to disposition 
Koreans assume due to contextual influences 

Causal attribution 
Physical 

Asian folk physics is relational, emphasizing fields and force over distance 
Western folk physics focuses on nature of object itself, rather than its relation to the 
environment 
Peng et al. (2001, p. 252) 
Peng and Knowles (2003)  
Chinese versus Americans 
Force-over-distance explanations (aerodynamic, hydrodynamic, magnetic) 
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Americans referred more to nature of object 
Chinese referred more to the field 

Person perception Chiu, Hong, and Dweck (1997) 
Hong Kong Chinese versus Americans 
Judgment of self as fixed versus changing 
Americans assume fixed, enduring traits 
Chinese assume changing self 
Peng et al. (2001) 
Chinese versus Americans 
Type of information used in person perception judgments 
Americans focused on evidence provided by target 
Chinese focused on evidence provided about the target by others 

Inference of mental states Americans prefer “what you see is what you get” norm of authenticity 
Asians would consider this impolite  
Knowles, Morris, Chiu, and Hong (2001) 
Chinese versus Americans 
Judgment of mental states (thoughts, feelings, desires) 
Americans: focus on what “they say” 
Chinese: focus on what “they don’t say” 

Categorization General findings: 
• Some categories are more stable across cultures than others.  Examples of 

stable categories are: basic emotions, colors, basic shapes. 
• Westerners tend to categorize objects by color at an early age and by function 

later.  Africans tend to use color throughout their life.  (This finding may be 
related to formal education more than culture.) 

• More cultural influence for goal-based categories than for environment-based 
categories 

• More salient categories for a given culture are more highly differentiated 
(culture directs attention) 

• Culture determines types of features used in defining categories  
• Asians may be less attuned to categories in their inferences and category 

learning 
• Some evidence that Asians tend to use relational features as basis for 

categorization 
• Differences in “chronic accessibility” (less for Koreans than for Americans) 
• Possible differences in category acquisition (exemplar based versus rule 

based) 
• Self-descriptions (Americans in terms of fixed traits; Asians in terms of roles; 

more “socially diffused”) 
 

SOURCE: Hudlicka (2004, Table 3.2.2-1 from Psychometrix technical report 1402, pp   
 28-30). 
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TABLE 3-5 Findings Regarding Cultural Differences in Human Inference: Deductive Reasoning  

Category of Inference Findings 

Syllogisms Luria (1931, Russia); Cole (1996, Africa)  

Subjects did not engage syllogistic problems at the theoretical level (i.e., if asked to 
deduce something based on a presented syllogism, they would frequently think out of the 
box and suggest that the experimenter go find out for himself; why would x be true, etc.) 

Real-world (culturally relevant) grounding of topic makes a large difference in success on 
task  

Dialectical reasoning Asians: changing nature of reality and enduring presence of contradictions versus 
Western: linear epistemology built on notions of truth, identity, and noncontradiction 

Resolving contradiction: Chinese seek compromise; Americans seek exclusionary (either-
or) truth and resolution (Peng and Nisbett, 1999) 

Assumption in Eastern dialectical epistemology: 

• Principle of change—everything is always in flux (thus x may not be identical 
with itself because it may change over time) 

• Principle of contradiction—opposing qualities coexist 

• Principle of holism—everything is linked to everything else and isolating 
phenomena may lead to misleading conclusions 

• Folk wisdom: greater frequency and preference for dialectical (apparently 
contradictory proverbs) among Chinese than Americans 

Social 
contradictions/conflicts 

Americans tended to blame one side versus Chinese tended to see fault in both 

 

SOURCE: Hudlicka (2004, Table 3.2.2-2 from Psychometrix technical report #1402, p. 31). 
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TABLE 3-6 Differences in Emotion Elicitors Across Cultures: Summary of Findings 

Situation Emotion Elicited 

Birth of new family member More intense joy for Europeans/Americans than Japanese 

Body-centered basic pleasures More intense joy for Europeans/Americans than Japanese 

Achievement More intense joy for Europeans/Americans than Japanese; more fear for 
Americans 

Death of loved one More frequent triggers of sadness for Europeans/Americans than Japanese 

Physical separation from a loved one More frequent triggers of sadness for Europeans/Americans than Japanese 

World news More frequent triggers of sadness for Europeans/Americans than Japanese 

Strangers More frequent trigger of anger for Japanese than for Europeans/Americans; 
more fear for Americans  

Novel situations More fear for Japanese 

Negative developments in 
relationships 

More sadness for Japanese than Europeans/Americans 

SOURCE: Hudlicka (2004, Table 3.2.2-3 from Psychometrix technical report #1402, p. 33). 
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4 
Macro-Level Formal Models 

This chapter presents modeling approaches for representing the behavior of humans in groups and 
organizations.  It discusses system dynamics models first, followed by a discussion of several approaches 
to organizational modeling. 

SYSTEM DYNAMICS MODELS 

What Is System Dynamics Modeling? 

System dynamics modeling is a method of modeling the dynamic behavior of complex systems 
by breaking down these systems into simpler interconnected components (“blocks”) connected together 
via links or “wires” that connect one block’s outputs to another block’s inputs. This breaking down or 
recursive modeling continues until simple blocks can be defined in terms of well-understood interactions 
between the block’s inputs, outputs, and its “internal state.” Within any given block, this state is defined 
by the associated state variables, which are usually related by a set of differential equations that underlie 
the dynamics of that block.1  

To provide a quick illustration of the basic concepts involved, if one were to model the dynamics 
of two cars traveling down a straight road, one behind the other, one might specify four blocks: one for 
each car and one for each driver. Each car would have (a) two states: a speed and a position/location 
down the road; (b) a single input (or control) of acceleration, determined by the driver’s application of the 
gas or brake pedal; and (c) a single output, the position/location down the road.2 Simple differential 
equations, based on the laws of physics (and the vehicle acceleration/braking dynamics) would then be 
used to define the relation of the input (control) of the driver’s use of the gas pedal or brake to the car’s 
output, the position down the road. The second car would be modeled similarly. The trailing car driver 
would be likewise modeled as a block, with perhaps two inputs, distance and closing speed to the front 
car, and a single output, gas/brake pedal usage. The differential equations or “control law” relating driver 
inputs to driver outputs would be specified by well-understood manual control dynamics (see, for 
example, McRuer and Krendel, 1974). The lead driver could be modeled in “open loop” fashion, as a 
block with no input but with a randomly varying output of gas pedal pressure, leading to random speed 
behavior. By specifying each individual block’s behavior (via the inputs, the outputs, and the differential 
equations underlying the internal dynamics) and by linking up the appropriate inputs to the appropriate 
outputs of the four-block system, one then has a general system dynamics representation of the dynamics 
of the two-car, two-driver “system.”  

The fundamental power of this approach lies in four areas: 

                                                 

1The use of differential equations reflects the history of system dynamics modeling and its roots in electrical and 
mechanical engineering and control systems theory. 

2Two states suffice for a simple kinematic representation of the longitudinal (fore-aft) control of vehicle location; 
additional states would be added for finer grained representation of the situation if one were interested in modeling the effect of 
the detailed dynamics of the brake calipers, for example. The approach would be the same, however, via the introduction of yet 
another block placed between the driver’s brake pedal and the block representing the vehicle kinematics. 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

 

Prepublication Copy 

4-2 

• Systems dynamics concepts are tightly bound to the twin notions of (1) the dynamic behavior 
of systems over time and (2) feedback and cross-connectivity between different elements of 
the system. Dynamic behavior can evolve simply because of a system’s internal dynamics 
and its initial conditions (e.g., a frictionless swing set to infinite harmonic oscillation by an 
initial offset from the vertical). But the dynamic behavior is considerably more interesting 
when it is driven by the dynamics of yet some other system (e.g., someone pumping the 
swing ever higher and eliciting nonlinear swing behaviors), through a cross-coupling or 
feedback loop involving real physics or abstract information. And when these loops are 
contaminated by noise (an erratic “pumper”), time delays (a slow-to-respond pumper), and/or 
distortion in the form of frequency- or amplitude-selective feedback channels, then the 
opportunity exists for often unanticipated and sometime surprising behaviors across the 
system as a whole. These are often the characteristics of complex human-machine and 
human-human systems that modelers are dealing with. 

• The use of blocks, which can be made up of subblocks ad infinitum, so that any level of detail 
can be examined in a given model, within practical computational limits. Literally millions of 
state variables can be introduced—in a structured manner—to allow the finest grained 
examination of the impact of very small components (e.g., O-ring brake failure) on overall 
system behavior (e.g., a 20-car pileup on the Los Angeles freeway). In essence, this approach 
provides one means of modeling the “butterfly effect,” as an alternative to chaos theory, 
which models how small changes in the initial state (or initial conditions) of a nonlinear 
system can lead to large changes of the system state (or system trajectory) at some later point 
in time.3 The systems dynamics approach takes a bottom-up building block approach, which 
is appealing in its dependence on well-understood domain-specific theory and laws,4 whereas 
chaos theory takes a broader systems level view that, if more abstract, is well grounded 
mathematically. 

• The use of interconnected blocks ensures that the fundamentals of feedback are (nearly) 
always present. In the example above, the driving behavior of the lead driver clearly will 
affect the behavior of the trailing driver.5 Thus, subtle interactions can be accounted for, as 
one element of the system accounts for and accommodates to others. It often these feedback 
loops that give rise to unanticipated “emergent” behaviors (pilot-induced oscillations in 
aircraft handling, stock market crashes, etc.). 

• The use of blocks with “internals” that can be elaborated as the need arises. Generally, 
differential equations serve as the basis for a block’s dynamics, but it is straightforward to 
elaborate, via either the addition of subordinate blocks as just described or the addition of, for 
example, nonlinear characteristics (e.g., a limit on the acceleration obtainable via a fully 
pressed-down gas pedal in the above example). However, any such nonlinear additions often 
tend to make the theoretical analysis of such systems intractable, so that system dynamics 
analysts must then rely on simulation execution and analysis in order to understand or predict 
system behavior. 

                                                 

3The term “butterfly effect” was introduced by one of the pioneers of chaos theory, Edward Lorenz, in a paper given by 
him in 1972 to the American Association for the Advancement of Science (AAAS) in Washington, D.C. entitled Predictability: 
Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas? 

4See later comments on the limits to the system dynamics approach of building, from the ground up, models that seem 
plausible at each level, until they are actually run and compared with dramatically different real-world results. 

5And to explore the impact of the trailing driver’s behavior on the lead driver’s, one would merely need to add in a 
rear-view mirror into the model of the lead driver, and postulate the dynamics of lead driver behavior as a function of, say, 
trailing driver tailgating activity, thus fully “closing the loop” between the two drivers.  
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A specialized version of system dynamics modeling, and the main focus of this section, focuses 
on a fairly explicit representation of the system states, called “stocks” (entities that accumulate or deplete 
over time) and their associated “flows” (the rates of change of stocks) (Forrester, 1968). In essence, 
Forrester6 transformed the generic nth order differential equations characterizing general systems 
dynamic theory into n first order differential equations that are intuitively simple to understand and, via 
the associated programming language Dynamo, into a transparent graphic representation of the key 
interrelationships among variables (Richardson and Pugh, 1981).  Using Dynamo to implement these 
first-order relations, it becomes a relatively simple exercise in computational model development by the 
nonspecialist who may not have been schooled in differential equations and their specification or solution.  
Feedback and interconnections are introduced by defining how the level of one stock controls the flow of 
another. Nonlinearity is introduced via simple limits on stock levels and flow rates. 

A simple example is given in Box 4-1, which illustrates how two states (birth rate and death rate) 
define the flow of a third state (net growth rate). This is a simple open-loop example with no feedback, 
but it is not a difficult exercise to close the loop, for example, by postulating how population growth rate 
might influence economic growth rate, which could induce consumer confidence and, through that, cause 
birth rates to increase. 

An example showing this level of loop closure is given in Figure 4-1, which illustrates one 
component of a larger system dynamics model of the spread of an epidemic (Sage and Armstrong, 2000). 
The three state variables (stocks) are X1, the population susceptible to infection (susceptible population), 
X2, the population that is actually infected (infected population), and X3, the population that has 
developed an immunity to the infection (immune population). Note that boxes are used to represent these 
states graphically. The associated flows are LR (loss of immunity rate), IR (infection rate), and RR 
(recovery rate). Note that the valve symbols are used to indicate how the flows control the stock levels, 
via the following intuitive graphic analogy: flow into a block increases the stock level, while flow out 
deceases it.7 The diagram captures the following qualitative and, for the mathematically inclined, 
quantitative notions8: 

• For the states: 

o The susceptible population X1 will increase as the recovered lose immunity (LR) and 
decrease as the susceptibles become infected (IR). Or9 

 d(X1)/dt = LR – IR 

o The infected population X2 will increase as the susceptibles become infected (IR) and 
decrease as the infected recover (RR). Or 

 d(X2)/dt = IR – RR 
                                                 

6Although Jay Forrester’s name is the one most closely associated with the Systems Dynamics concept, his work owes 
much to the electrical engineering pioneers at Bell Laboratories working with feedback circuits and notions of system stability in 
the 1920s and 1930s (see, e.g., Black, 1977); the discipline of cybernetics developed at the Massachusetts Institute of Technology 
by Norbert Weiner and colleagues during the 1940s and 1950s (Weiner, 1948); and, more recently, practitioners who have done 
much to popularize its application to important problems in the social sciences, most notably Richardson and colleagues (see, 
e.g., Richardson and Pugh, 1981; Richardson, 1991).  

7Not explicitly shown is how the flows are influenced by the stock levels. 
8Note that in this set of equations and in subsequent sets, the asterisk (*) is not meant to represent a convolution 

operation or function composition, but rather a simple multiplication, in line with DYNAMO code conventions, as well as 
FORTRAN syntax, which was a popular computational language at the time of DYNAMO’s introduction. 

9d( )/dt is use to denote the first-order derivative of the associated variable. 
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o The immune population X3 will increase as the infected recover (RR) and decrease as 
the immune lose immunity (LR). Or 

 d(X3)/dt = RR – LR 

• For the flows (not illustrated for simplicity): 

o The infection rate (IR) increases both as the susceptibles (X1) increase and as the infected 
(X2) increases, due to the networked nature of spreading infections. Or10 

 IR = a*X1*X2 

o The recovery rate (RR) is directly proportional to the infected (X2). Or 

 RR = b*X2 

o Likewise, the loss of immunity rate (LR) is directly proportional to the infected (X3). Or 

 LR = b*X3 

Note the complete loop closure relating the three states, and the potential for continuing growth 
and decay of an infected population over time. Note also the potential for nonlinear behavior over time, 
because of the fundamental nonlinearity introduced via the infection rate equation (IR = a*X1*X2). 

The structure of system dynamics models can be characterized by four hierarchical levels, as 
shown in Figure 4-2.11 All interactions and impacts in the system dynamics model take place inside a 
boundary. Within this boundary, variables are chosen to represent the key states that define overall system 
behavior.  A derivative variable is chosen to control a flow into the state or level variable, which 
integrates or accumulates this level.  Information concerning the level is used to control the rate variable 
(state feedback to the same associated state).  In other words, we define a rate variable as the time 
derivative of a level or state variable and determine rate variables as functions of level variables. 

Some useful readings on system dynamics modeling methodology are Roberts, Anderson, Deal, 
Garet, and Shaffer (1983); Sterman (2000); Ogata (2003); and Karnopp, Margolis, and Rosenberg (2006). 
A more detailed description of system dynamics modeling and the equations it uses is available in Sage 
(1977) and Sage and Armstrong (2000). Comprehensive approaches to modeling complex projects—
including industrial and military—are described by Williams (2002). 

State of the Art in System Dynamics Modeling 

Early History of System Dynamics 

Jay W. Forrester created this focused version of system dynamics in the mid- to late 1950s at the 
Massachusetts Institute of Technology’s Sloan School of Management, basing it on the more traditional 
modeling used at the time, implementing differential equation models on analog computers. Forrester 
brought these concepts to the digital domain, codified them in the stocks and flows paradigm described 
above, and used this approach to model highly complex systems such as organizations and the urban 
environment (Forrester, 1961; see also Forrester, 1969). This novel approach of developing computational 
dynamic models of hitherto unmodeled phenomena led to the founding of the System Dynamics Group at 
the Massachusetts Institute of Technology in the early 1960s (see 
http://web.mit.edu/sdg/www/what_is_sd.html). 

                                                 

10The constants (a,b,c) are chosen on the basis of underlying knowledge of dynamics of infection, recovery, etc. 
11This description borrows heavily from Sage and Armstrong (2000, p. 237).  
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Forrester wrote several books on system dynamics methodology that provide the foundations of 
the field. The first was Industrial Dynamics (Forrester, 1961), providing a computational foundation for 
understanding the dynamics of organizations and processes in industry. Forrester then published Urban 
Dynamics (1969), which was the first noncorporate application of system dynamics (Radzicki, 1997). 
Shortly thereafter Forrester published World Dynamics (1971) in which he applied system dynamics 
methodology to the behavior of the highly interrelated forces of global dynamics (Sage and Armstrong, 
2000). Forrester’s student, Dennis Meadows, and colleagues expanded on World Dynamics in The Limits 
to Growth (Meadows, Meadows, Randers, and Behrens, 1972) and a follow-up, Beyond the Limits (1992) 
(Radzicki, 1997). The Malthusian projections that came from these early models not only alienated the 
growth-oriented policy makers of the West, but also brought severe criticism from many of the academics 
in the field (e.g., economists), because of the glaring mismatch between model “predictions” and what 
was actually occurring on the world stage. This became more apparent as time went on, and it is fair to 
say that this failure to meet empirical validation standards considerably dampened the initial enthusiasm 
that met the system dynamics viewpoint toward understanding the complex interrelations of complex 
systems.12 

More Recent Applications of System Dynamics Modeling 

More recently, there has been a resurgence of interest in system dynamics modeling, most 
particularly in public policy and business areas. Sterman’s text on Business Dynamics (2000) presents a 
number of case studies that demonstrate successful applications across a number of areas, including 
global warming, the war on drugs, reengineering the supply chain of a major computer firm, developing a 
marketing strategy in the automobile industry, and planning process improvements in the petrochemicals 
industry. The Department of Defense (DoD) has also taken a keen interest in this approach, particularly 
for modeling diplomatic, information, military, and economic (DIME) actions, and political, military, 
economic, social, information, and infrastructure (PMESII) interactions. It is not our intent here to survey 
all of these efforts, but merely to provide a few illustrative examples to indicate the potential of system 
dynamics modeling in this area. 

For example, Robbins’ Stabilization and Reconstruction Operations Model (SROM) (Robbins, 
Deckro, and Wiley, 2005) analyzes the organizational hierarchy, dependencies, interdependencies, 
exogenous drivers, strengths, and weaknesses of a country’s PMESII systems using a complex set of 
interdependent system dynamics representations. SROM models a country system in a holistic manner as 
a national model, which, as shown in Figure 4-3, is then defined in terms of its n regional submodels that 
interact with each other and the national model. Each regional submodule contains six functional 
submodels: the demographics submodel, the insurgent and coalition military submodel, critical 
infrastructure, law enforcement, indigenous security institutions, and public opinion. Each submodel is 
comprised of approximately 600 model parameters, 90 random variables, 80 states (stocks), and 190 rates 
of change (flows). 

Figure 4-4 shows a portion of the critical infrastructure model of SROM. The model captures a 
sequence of influences among variables, starting from the power supply at an electrical substation. The 
generated power is fed into an industrial water plant, which produces water consumed by oil field work. 

                                                 

12However, system dynamics modeling has been applied to several other areas, including software project dynamics 
(Abdel-Hemid and Madnick, 1991), organizational learning (Senge, Kleiner, Roberts, Ross, and Smith, 1994; Morecroft and 
Sterman, 1994), agriculture (Elmahdi, Malano, and Khan, 2006), health care management (Rohleder, Bischak, and Baskin, 2007), 
and transportation (Springael, Kunsch, and Brans, 2002). 
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An oil field produces crude oil to be refined by a refinery. Finally, refined fuel is used to generate power, 
which in turn is supplied to various power substations, thus forming a closed loop. 

SROM has been demonstrated in modeling and analysis of Iraqi reconstruction and recruiting 
efforts (Robbins et al., 2005). Parameters were set to reflect prevailing conditions in Iraq on 1 May 2003, 
including 

• Regional makeup (governorates) 

• Regional population 

• Population subgroup distribution 

• Population support for coalition 

• Oil and gas infrastructure 

• Power infrastructure 

• Transportation infrastructure 

• Economic—regional gross domestic product 

 

Robbins (2005) claims that the SROM allows analysts to more precisely investigate the 
multifaceted process that is nation building: “[Because] the complexities of nation-building involve many 
different but interrelated systems and institutions, understanding the significance of the dynamic 
relationships between these systems and institutions is paramount to operational success. The system 
dynamics model proposed in this study allows decision-makers and analysts to investigate different sets 
of decision approaches at a sub-national, regional level” (p. 135). 

The Pre-Conflict Anticipation and Shaping (PCAS) program (Popp et al., 2006) was an attempt to 
evaluate alternative DIME/PMESII modeling efforts to predict nation-state collapse and to anticipate 
instabilities that might lead to conditions necessitating military intervention. One of the approaches, led 
by Nazli Choucri, developed a “state stability model” using a system dynamics approach; a high-level 
view of the model is given in Figure 4-5. 

 According to Popp (2005, p. 000)[page no. for quotes], it “shows loads, demands and stresses on 
state and the causal dependencies; shows feedback loops, tipping points and unintended consequences; 
[and] shows the internal and lateral pressures that can lead to conflict.” By looking at the loads (demands) 
placed on the system (nation-state) and evaluating those demands in terms of the system’s capabilities, an 
assessment of stability can be made based on how much demands exceed capacity. 

Finally, O’Brien’s Integrated Crisis Early Warning System (ICEWS) is a new program at 
DARPA/IPTO aimed at following on from the PCAS exploration just described.  According to the 
announcement of the research program, its goal “is to develop a comprehensive, integrated, automated, 
generalizable, and validated system to monitor, assess, and forecast national, sub-national, and 
international crises in a way that supports decisions on how to allocate resources to mitigate them. 
ICEWS will provide Combatant Commanders (COCOMs) with a powerful, systematic capability to 
anticipate and respond to stability challenges in the Area of Responsibility (AOR); allocate resources 
efficiently in accordance to the risks they are designed to mitigate; and track and measure the 
effectiveness of resource allocations toward end-state stability objectives, in near-real time” (see 
http://www.arpa.mil/ipto/solicitations/open/07-10_PIP.pdf, accessed July 2007). 

Environments for System Dynamics Modeling 

The earliest computer-based system dynamics simulations were created by Richard Bennett, who 
developed the SIMPLE (Simulation of Industrial Management Problems with Lots of Equations) 
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compiler in 1958 (Forrester, 1989). In 1959, Phyllis Fox and Alexander Pugh used the SIMPLE compiler 
to form the DYNAMO simulation package, which was used as the standard system dynamics language 
for over 30 years (Radzicki, 1997). 

There are several computer-based simulators that are used to model system dynamics problems. 
The DYNAMO system dynamics simulation language is described in Richardson and Pugh (1981) and a 
personal computer–based language, STELLA, is discussed in Richmond and Peterson (1992).  Other 
software packages that are used for system dynamics modeling include Powersim, Vensim, MapSys, 
Simile, and Evolución. The tradition of easy model development is also carried on via the Ptolemy 
systems modeling language developed by Buck, Ha, Lee, and Messerschmitt (1994). 

Relevance, Limitations, and Future Directions 

The relevance of the systems dynamic approach to the problems addressed by this panel is 
manifest both by the early work by Forrester and colleagues in attempting to model organizations, cities, 
nations, and overall world dynamics and by the current resurgence in interest by DoD in retackling these 
very hard problems, in recognition of the “soft” nature of warfare now dominating current conflicts. The 
fundamental appeal of this methodology is due to the strengths noted earlier: 

• Systems dynamics concepts provide a means of representing critical dynamic behavior of 
systems over time, as well as feedback, and cross-connectivity between different elements of 
the system.  

• The use of blocks that can be made up of subblocks ad infinitum, so that any level of detail 
can be examined;  

• The use of interconnected blocks that ensures that the fundamentals of feedback are (usually) 
always present, enabling emergent behavior; 

• The use of blocks with internals that can be elaborated as the analysis need arises, both in 
terms of resolution and modeling fundamentals.  

One of the major limitations of the system dynamics approach is that its strong grounding in a 
mathematical description of the organizational dynamics (namely, first-order differential equations) tends 
to preclude participation by researchers and modelers who are more linguistically and semantically 
oriented, for example, those working in causal networks, expert systems, or the like. Attempting to bring 
these different communities together is not a trivial task, as evidenced by the experience of the PCAS 
program, and attempting to integrate across these different methodologies is likewise problematic, as 
described in Chapter 8. 

Another limitation is verification and validation, since these models are particularly easy to build by 
making simple assumptions about structures, feedback path, and parameter values, without ever relying 
on “real” data.  As noted by Sage and Armstrong with respect to the urban modeling effort of Forrester: 
“Forrester's interest in modeling the city is a somewhat abstract one in that he does not fit the data and 
parameters for his city to any particular city.  Effort is primarily directed at discovering the essential 
features of the city and expressing relationships between these features in mathematical terms as 
difference equations” (Sage and Armstrong, 2000, p. 253). 

 A system dynamics model must have both behavioral and structural validity (Quadrat-Ullah, 
2005). Forrester and Senge (1980) presented some tests for determining if a model has structural validity: 

• Boundary adequacy: whether the important concepts and structures for addressing the policy 
issue are endogenous to the model. 

• Structure verification: whether the model structure is consistent with relevant descriptive 
knowledge of the system being modeled. 
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• Parameter verification: whether the parameters in the model are consistent with relevant 
descriptive and numerical knowledge of the system. 

• Dimensional consistency: whether each equation in the model dimensionally corresponds to 
the real system. 

• Extreme conditions: whether the model exhibits a logical behavior when selected parameters 
are assigned extreme values. 

Finally, there are a number of potential directions for future research and development (R&D) 
efforts, including bridging the gap to models and simulations that are not so formally mathematically 
defined, improving model composability from smaller component libraries (Davis and Anderson, 2004), 
and ensuring that the difficult problem of verification and validation does not outstep the progress being 
made in developing development environments that are easy to use.  

ORGANIZATIONAL MODELING 

An organization consists of a number of individuals who must work together to achieve a goal.  
Corporations, governmental bureaus, religious organizations, the Armed Forces, divisions, squads, and 
teams are all organizations; they are everywhere and each of us can be members of many organizations.  
A fundamental aspect of an organization is that the organizational task requires the efforts of many 
individuals who must work together to accomplish this overall task.  The big task is broken down into 
smaller sub-tasks or jobs which must then be coordinated in order to achieve the organizational goal.  
Each organization is the context or structure for the individuals to achieve their own smaller tasks.  
Individuals are linked through the organizational structure. 

What Is Organizational Modeling? 

Organization theory is a study of the structure, behavior, and performance of the organization 
(Scott, 1998) in order to describe, explain, and predict.  Basic questions include: Under what 
circumstances is decentralization better than centralization? When should an organization be highly 
formalized with many rules and when should it be more informal? When should the information and 
communications follow the hierarchy, and when should there be many cross-hierarchy exchanges? When 
should tasks be grouped together by task specialization and when by purpose—all for better performance? 

There are many ways to describe an organization.  One generally thinks of an organization in 
terms of its task assignment and its hierarchy of command and control.  Another more basic description is: 
Who does what, when, and where?—the four Ws of an organization.  The “who” is the individual; the 
task assignment is the “what”; the “when” introduces the time of action; and the “where” is the location.  
This is a rather complete description of an organization; leaving out only the how (with what resources 
and knowledge) and the why (with what goals).  Beyond a few individuals, it is difficult to think about an 
organization at this level, without the use of dynamic network analysis models, so we introduce 
organizational properties, such as decentralization and formalization, or rules for how decisions are made 
and the information communicated, and the behavioral patterns or routines that are repeated.  In 
information-processing terms, the Ws take on a slightly different aspect: who talks to whom about what 
(communication networks, which may be hierarchical) and who decides what to do (decision-making or 
command structure).  In modern information-intensive organizations, the information-processing view of 
an organization is a frame for both describing an organization and designing it (Burton and Obel, 2004). 

Organizational design is the complement of organization theory in which one specifies what the 
organization should be, beginning with the purpose of the organization and then specifying the tasks and 
coordination mechanisms or communications and decision-making structures.  The focus goes beyond 
what is or has been to what might be and then what should be (Burton, 2003).  A good design requires a 
good understanding of organization theory, as the theory indicates what is feasible and not feasible in the 
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circumstances.  Organizational design can be the specification of what the organization should be: its 
hierarchy, its formalization, its decentralization, its communications, and its coordination and control 
mechanisms—an information-processing view.  Or the term “organizational design” may describe the 
process of finding a good design and the issues of change or redesign.  Organizational design is used both 
as a noun for what the design should be and as a verb for the process of determining the design.  We 
discuss both below. 

In the social and managerial sciences, the research on organizations is deeper in organization 
theory than organizational design, although the opposite tends to be true in engineering. In general, 
however, the focus has been on the “what is” description of organizations and explaining what has 
happened—to enhance understanding of how organizations behave.  There are theories of bureaucracy, 
routines as rules and patterns, decentralization, coordination, and control; all yield hypotheses for 
confirmation or rejection.  For the most part, these hypotheses have been examined empirically.  
Researchers have used field data and, to a much lesser extent, lab experimental data to test the hypotheses 
and add to the understanding of organizations.  In addition, some researchers take an ethnographic 
approach in which they gather more detailed data about an organization, describe it in great depth, and in 
doing so generate emergent hypotheses and theories.  For both approaches, there is an emphasis on the 
data gathered from organizations using an inductive approach for understanding. 

There has been a smaller effort on formal mathematical modeling of organizations using a 
deductive approach, in which the analysis of the models yields insights and hypotheses that can be tested 
using field or lab data. This includes optimization approaches, in which the structure of the organization is 
optimized to meet the demands of the mission and tasks to be performed (Pattipati, Meirina, Pete, 
Levchuk, and Kleinman, 2002). 

Simulation or computational models offer a third approach (Axelrod, 1997).  Simulation 
modeling is distinctively different from both approaches described above yet also has characteristics of 
both.  First, a simulation model of an organization, which includes its structure and agents, generates 
behavioral and performance data on the organization, which can be analyzed as if they were field data.13  
These are frequently called virtual experiments.  Agent-based models explicitly model both the agents or 
individuals and the decision-making structure of the organization, which includes the communication and 
authority links among the agents.  In these experiments, the simulation model parameters can be varied 
beyond what can be observed from field or lab data to explore what might be; for example, new structures 
and decision procedures can be created, and even the information-processing characteristics of the agents 
(human or machine) can be varied.  In both situations, the simulation models generate a larger set of 
possibilities from which to gain insight and understanding.  Second, simulation models can be similar to 
mathematical models, but they are more complex and not amenable to closed-form solutions.  Here, the 
simulation model can be used to explore and generate hypotheses for further investigation in the field or 
lab. 

                                                 

13We emphasize “as if” for two reasons: first, the simulation-generated data can be processed and analyzed via the 
same methods and toolsets used for real-world data. This is clearly an advantage both in terms of economical reuse of methods 
and software already developed for real-world data, and in terms of ease of comparing processed and analyzed data collected 
from the two domains (simulated and real-world). This latter case is particularly important, since it is often impossible to 
compare, for example, single-time histories of organizational “state” recorded from real and virtual experiments (because of 
“noise,” for example), whereas it is possible to compare processed data, obtained from time- or ensemble-averaged statistics 
calculated over many “runs,” both virtual and real. 

The second reason for the emphasis on “as if” is not so positive. Because simulation-generated data can be made to 
look so much like real data, they are often confounded, and researchers can be led to overinterpret the results of a simulation, 
coming to conclusions as if they had been looking at real data generated by real-world experiments (or at real-world data 
generated by an experiment which grew out of a hypothesis created by a simulation-based virtual experiment), rather than at data 
generated by a simulation that has not been adequately validated. 
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Simulation models free one from the constraints of mathematical models in which closed-form 
equilibrium solutions are required.  Simulation models free one from the size and scale restrictions of lab 
experiments and from the limitations of field data, which necessarily are historical and limited to what did 
happen—not what could have happened.  For action, we are interested in the alternatives available and 
what might happen—which is broader than what has happened in the past. 

State of the Art in Organizational Modeling 

Here, we focus on simulation or computational organizational models.  A number of books 
contain overviews and examples of many models in this area (Carley and Prietula, 1994; Carley and 
Gasser, 1999; Lomi and Larsen, 2001).  Some models consider organization theory questions; others are 
more oriented to organizational design questions; and some can be used for both purposes.  We begin 
with the theory models and then consider the design models, with comments when the models can be 
used both ways. 

Organization Theory Models 

There are numerous organization simulations or computational organizational models; here we 
review a few of them.  Most, but not all, are agent-based models in which the organization is represented 
as agents that are linked together by communication or authority structures or both. 

The earliest computational organizational model was a behavioral theory of the firm in which the 
organization was modeled in terms of goals, expectations, and choice (Cyert and March, 1963). Simple 
systems were used to demonstrate how nonrational behavior could generate behavior similar to that 
observed in real organizations.  This was then extended in the now canonical model, the garbage can 
model of organizational choice (Cohen, March, and Olsen, 1972).  This was a simple Fortran program in 
which basic matching and accumulation functions were combined to show how variations in the problem 
access, salience of problems, and energy of the participants altered the level of work and the quality of 
outcomes. 

The Lin and Carley models look at organizations as networks of communication linkages among 
agents, such that agents learn only from the information that they get from the outside world or that is 
provided to them by another agent in the organization (Lin and Carley, 2003; Lin, Zhao, Ismail, and 
Carley, in press).  Using these models, they investigated questions of crisis response.  They conducted a 
“matched-set” validation experiment, in which they compared the behavior of 69 real-world organizations 
faced with industrial crises with the behavior of the simulated versions of those same 69 companies.  
Using what-if analysis, they were then able to show that the type of decision making employed by the 
organization—for example, following standard operating procedures or following the dictates of 
historically based experience—often led organizations to false conclusions about their performance. 

This work was generalized and extended to produce the OrgAhead model.  OrgAhead is a 
multiagent model of organizational design and the examination of the impact of learning and strategic 
adaptation on that design (Carley and Svoboda, 1996).  In this model, learning occurs at the operational 
and structural levels, using experiential and expectation-based learning models.  From a technical 
standpoint, the model uses simulated annealing14 to alter the communication and authority lines and 
number of agents.  The agents are information-processing units with a simple learning component.  
OrgAhead can be thought of as an operationalized grounded theory. The basis for OrgAhead is the body 
of research, both empirical and theoretical, on organizational learning and organizational design.  The 

                                                 

14Simulated annealing is a technique to find a good solution to an optimization problem by trying random variations of 
the current solution. A worse variation is accepted as the new solution with a probability that decreases as the computation 
proceeds. The slower the cooling schedule, or rate of decrease, the more likely the algorithm is to find an optimal or near-optimal 
solution (see http://www.nist.gov/dads/HTML/simulatedAnnealing.html, accessed 8/21/07). 
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model has built into it several theories of different aspects of organizational behavior.  From the 
information-processing tradition comes a view of organizations as information processors composed of 
collections of intelligent individuals, each of whom is boundedly rational and constrained in actions, 
access to information by the current organizational design (rules, procedures, authority structure, 
communication infrastructure, etc.), and his or her own cognitive capabilities.  Organizations are seen as 
capable of changing their design (DiMaggio and Powell, 1983; Romanelli, 1991; Stinchcombe, 1965) and 
as needing to change if they are to adapt to changes in the environment or the available technology (Finne, 
1991).  Different organizational designs are seen as better suited to some environments or tasks than 
others (Hannan and Freeman, 1977; Lawrence and Lorsch, 1967).  Aspects of the model have been tuned 
to reflect the findings of various empirical studies related to these theories.  The set of theories that are 
unified into a single computational theory of organizational behavior interact in complex fashions to 
determine the overall level of organizational performance. 

Harrison and Carroll (1991) investigated the effect of turnover on organizational culture for 
different prototypical organizations and policies.  Their model is stated as a set of mathematical functions, 
which are then simulated and yield data that are analyzed as if they were field data.  The model is 
essentially a cultural diffusion model operating at the group level.  On the basis of “virtual experiments” 
conducted with the model and a follow-on analysis of the resulting simulation-based data, they found that 
some employee turnover can help stabilize the culture of the organization, suggesting that some 
previously held truths about turnover are not general. 

An alternative information diffusion model is Construct, developed by Carley to examine the 
coevolution of structure and culture that results from individual information exchange and the formation 
and dissolution of social networks (Carley, 1991).  Construct has been used to examine the impact of new 
technologies on the workplace (Carley and Schreiber, 2002), performance under diverse leadership styles 
(Schreiber and Carley, 2004), and the emergence of organizational vulnerabilities (Carley, 2004). 

NK models, originally suggested by Kauffman, are simple optimization models, often 
operationalized using genetic algorithms, in which N is the number of actors and K is degree of 
connectedness among the actors (Kauffman, 1989).  NK models have been applied to organization theory 
questions of adaptation (Levinthal, 1997), search and stability (Rivkin and Siggelkow, 2003), modularity 
and innovation (Ethiraj and Levinthal, 2004), imitation and benchmarking (Rivkin, 2000), and other basic 
questions about organizations.  The explicit modeling of rugged landscapes permits one to understand the 
limitations of organization explanations that implicitly assume smooth performance surfaces. It also 
yields greater insights into the persistence of variety among organizations. 

The SimVision model (earlier called VDT) is a project organization model (Levitt, Thomsen, 
Kunz, Jin, and Nass, 1999) which explicitly models the project tasks (similar to a critical path method 
network) and the hierarchical organization structure.  In essence, this model is the merger of Gantt chart 
technology with a limited information-processing model for the agents.  The project tasks are linked by 
the project network, and each task is assigned directly to an agent in the hierarchy.  SimVision has been 
used as a laboratory for organization experiments.15 For example, Carroll, Burton, Levitt, and Kiviniemi 
(2006) found that “fast tracking” or concurrent engineering of projects quickly leads to increased 
coordination demands that do not reduce total project time; additional personnel can also increase project 
time as they require time to manage; and decentralization increases coordination demands.  Earlier, Kim 

                                                 

15In the studies cited here it must be remembered that the conclusions drawn from analysis of the simulation-based data 
(in turn generated by virtual experiments in the simulation domain) are not to be confounded with conclusions drawn from an 
analysis of homologous real-world data. This is in keeping with our earlier footnote regarding how simulation-based data can be 
analyzed as if it were real-world data. It often can, but the fundamental issue still remains regarding the validity of applying the 
simulation-based conclusions to real-world organizational behavior. Naturally, the more validated the model, the more likely one 
is to be correct in cross-applying one’s conclusions.  
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and Burton (2002) found that decentralization reduces project time but may also decrease quality. Long, 
Burton, and Cardinal (2002) demonstrated that three simultaneous control approaches are better than any 
single control approach.  These studies began with organizational questions and observations of real 
organizations as base models.  The simulation experimental manipulations (“virtual experiments”) went 
beyond real-world observations to investigate plausible conditions of what could happen for a better 
understanding of potential outcomes.  Field observations and generalizations are limited in their 
applicability and should be used with caution in the design of future organizations.  Simulation studies 
provide deeper insight into what is possible and what is desirable for organizational redesign and change.  
SimVision can also be applied as an organizational design model. 

Organizational Design Models 

The term “organizational design” is used both to mean the design of the organization and the 
process of design.  The two meanings are different but closely related.  In a special issue of Organization 
Science, Dunbar and Starbuck (2006) focus on the process of organizational design in its many facets.  
The articles give insight into how design can be accomplished and the challenges encountered. 

SimVision was applied to investigate organization theory questions.  But it was originally created 
as an organizational design tool to help project managers optimize projects and project management 
implementation (Levitt, 2004)  This included avoiding unforeseen bottlenecks and finding options to 
compress project time.  One of the insights is that project managers adapted quite well to minor variations 
from the normal base case but less well when there were large changes in requirements.  The simulations 
were extremely useful in aiding project managers reframe the project and redesign the project. 

Pattipati and colleagues (Pattipati et al., 2002; Levchuk, Levchuk, Luo, Pattipati, and Kleinman, 
2002a; Levchuk, Levchuk, Luo, Pattipati, and Kleinman, 2002b; Levchuk, Levchuk, Meirina, Pattipati, 
and Kleinman, 2004) have used multiobjective optimization algorithms to develop organizational designs 
optimized to meet mission requirements for military command and control organizations, focusing 
specifically on Joint Task Force command teams.  These designs specify both structure and process by 
specifying roles in the organization defined in terms of control of resources, responsibility for tasks, and 
requirements for coordination.  Designs are then tested in simulations of organizational performance and 
finally tested in field experiments in which military officers play the roles that were designed using the 
model.  Studies have shown that optimized organizational designs based on the model result in 
performance that exceeds that observed under more traditional designs suggested by military subject 
matter experts (Entin, 1999).  A key finding of this work is that sufficient training is essential for the 
officers to function effectively in the innovative organizational structures developed using the model. 

Carroll, Gormley, Bilardo, Burton, and Woodman (2006) describe an organizational design 
process at the National Aeronautic and Space Administration (NASA), where SimVision and other 
organizational design tools were used as decision aids in creating a new organization.  The challenge was 
to create an organization that had multiple functional experts, was geographically disperse, and had severe 
resource constraints in which project time and quality were paramount.  The design team began with the 
construction of the design structure matrix (DSM); it gave a good beginning but generated questions as 
well as answers.  Next, they used OrgCon—an expert system organizational diagnosis and design tool—
to model the proposed organization at a high level in terms of structural properties, such as formalization 
and decentralization.  One purpose of this modeling was to identify “misfits” (Burton and Obel, 2004) 
that suggested a need for change; they found few of them.  But many questions remained.  Then they 
created a SimVision of the proposed design to obtain greater detail and better understanding of how the 
organization would actually work.  Using variations in the design, they confirmed that the design 
developed with the aid of the tools was reasonable.  Perhaps most importantly, the usual organizational 
design approach would have resulted in an organization that would have failed to meet the goals and 
would have incurred delays and unanticipated costs.  The results indicate that the tools can make a 
difference and lead to better designs; furthermore, the theory-based notion of organizational misfits aids 
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in the process.  It can be a bridge between theory and design and theory and practice, as managers find the 
identification of misfits and their correction both intuitive and practical.  NASA had been accustomed to 
using simulations in engineering design but not in organizational design.  Nonetheless, the culture was 
amenable to the application of such tools for organizational design. 

Similarly, OrgAhead was built to explore the relative effectiveness of different organizational 
designs.  For example, it was used to determine the adaptability and performance characteristics of 
different designs under consideration by the Naval Strategic Studies Group.  Construct, referred to earlier, 
has also been used to evaluate various organizational designs under different turnover regimes.  Moreover, 
when data are collected on the who, what, where, and how of organizations, such data can first be 
assessed for points of vulnerability in ORA and then Construct can be applied to the same empirical 
description of the real organization to forecast its behavior in terms of information diffusion and 
performance with or without turnover (Carley, Diesner, Reminga, and Tsvetovat, 2005). 

Levis and Wagenhals (2000) and the subsequent work with Shin, Kim, Bienvenu, and Shin, led to 
the development of a Petri net model for designing and assessing organizational architectures (Bienvenu, 
Shin, and Levis, 2000; Wagenhals, Shin, Kim, and Levis, 2000).  Modeling agents, their resources, and 
the decision process, this overall approach makes possible the fine tuning of detailed designs of core 
groups in organizations.  This approach has been used consistently to evaluate command and control 
structures.  The key advantage of this approach is that designs can be optimized to the specific 
communication and timing requirements. 

 

Relevance, Limitations, and Future Directions 

The relevance of organizational models to the requirements outlined in Chapter 2 is obvious.  
Representative tasks, such as designing effective organizations and disrupting adversary organizations, 
are clear candidates for the use of such models.   If it were possible to accurately assess the probable 
effectiveness of various organizational options before implementing them, much effort could be saved 
and many potentially catastrophic mistakes avoided.   

Limitations of such models as they now exist include requirements for data that may be totally 
unavailable or unavailable in appropriate formats and structures, the need for culturally appropriate 
information on which to base assumptions and algorithms, especially for non-Western organizations, and 
technical issues requiring further development and refinement of the models themselves.    

Research and development requirements include better methods for obtaining and using 
organizational performance data to provide leaders and managers with better tools for restructuring their 
organizations as necessary.  The vast majority of current model-based organizational design methods are 
static.  That is, they use prior performance data about the organization to develop future designs, but they 
do not use “streaming” performance data as it comes in to understand or modify the organization’s 
structure and processes in real time.  Organizational models that could accept and use real-time data could 
provide a tool for making organizations more flexible and able to adapt to changing conditions and 
missions more quickly. 

An additional area in need of research is the ability to combine models at different levels of 
granularity and detail to represent large organizations, as well as the advantages and drawbacks of 
including more or less detail.  Including detail for all of the individuals in a large organization can quickly 
lead to intractable size and computational infeasibility, but system level models may not be able to 
represent the detail that leads to emergent behavior. For example, systems dynamics models could be 
developed at the level of the entire organization, with individual agents developed to represent key 
individuals or groups in the organization. Data could flow in both directions between the detailed agent-
based models and the organization-level system model.  Challenges and existing approaches for 
developing such integrated multilevel models are discussed in Chapter 8.  
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Finally, innovative experimentation approaches are needed to advance the state of the art in 
organizational modeling.   Systematic controlled experiments are not feasible for organizations of any 
size—team experiments rarely include more than 6-8 team members. However, the development of 
agents that can represent the behaviors of members of the organization in a realistic way opens the door 
for “hybrid” experiments in which most roles in the organizations are played by agents, with only a few 
played by live subjects.  Research is needed on the best ways to use this hybrid experimentation capability 
to advance organizational science: the types of questions that can best be addressed in such experiments, 
the best ways to “control” such experiments in the classical sense of experimental control, the level of 
fidelity needed in the agents, and the statistical techniques needed for analysis of the results. 
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 BOX 4-1 

The Equation, Variables, and Mathematical Representations for Birth and Death Used In 
Population Modeling 

 

Description of variables 

( )tβ  : Average birth rate per unit person in the population at time t 

( )tΔ  : Average death rate per unit person in the population at time t 

( )tnμ  : Expected value 

 

Mathematical representation of birth rate, death rate, and average rate of population 
growth 

( ) ( )tt nμβ : Total average birthrate  

( ) ( )tt nμΔ : Total average deathrate 

( ) ( ) ( )[ ] ( )ttt
dt

td
n

n μβμ
Δ−=  : Average rate of population growth (the difference 

between the total average birth rate and death rate) 
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FIGURE 4-1 Example of a system dynamics model that shows the partial system dynamics description 
for propagation of a potential epidemic.  

SOURCE: Adapted from Sage and Armstrong (2000, p. 235). 
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FIGURE 4-2 The four hierarchical levels of system dynamics modeling. 

SOURCE: Sage and Armstrong (2000, p. 237). 
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FIGURE 4-3 Top level nation SROM.  

SOURCE:  Robbins et al. (2005, p. 19). 
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FIGURE 4-4 SROM infrastructure model. 
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FIGURE 4-5 High-level view of system dynamics implementation of state stability model SOURCE: 
Popp (2005)[page no. for figures]. 
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5 
Micro-Level Formal Models 

In this chapter we discuss several micro-level formal models of human behavior, models that 
most often are concerned with the behavior of individuals.  We begin with cognitive architectures, 
followed by cognitive-affective models that consider the effect of human emotions on cognition and 
behavior, as well as of behavior on emotions.  We then discuss expert systems, a legacy modeling 
approach that provides a framework for representing human expertise, and that now is often used as a 
programming paradigm in decision aiding systems.  Finally we discuss decision theory and game theory 
and their limited applicability to IOS modeling in general. 

For each model or approach, we follow the same discussion framework as in Chapters 3 and 4:  
we present the current state of the art, the most common applications of the approach, its strengths and 
limitations for the problems described in Chapter 2, and suggestions for further research and development. 

COGNITIVE ARCHITECTURES 

Cognitive architectures are simulation-based models of human cognition.  Their distinguishing 
feature is the broad focus on modeling the full sequence of information processing (stimulus-to-behavior) 
mediating adaptive, intelligent behavior. Cognitive architectures are built both for basic research, and for 
applied purposes. Different architectures typically emphasize distinct aspects of human cognition (e.g., 
memory, multitasking, attention, learning, etc.), depending on their research objectives or application 
goals.1 

Typically, cognitive architectures are used to model individual cognition. Less often, the 
applicability of this approach for modeling collective behavior has also been explored, that is, using a 
cognitive architecture to model the behavior of a group, team, or organization. The utility and 
appropriateness of this approach to modeling group cognition has yet to be demonstrated, however,2 and 
so we have restricted our discussion here to covering the use of individual cognitive architectures to the 
modeling of individual behavior. 

Cognitive architectures have their roots in the early artificial intelligence (AI) models of human 
problem solving developed in the 1950s.  These models combined a number of key ideas emerging from 
observations of human problem solving and behavior, including symbolic processing, hierarchical 
organization of goals, problem spaces, rule- and heuristic-based behavior, and parallel and distributed 
representation and computation. 

A number of cognitive models were developed in the 1970s and 1980s, such as the Model Human 
Processor (MHP) and Goals, Operators, Methods, and Selection rules (GOMS) (Card, Moran, and Newell, 

                                                 

1Indeed, this report’s focus on models and simulations that can contribute to some element of improving forecasting or 
explanation in a DoD context may limit the ultimate utility of applying some of the models described herein (and elsewhere in 
the report) in a broader nonmilitary context. Some researchers may argue that this is not the case because of inherent model 
generality, but this general issue goes beyond the original scope of the study and clearly deserves further study. 

2Researchers are beginning to suggest future work in this area; see, for example MacMillan (2007).  
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1986), focusing on modeling a single function in the context of a single task and most often applied to 
models of human-computer interaction and, in particular, to the design and evaluation of user interfaces. 
Although limited in scope, these models provided the necessary methodological foundations for the more 
broadly scoped cognitive architectures of today, by demonstrating the feasibility and benefits of 
computational cognitive models, primarily in the context of human-computer interface design. 

What Are Cognitive Architectures? 

Cognitive architectures are computational, simulation models of human information processing 
and behavior.  Cognitive architectures are also referred to as agent architectures, computational cognitive 
models, and human behavior models3.  These simulation-based models aim to implement some version of 
a unified theory of cognition (Newell, 1990) by modeling the entire end-to-end human information 
processing sequence, beginning with the current set of stimuli and ending with a specific behavior.  

 Cognitive architectures are typically classified into three broad categories, depending on their 
approach to knowledge representation and inferencing: symbolic, subsymbolic (also referred to as 
parallel-distributed), or hybrid (combining elements of the former two). Symbolic architectures use one or 
more propositional knowledge representation formalisms, such as rules, belief nets, or semantic nets.  
Subsymbolic, parallel-distributed architectures typically use some type of a connectionist representation 
and inferencing (e.g., recurrent neural networks), in which the mapping between conceptual entities and 
the representation is not one-to-one, because the knowledge is distributed over multiple representational 
elements (e.g., nodes within the network).  Hybrid architectures use elements of both representational 
formalisms and are becoming increasingly common, as the benefits of the combined symbolic-
subsymbolic knowledge representation and inferencing are recognized.  

The specific functions represented in a particular architecture depend on its objective, level of 
resolution, and theoretical underpinnings. These also determine the specific modules that make up a given 
architecture. In most symbolic architectures, the modules and process structure correspond to (a subset of) 
the functions comprising human information processing. Most architectures thus contain some subset of 
the following broad cognitive and perceptual processes: attention, situation assessment, goal management, 
planning, metacognition, learning, action selection, and necessarily some form of memory (or memories), 
such as sensory, working, and long-term.  

Thus, for example, an architecture attempting to model recognition-primed decision making 
(RPD) would have a module dedicated to situation assessment, since that is a core component of the RPD 
theory (Klein, 1997); an architecture focusing on models of learning would have corresponding modules 
responsible for such functions as credit assignment and creation of new schemas in memory.  It should be 
noted here that most existing cognitive architectures are not capable of learning (Morrison, 2003).  While 
some architectures, such as Soar, do contain elements of learning (e.g., creation of new operators by 
combining existing operators), typically, there is no direct learning resulting from the agent’s interactions 
with the environment. However, the cognitive modeling community is beginning to recognize the 
limitations of human-constructed long-term memories in these models, and researchers are beginning to 
address the problem of automatic knowledge acquisition and learning in cognitive architectures  (e.g., 
Langley and Choi, 2006; Sun et al., 2001; Anderson et al., 2003). 

Depending on the architecture’s control structure, the modules may execute in a fixed sequence, 
or in parallel, or anywhere between these two extremes. Figure 5-1 illustrates the module structure of a 
notional sequential cognitive architecture, frequently referred to as “see-think-do” control structure.  An 
alternative to this sequential approach is a parallel-distributed control structure, in which a number of 
parallel processes access a common memory structure (frequently referred to as a blackboard and hence 

                                                 

3Specific connotations may exist with each of these terms regarding the motivation and use of the cognitive architecture. 
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the term “blackboard architectures”; Corkill, 1991).  As with the sequential architectures, the specific 
processes represented, as well as the structure of the memory-blackboard, depend on the architecture 
objectives, the level of resolution, and theoretical foundations.  Figure 5-2 shows an example of a 
blackboard architecture, illustrating examples of possible associated processes.  Historically, cognitive 
architectures have focused on the middle stage of the see-think-do metaphor, frequently simplifying the 
perceptual input and motor output components. However, as cognitive architectures expand in model 
complexity and desired functionality (e.g., operating in a real-world environment), they increasingly 
incorporate sensory and motor models, to become full-fledged agent architectures, capable of autonomous, 
intelligent, and adaptive behavior in a real or a simulated world.  

Cognitive architectures thus contrast with the more narrowly scoped cognitive models (also 
referred to as micro models of cognition), which focus on a single function, such as attention, visual 
search, visual perception, language acquisition, or memory recall and retrieval, and implement micro 
theories of cognition, rather than unified theories of cognition.  

This figure shows a high-level view of a parallel-distributed cognitive architecture, which 
represents an alternative to the sequential see-think-do model. In parallel-distributed models, processing 
occurs in multiple, concurrent processes, and coordination among these processes is achieved through the 
intermediate results posted on the blackboard, which represents the architecture memory. The structure of 
the blackboard varies, depending on a particular architecture, to represent the desired types of distinct 
memories.  

State of the Art  

A large number of cognitive architectures have been developed in both academic and industrial 
settings, and new architectures are rapidly emerging due to increasing demand, particularly in human 
computer interaction (HCI) and decision support contexts, with emphasis on training, decision aiding, 
interactive gaming, and virtual environments.  Three recent reviews provide a comprehensive catalogue 
of a number of established or commercially available cognitive architectures: a report focusing on U.S.-
developed systems (Andre, Klesen, Gebhard, Allen, and Rist, 2000, pp. 51-111), a supplementary report 
focusing on systems developed in Europe, primarily in the United Kingdom (Ritter et al., 2003), and a 
review by Morrison that covers architectures in both the United States and Europe and includes also some 
of the lesser known systems (Morrison, 2003). All three reviews provide detailed descriptions of the 
architectures in terms of the cognitive processes modeled, their historical context, applications, and 
implementation languages and any validation studies. A large number of research-oriented architectures 
also exist in laboratories around the world. The best sources for information regarding these architectures 
are conferences and workshops, such as the International Conference on Cognitive Modeling, the annual 
meeting of the Cognitive Science Society, symposia and conferences of the American Association for 
Artificial Intelligence, Autonomous Agents and Multi-Agent Systems, Human Factors, and BRIMS.  See 
Table 2-1 for an overview of cognitive architectures used in military contexts.  

Existing cognitive architectures are being used to support research on both human cognition and, 
more recently, emotion (see the next section on cognitive-affective models). They are also used in applied 
settings to control the behavior of synthetic agents and robots in a variety of contexts, including gaming 
and virtual reality environments, to enable user modeling in adaptive systems, and as replacements for 
human users and subjects for training, assessment, and system design purposes.   

It is beyond the scope of this chapter to describe in detail the large number of architectures that 
have been developed over the past 25 years.  The three reviews mentioned above are excellent sources of 
in-depth information regarding a number of architectures that are sufficiently established to be included in 
comprehensive reviews. Below we briefly discuss a subset of these, to provide a sense of the breadth of 
theoretical orientations, representational formalisms and modeling methodologies, and applications. 
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It should be noted that each architecture elaborates a particular subset of cognitive processing and 
that the architectures vary in their ease of transition to other domains and ease of use.  These factors must 
be taken into consideration when a particular architecture is being considered as a modeling tool for a 
specific problem in a particular domain. For example, ACT-R’s focus is on relatively low-level 
processing, particularly those concerned with memory modeling. EPIC emphasizes models of 
multitasking. Soar emphasizes a particular model of learning, cast in relatively high-level symbolic terms. 
Thus before a particular architecture is adopted for a specific modeling effort, it is necessary to carefully 
assess its ability to model the processes of interest at the desired level of resolution. 

The most established architectures in the United States are ACT-R and Soar, each having a large 
and active academic research community, with annual workshops and tutorials, and each having an 
increasing presence in industry, primarily the defense industry.  These are described below, followed by 
several other prominent architectures. 

ACT-R 

The historical focus of ACT-R (Atomic Components of Thought or Adaptive Character of 
Thought) has been on basic research in cognition and modeling of a variety of fundamental psychological 
processes, such as learning and memory (e.g., priming) (Anderson, 1983, 1990, 1993).  ACT-R combines 
a semantic net representation with rule-based representation to support declarative and procedural 
memory representation and associated inferencing. ACT-R is probably the cognitive architecture that is 
“best grounded in the experimental research literature” (Morrison, 2003, p. 24). Primary early 
applications were tutoring in mathematics and computer programming (see www.carnegielearning.com). 
Gradually, ACT-R evolved into a full-fledged cognitive architecture, with increasing emphasis on sensory 
and motor components and applications in military settings (e.g., modeling adversary behavior in military 
operations on urban terrain, MOUT, tactical action officers in submarines, radar operators on ships; 
Andre, Klesen, Gebhard, Allen, and Rist, 2000; Anderson et al., 2004). 

Soar 

Soar (State, Operator, And Results) development was initially motivated by the desire to 
demonstrate the ability of generalized problem spaces, rules, and heuristic search capabilities to solve a 
wide range of problems and by the desire to develop an implementation of the unified theory of cognition 
of Newell (1990). Soar uses production rules to implement this problem-solving paradigm, via application 
of “operators” to states within a problem space. Soar represents all three types of long-term memory 
(declarative, procedural, and episodic) in terms of rules.  A distinguishing feature of Soar is its ability to 
form new operators (rules) from existing operators (rules), when it reaches an impasse in its problem 
solving (impasse being defined as either no applicable operators selected or conflict among operators). It 
is thus one of the few architectures that explicitly addresses learning, albeit in the limited context of 
combining existing elements within its own knowledge base, rather than the bona fide acquisition of new 
knowledge from its interaction with the environment. Soar models both reactive and deliberative 
reasoning and is capable of planning (Hill, Chen, Gratch, Rosenbloom, and Tambe, 1998). 

While Soar was in part motivated by theoretical considerations, particularly Newell’s unified 
theory of cognition, the architecture has become a more traditional AI system, in its increasing emphasis 
on performance, rather than accurate emulation of human information processing.  A frequent criticism of 
Soar is its large number of free variables, which enables a large number of specific models to match 
empirical data, thereby making it difficult to unequivocally establish the validity of a given model. This is 
the case with most computational cognitive architectures. 

Soar’s capabilities progressed from simple toy tasks (puzzles), through expert systems 
applications (medical diagnosis, software design), to architectures capable of controlling autonomous 
agents. Soar represents the more extensively applied cognitive architecture and includes a number of 
training installations or exercises in which it has replaced human role players or autonomous air entities: 
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TacAir-Soar at the Air Force Research Laboratory (AFRL) training laboratory and at Williams Air Force 
Base (fixed-wing missions), Joint Forces Command (JFCOM) J9 exercises, MOUTBot (soldier models) 
VIRTE MOUT at the Office for Naval Research (ONR), JCATS at the Defense Modeling and Simulation 
Office; SOFSoar at JFCOM, RWA-Soar (rotary wing missions), STEVE for training simulations, and 
Quakebot for interactive computer games (Jones et al., 1999; Laird, 2000).  The applications in the 
military are being developed by Soar Technology, Inc. (http://www.soartech.com). Soar also serves as the 
core technology at the Institute for Creative Technologies at the University of Southern California, where 
it acts as an agent architecture, controlling synthetic characters in virtual environments, primarily applied 
to training and game-based training environments.  Soar has also been applied in a nondefense context, to 
develop a decision support system for businesses (KB Agent, developed by ExpLore Reasoning Systems, 
Inc.). 

While the emphasis in Soar applications has been on individual models, it has also been applied 
in modeling multiagent environments, in which explicit representations exist of shared structures among 
team members (e.g., goals, plans).  The STEAM model (Shell for TEAMwork) (1996) implements these 
enhancements and has been applied to military simulations (models of helicopter pilots) and to modeling 
soccer players in the RoboCup competition (Tambe et al., 1999). 

EPIC 

EPIC (Executive-Process/Interactive Control), developed from the MHP (Card et al., 1986), 
focuses on models of human behavior in multitasking contexts, in human-computer interaction.  A 
distinguishing feature is its emphasis on integrating cognition with perceptual and motor processes.  
EPIC’s sensorimotor capabilities have motivated its inclusion in some Soar models, to provide an 
interface with the real world. EPIC uses production rules to represent both its long-term memory and the 
control of processing within the architecture. It is primarily focused on research and is a good example of 
a more constrained architecture with a strong focus on validation against human performance data. 
Recently EPIC has also been used in more applied settings, for the design of undersea ship systems. 

COGNET   

COGNET (COGnition as a Network of Tasks) architecture was developed by CHI Systems and 
combines several knowledge representation formalisms in a blackboard-oriented framework.  It was 
initially applied in user interface design (Zachary, Jones, and Taylor, 2002) but has been expanded to 
include models of multitasking in the context of air traffic control (Zachary, Santarelli, Ryder, Stokes, and 
Scolaro, 2001) and intelligent tutoring (Zachary et al., 1999).  COGNET has an associated development 
environment iGEN, which is commercially available from CHI Systems. 

OMAR  

OMAR (Operator Model Architecture) is a task-goal network model with a focus on multitasking 
developed by BBN, Inc. (Deutsch, Cramer, Keith, and Freeman, 1999), from an earlier conceptual 
prototype, the CHAOS model (Hudlicka, Adams, and Feehrer, 1992).  OMAR and its later distributed 
version, D-OMAR, have been used to model air traffic control and pilot error (Deutsch et al., 1999; 
Deutsch and Pew, 2001). It was one of the systems participating in the AMBR (Agent-based Modeling 
and Behavior Representation) validation project, in which its performance was compared with other 
cognitive architectures and with human subjects in the context of air traffic control (Gluck and Pew, 
2005).  Recent versions of OMAR were expanded with models of auditory and visual inputs, and the 
system was reimplemented in Java (from the original LISP version), to improve performance.  

MIDAS 

MIDAS (Man-Machine Integrated Design and Analysis System) uses a goal-task network model 
to model simple, reactive decision making. It includes sensory inputs (visual and auditory) and simple 
motor outputs and has been applied in human-computer interaction to model pilot behavior in support of 
cockpit design (Corker and Smith, 1992; Corker, Gore, Fleming, and Lane, 2000; Laughery and Corker, 
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1997), air traffic control, the design of emergency communication systems, and the design of automation 
systems for nuclear power plants. MIDAS is also capable of modeling multiple, interacting agents. 

SAMPLE 

 SAMPLE (Situation Awareness Model for Pilot-in-the-Loop Evaluation) is a sequential hybrid 
model developed by Charles River Analytics, using several knowledge representational mechanisms, 
including fuzzy logic and belief nets and rules. It has been applied to model air traffic control, pilot 
behavior, unmanned aerial vehicles, and soldier behavior in MOUT operations (Zacharias, Miao, Illgen, 
and Yara, 1995; Harper, Ton, Jacobs, Hess, and Zacharias, 2001).  SAMPLE implements the recognition-
primed decision-making model (Klein, 1997) and does not include complex planning.  Sensorimotor 
components are represented at highly abstracted levels. SAMPLE has a drag-and-drop development 
environment GRADE, for rapid application prototyping, and is available commercially. 

APEX 

APEX is an architecture supporting the creation of intelligent, autonomous systems and serves 
also as a development environment.  One of its goals is to reduce the effort required to develop agent 
architectures.   Its primary applications are in human-computer interaction, to help design user interfaces 
and human-machine systems (Freed, Dahlman, Dalal, and Harris, 2002), and it has been applied in air 
traffic control. 

Other Architectures  

Several other architectures should be mentioned briefly. D-COG (Distributed Cognition) was 
developed at AFRL (Eggleston, Young, and McCreight, 2000) to model complex adaptive behavior. It 
was one of the architectures evaluated in the AMBR experiment (see Validation below).  BRAHMS 
(Business Redesign Agent-Based Holistic Modeling System) is an environment developed by the 
National Aeronautics and Space Administration (NASA) for modeling multiple, interacting entities 
(Sierhuis, 2001; Sierhuis and Clancey, 1997) and emphasizes the interaction among entities rather than 
individual cognition. 

Several well-established cognitive architectures have been developed in Europe. COGENT 
(Cognitive Objects within a Graphical EnviroNmentT) is a development environment for construction 
cognitive models developed by Cooper and colleagues (Cooper, 2002; Cooper, Yule, and Sutton, 1998). It 
supports the construction of cognitive architecture from individual, independent “modules,” each 
responsible for a particular cognitive (or perceptual) function, and includes explicit support for systematic 
evaluation of the resulting models. COGENT offers a number of representational formalisms, including 
connectionist formalisms supporting the representation of distributed, subsymbolic knowledge.  It has 
been applied to model medical diagnosis, models of memory, and models of concept learning.  

The architectures outlined above are primarily symbolic and represent the most common 
approach to the development of integrated cognitive architectures.  There are also examples of 
architectures that use connectionist formalisms, either exclusively or in combination with symbolic 
representations. We briefly mention two of these below. An example of the former is the ART (Adaptive 
Resonance Theory) architecture, developed by Grossberg (1999, 2000).  ART emphasizes learning and 
parallel processing, both being key benefits of connectionist formalisms. An example of a hybrid 
connectionist-symbolic architecture is CLARION (Connectionist Learning with Adaptive Rule Indication 
On-Line), developed to support research in combined representations of symbolic knowledge (via rules) 
and subsymbolic knowledge (via connectionist networks) and inductive learning (Sun, 2003, 2005). 

Current Trends 

Several current trends in cognitive architecture development promise to contribute to more 
efficient development of these complex simulation systems, as well as more effective applications:   
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• Efforts to incorporate individual differences and behavior moderators, such as personalities 
and emotions, both to support basic research and to produce more realistic and robust agents 
(see next section). 

• Efforts to provide broadly scoped end-to-end architectures, with increasing emphasis on 
sensory and motor processes, to enable the associated synthetic agent or robot to function in a 
virtual or actual environment (e.g., variety of Soar-based agents being developed at the 
Institute for Creative Technologies). 

• Use of shared ontologies to facilitate the labor-intensive effort of cognitive task analysis and 
domain-specific model construction. 

• Use of development environments to facilitate cognitive architecture construction, which may 
include automatic KA/KE facilities, visualizations, and model performance assessment and 
analysis tools. 

• Increasing emphasis on empirical validation, frequently with respect to human performance 
data, and the development of validation methodologies and metrics (e.g., Gluck and Pew, 
2005). 

Verification and Validation Issues 

As stated above, verification refers to ensuring that the architecture functions as intended, that, is 
that the model has been implemented according to the specifications.   Validation refers to the degree to 
which the model specifications reflect the reality, at the desired level of resolution.  We focus here on 
model validation and, more broadly, on model evaluation. While there is increasing emphasis on 
validation of cognitive architectures, validation remains one of the most challenging aspects of cognitive 
architecture research and development.   “HBR [human behavior representation] validation is a difficult 
and costly process [and] most in the community would probably agree that validation is rarely, if ever 
done” (Campbell and Bolton, 2005, p. 365). Campbell goes on to point out that there is not a general 
agreement on exactly what constitutes an appropriate validation of a cognitive architecture. Since 
cognitive architectures are developed for a wide variety of reasons, there is a correspondingly wide set of 
validation (and evaluation) objectives and metrics and associated methods.   Lack of established 
benchmark problems and criteria exacerbates this problem.  It is interesting to note that a set of 
recommendations for model accreditation and validation was made in the 1998 National Research 
Council report on modeling human and organizational behavior, but these have yet to be implemented.   
The same report also emphasizes that a general validation of these complex models is not possible, and 
the models must be evaluated in the specific context for which they were developed.   

Within these constraints, several approaches exist for cognitive architecture validation, varying in 
the data requirements, time, and effort required and the quality of the validation results.  We list these 
below, in order of decreasing overall quality. 

• Comparative empirical studies: the architecture’s performance is compared with human 
performance on the same task and in the same context. Both outcome and process measures 
can be used: the former include time, mean time between errors, accuracy and error types, 
and behavioral choices. The latter include assessments of internal and intermediate states, 
such as emotions, workload, situation assessments, etc.  The empirical data used can be 
obtained from a variety of sources. The ideal sources are parallel empirical studies, conducted 
in the same task context as the model development.  As these types of studies become more 
common, guidelines are emerging regarding the methods (and criteria) for establishing the 
goodness of fit between the human and the model performance.   

• Performance-based evaluation: the architecture’s effectiveness is assessed with respect to 
selected performance criteria, which are defined on the basis of the architecture’s role and 
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objectives (e.g., improved training, degree of agent realism, improved prediction of the 
modeled decision maker’s behavior, more robust and effective behavior). 

• Heuristic evaluation: the architecture performance is evaluated by a panel of experts (or 
users).  This is the weakest form of validation but is frequently used because of resource 
limitations.  Even with this weak method of validation, certain principles must be followed 
(e.g., judgments must be collected from individuals who were not involved in system 
development, data should be collected independently).  When these guidelines are not 
followed, this approach is sometimes referred to as BOGSAT: “bunch of guys sitting around 
a table”—clearly to be avoided (Campbell and Bolton, 2005; National Research Council, 
2003). 

Validation studies also vary with respect to the scope of the validated components. The 
architecture may be evaluated as a whole or selected modules or submodules may be evaluated.  Table 3.1 
in the 1998 NRC report on human behavior modeling (National Research Council, 1998, p. 104) provides 
a useful summary of validation studies performed prior to 1998.  A word of caution is in order, however, 
since the not all validation studies use the same criteria; in other words, a fully validated model using a 
panel of experts does not reflect the same degree of validity is a partially validated model using actual 
human performance data.  

To date, none of the existing cognitive architectures has been fully validated against generalized 
human performance.  There are, however, a number of task-specific validation studies for many of the 
established architectures and a larger number of validation studies for single-process cognitive models 
(e.g., models of memory retrieval, visual attention models, GOMS-based models of user performance on 
specific tasks using a particular interface).  The GOMS family of models has proved to be particularly 
useful in human-computer interaction, in which they have been used to evaluate and select from candidate 
designs, often saving large amounts of money (e.g., Gray, John, and Atwood, 1993; see also Olson and 
Olson, 1990). One of the earliest examples of a cognitive architecture validated against human 
performance is EPIC, which successfully predicted multitasking performance in telephone operators 
(Kieras, Wood, and Meyer, 1997).  Validation against empirical data continues to be a focus of EPIC 
research.  

As cognitive architectures proliferate in mission-critical contexts, more opportunities exist for 
their validation in complex task settings. For example, Purtee and colleagues (Purtee, Krusmark, Gluck, 
Kotte, and Lefebvre, 2003) validated an ACT-R model controlling unmanned aerial vehicle operation, 
using verbal human data and protocol analysis.  Andre et al., (2000) discuss validation studies of ACT-R, 
Soar, COGNET, and MIDAS.In general, three factors hinder systematic cognitive architecture validation 
studies: 

• Lack of established validation metrics and associated methods, including benchmark 
problems, and an understanding of when to apply which metric, using a particular method, in 
a specific task context. Different validation criteria are appropriate for different system 
objectives and operational characteristics. Currently, however, no systematic taxonomy exists 
of either the system objectives or the operational contexts.  

• Frequent confusion between verification—Does the system do what it was programmed to 
do?—and validation—Does the system accurately represent the modeled system (Campbell 
and Bolton, 2005).  Verification studies are often presented as proofs of model validity, with 
the architecture developers showing how the system generates behavior that is consistent with 
the behavior of human agents in some limited context. Such studies are almost meaningless, 
however, in establishing the model validity.  

• The extensive effort required to conduct studies comparing human and cognitive architecture 
performance on a given task. These studies require first the development of a simulation 
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environment for the particular task (e.g., air traffic control), and the development of the 
human-task and cognitive-architecture-task interfaces, to enable both the humans and the 
architecture to perform the task.  In addition, the system must support human subject 
performance tracking and data collection.  Given the general lack of interoperability among 
cognitive architectures, establishing these interfaces is a labor-intensive endeavor, and only 
one case exists in which several architectures were systematically compared with a set of 
benchmark problems: the AMBR project. The AMBR project represents the more promising 
validation approach: the systematic comparison of the cognitive architecture performance on 
a particular task with human performance on the same task and under identical circumstances 
(Gluck and Pew, 2005).   

Relevance, Limitations, and Future Directions  

Relevance 

Cognitive architectures are built both for basic research and for applied purposes.  Research 
architectures aim to develop a model of some aspect of human information processing, to enhance 
understanding of these phenomena by identifying the mediating structures and mechanisms.  Specific 
applications of cognitive architectures include the control of autonomous synthetic agents and robots in a 
variety of settings, including operational systems in hostile or adverse environments, control of synthetic 
characters and agents in virtual reality environments, stand-ins for humans to enhance realism and 
believability in simulation-based training and assessment environments, and as alternatives to human 
subjects in empirical studies supporting human factors analyses (e.g., user interface design and operation, 
task allocation between human and machine, risk assessment and reduction, personnel-task matching).  
Recent advances in gaming technologies and the proliferation of games into a variety of settings, 
including military training, enable the integration of interactive gaming, virtual environments, and 
cognitive architectures to create immersive environments with increasing levels of realism. Such 
environments are increasingly being used in training, assessment, rehabilitation, and human factors 
analyses.  

Cognitive architectures can also be used for behavior prediction in a variety of settings, both 
individual and team, and across a range of task types and contexts. While some success has been achieved 
in predicting simple behavior in highly constrained task contexts, primarily HCI contexts (e.g., EPIC has 
generated accurate prediction of reaction times in simple dual-task contexts; Kieras et al., 1997), 
forecasting individual behavior in complex, under constrained contexts is difficult, and often impossible.  
In spite of recent attempts (e.g., Silverman, Bharathy, and Nye, 2007), “it is currently not within the state 
of the art to develop a model of a particular person, or to predict the likelihood of a single-act at a 
particular point in time. Instead, the predictive value of cognitive architectures lies more in their ability to 
generate probabilistic distributions of a range of possible behaviors that a particular type of individual 
might exhibit in given circumstances, rather than to generate predictions of the likelihood of single acts 
by particular individuals” (Hudlicka, 2006b, p. 14).   

The increasing emphasis on complex cognitive processes in military modeling is creating a broad 
range of applications for cognitive architectures modeling individual entities.  Both the research and the 
applied cognitive architectures are relevant.  Cognitive architectures are relevant for three of the core 
areas in military modeling: analysis and forecasting in planning, simulation for training and rehearsal, and 
design and evaluation for acquisition. These architectures are critical components of specific modeling 
and simulation (MandS) applications: disruption of terrorist networks, prediction of adversaries to 
specific courses of action, prediction of societal reactions to specific events, crowd behavior modeling 
and crowd control training, and organizational design.  

These modeling needs, along with the increasing transitions to teams and nontraditional warfare, 
also highlight the increasing importance of modeling individual motivation and behavior variability, via 
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explicit focus on models of emotion and personality traits.  Both of these are addressed in the emerging 
cognitive-affective architectures, discussed in the next major section. 

Major Limitations 

While there have been great theoretical, methodological, and technological advances in the 
development of cognitive architectures, many limitations remain. 

The most critical one is in the area of validation. This includes a lack of established validation 
criteria and methodologies, frequent confusion between verification and validation, lack of methods for 
validating architecture memory and knowledge bases, and the lack of any fully validated, domain-
independent cognitive architectures. Currently no validated cognitive architecture exists and systematic 
validation efforts, including validation methods and appropriate metrics, are just beginning to emerge 
(e.g., Gluck and Pew, 2005).  

Another limitation is the time and effort required to develop a cognitive architecture and the 
associated bottleneck of knowledge engineering required for these models.  As discussed above, the 
instantiation of an architecture in a new domain requires large amounts of human performance and task 
data, as well as information about the nature of internal problem solving and decision making. Whether 
obtained from empirical studies or from cognitive task analyses and knowledge elicitation interviews, the 
process of obtaining the necessary human data is highly labor-intensive and represents a major bottleneck 
in the development of cognitive architectures capable of emulating human problem solving, decision 
making, and performance.  In addition, once built, the resulting long-term memories typically require 
extensive tuning to produce the desired behavior and match human performance data.   

Even with the required tuning, cognitive architectures exhibit the “brittleness” problem that 
plagues expert systems—that is, a lack of graceful degradation when limits of the domain knowledge (the 
model’s long-term memory) are reached.  This is one of the factors that limit the scope and degree of 
realism, and it applies equally to non-learning systems and architectures with limited learning capabilities, 
such as Soar.   

Some researchers question whether the process of “manual” long-term memory construction can 
ever produce long-term memories capable of supporting robust performance, as is the case in biological 
agents.  It is possible that long-term memories may need to be automatically constructed (learned) from 
ongoing, long-term interaction with the environment, as is the case with intelligent biological agents, 
including humans (Mathews, 2006), to produce robust knowledge bases capable of matching human 
performance and to enable the accurate representation of a range of behavior moderators, including 
emotions and personalities. 

Regardless of a theoretical position on this matter, it is becoming apparent that automated 
construction of cognitive architecture memories or knowledge bases may be the most pragmatic solution 
to the difficult and labor-intensive task of knowledge base development.   

A related challenge is posed by the differences in representational resolution between the 
cognitive architecture representational capabilities and needs on one hand, and the empirical methods 
available for knowledge extraction on the other.  Computational models offer a higher degree of 
representational resolution for the internal processes than currently available human empirical data.  In 
other words, while it is now possible to build detailed models of situation assessment, planning, learning, 
metacognition, and similarly complex cognitive processes, one cannot unequivocally identify the internal 
mechanisms and structures that mediate these functions in biological agents.   This state of affairs has 
serious implications for model validation, discussed below. 

While extensive human performance data exist at the periphery of human problem solving and 
performance—that is, sensory and motor data that define the model inputs and outputs—these are more 
suitable for black box input-output models. Cognitive architectures enable, and frequently require, the 
specification of the detailed nature of internal mental processes, at a level of resolution that is currently 
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not matched by the ability to obtain the required data.  The data required to represent the internal mental 
structures and processes (e.g., situations, expectations, goals, beliefs) can be obtained only via indirect 
inference from observable behavioral data or self-reports. It should also be noted here that the current 
enthusiasm for in vivo brain imaging techniques (such as fMRI or PET scans) being able to provide these 
data at the required level of resolution is considered premature by many neuroscientists. 

A more pragmatic limitation is the lack of established domain ontologies, standardized modeling 
languages, and scenario and data repositories, which further hinder the architecture development process.  
Similarly, the lack of model standardization and the lack of interoperability limit the ability to exchange 
components across architectures and research groups.  Both of these contribute to the fragmented state of 
affairs in architecture development, as well as the lack of established benchmark problems, against which 
different architectures could be compared, both to establish their validity and to facilitate systematic 
comparisons of the capabilities of different architectures. 

Another factor limiting the realism and fidelity of cognitive architectures, as well as the 
believability of the associated agents, is the lack of models of many mental processes that influence 
human perception, cognition, and behavior and give rise to the type of variability and adaptability 
observed in humans. This is discussed further in the next section.  

Performance can also be an issue, particularly in applied agent and robotic systems that require 
real-time responses.  New hardware and non–von Neumann machine architectures are likely to contribute 
to solving this problem in the future (Martínez, Gomes, and Linderman, 2005). 

Last is a limitation that is particularly appropriate in the context of this study: the relative lack of 
interactions and collaboration among the research communities centered on particular architectures.  The 
two most established architecture communities, Soar and ACT-R, have until very recently dominated the 
market (as evidenced by the ICCM biennial conference).   Newcomer architectures often have a difficult 
time getting established and recognized, and potentially productive interactions among architectures with 
complementary strengths are not exploited.  Morrison highlights this issue when discussing the BRAHMS 
architecture (Sierhuis, 2001), noting that its focus on social interaction and the focus of Soar and ACT-R 
on detailed models of cognition would make for an ideal collaboration, which has not occurred (Morrison, 
2003, p. 39). The “everyone in his or her own sandbox” phenomenon is a common social one. However, 
it is important to recognize to what extent this situation limits the continued development of these 
important models and the successful addressing of the limitations outlined above.  The development of 
standardized problem sets for architecture comparison would go a long way toward addressing this 
situation, as would the development of shared memories and domain ontologies. A concerted effort to 
promote long-term collaborations among different research groups is probably the single most critical 
element in advancing the state of the art.  

Future Directions 

Expanding on the earlier discussions, we briefly list the main points and augment them with 
additional suggestions resulting from a recent workshop that brought together researchers from the 
cognitive science and architecture-development communities (Martínez et al., 2005). 

• Facilitate architecture development via the use of standardized domain representation 
languages (e.g., human modeling markup languages), interchangeable plug-and-play 
components of generic architectures, and construction of cognitive architecture development 
environments.  

• Facilitate architecture instantiation via shared domain ontologies, and human performance 
data repositories.  
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• Facilitate knowledge base development via the use of automatic knowledge acquisition 
methods and machine learning, to eliminate the need for labor-intensive knowledge 
engineering. 

• Enhance model explanation capabilities via the development of visualization and explanation 
tools that support the understanding of the complex processing in a cognitive architecture.  

• Address the brittleness problem via a combination of hybrid knowledge representation 
approaches (symbolic and connectionist), learning and automatic knowledge acquisition to 
develop architecture knowledge bases, and the representation of commonsense knowledge. 

• Enhance realism by integrating architectures with embodied agents, either synthetic agents in 
virtual environments or robots, and by including emotion, personality, and cultural factors to 
produce the type of behavioral patterns and variabilities characteristic of human behavior. 

• Validation: develop validation methods, metrics, accreditation procedures, and environments 
facilitating the comparison of model performance with human data and with other 
architectures in a set of well-defined benchmark problems. Support the development of such 
validation suites, in terms of shared simulation environments and benchmark test suites, 
broadly available to researchers and model developers.  Support validation of the system as a 
whole, but also component validation, such as function-based or module-based validation. 

• Explore new modeling formalisms – explore the applicability of additional representational 
and inferencing mechanisms to enhance cognitive architecture performance, including non-
symbolic approaches such as chaos theory, and learning methods, such as genetic algorithms.  

• Models of groups and teams: apply cognitive architectures to models of groups and teams, in 
which the decision-making processes of the entity of interest can be sufficiently abstracted to 
enable the development of a cognitive architecture model representing the group as a whole. 

• Context and task models: enhance the understanding of model limitations by specifying the 
range of tasks and operational contexts for which a particular model is applicable and 
defining task and context taxonomies.  Identify situations in which behavior can or cannot be 
predicted with varying degrees of specificity and accuracy.  

AFFECTIVE MODELS AND COGNITIVE-AFFECTIVE ARCHITECTURES 

Computational models of emotion represent a relatively recent development in computational 
models of mental phenomena.  This development follows a rapid growth in emotion research in both 
psychology and neuroscience over the past 15 years. Although computational approach to emotion 
research represents a recent development, the recognition of the importance of emotion in decision 
making and individual and social behavior is not new (e.g.,  Simon, 1967), nor is the recognition that 
understanding emotion is critical for understanding cognition and adaptive behavior in general (Norman, 
1981). 

Like architectures focused on cognition, cognitive-affective architectures are simulation-based 
models of human information processing.  In contrast to purely cognitive architectures, cognitive-
affective architectures also include some aspects of affective processing. Like their purely cognitive 
counterparts, cognitive-affective architectures are used for both research and applied purposes.  In 
addition to the objectives discussed for cognitive architectures, these models also serve to explore the 
nature of affective processes, the mechanisms of cognition-emotion interaction, and, in more applied 
contexts, to enhance the realism, believability, and effectiveness of synthetic agents and robots.  Given 
the critical role of emotion in interpersonal communication, these architectures are thus particularly 
relevant for organizational modeling (Hudlicka and Zacharias, 2005). 
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In spite of their relatively recent appearance in cognitive science and AI research, significant 
progress has been made in computational emotion modeling and cognitive-affective architectures, 
particularly in the more applied areas of synthetic and believable agents (e.g., Dautenhahn, Bond, 
Cañamero, and Edmonds, 2002; de Rosis, Pelachaud, Poggi, Carofiglio, and De Carolis, 2003; Prada, 
2005).  

What Are Cognitive-Affective Architectures? 

Cognitive-affective architectures are computational, simulation models of particular affective 
phenomena (e.g., effects of emotions on behavior), some aspects of affective information processing (e.g., 
generation of emotion via cognitive appraisal of the current situation), and associated affective factors 
(i.e., specific emotions, moods, or affective personality traits). The process modeled most frequently is the 
generation of emotion via cognitive appraisal and the effects of emotion on behavior (e.g., Bates, Loyall, 
and Reilly, 1992; Gratch and Marsella, 2004b[check]; Reilly, 2006). Less frequently, these architectures 
also include models of emotion effects on perception and cognition (Hudlicka, 1998,{Hudlicka 2002 
#4130/d}  2007b; Ritter, Avramides, and Councill, 2002).  

The affective factors modeled in cognitive-affective architectures include both transient states and 
more permanent traits. The states include short-lasting emotions, such as joy, fear, anger, and sadness, as 
well as longer lasting moods (e.g., fearful, happy, sad). Traits include affective personality traits, such as 
emotional stability and extraversion of the five-factor personality model (Costa and McCrae, 1992). Some 
models also include mental states that have both cognitive and affective components, such as attitudes. 

It is beyond the scope of this section to discuss the extensive literature in emotion research in 
psychology and neuroscience, both theoretical and empirical, which serves as basis for computational 
emotion models.  The reader is referred to the excellent recent handbooks on research in emotion and the 
affective sciences (Davidson, Scherer, and Goldsmith, 2003; Ekman and Davidson, 1995; Lewis and 
Haviland-Jones, 2000; Scherer, Schorr, and Johnstone, 2001). 

Briefly, however, we define emotions at the most abstract level as mental states that involve 
evaluations of current situations (internal or external; past, present, or future) with respect to the agent’s 
goals, beliefs, values, and standards. Note that this evaluation does not imply conscious, deliberative 
cognitive processes. A key aspect of emotions, and affective factors in general, is their multimodal nature.  
These complex phenomena involve physiological components associated with changes in the autonomic 
nervous system processes (e.g., heart rate, blood pressure, galvanic skin response); cognitive components 
(e.g., changes in attention and working memory properties); behavioral components associated with the 
expression of emotions, moods, and traits (e.g., facial expressions, effects on speech, gestures, posture, 
behavioral choices); and subjective components (e.g., idiosyncratic individual feelings associated with 
particular emotions and moods).   It is critical to keep in mind this multimodal nature of emotions, since 
many misunderstandings of these complex phenomena can be traced to a focus on only a subset of these 
modalities—for example, misleading questions such as “Is emotion a thought or a feeling?” It is both and 
more.  Izard (1993) provides a framework for integrating the multiple modalities of emotion, in the 
context of emotion generation. 

Emotions play a number of critical roles in biological agents, both intrapsychic and interpersonal.  
Examples of the former include goal management, reallocation of resources, rapid activation of fixed 
behavior repertoires, all designed to enhance adaptive behavior (Hudlicka, 2003).  Examples of the latter 
include mediation of attachment behaviors and communicative and expressive functions of emotion (e.g., 
rapid communication of behavioral intent to facilitate coordination). See Hudlicka (2007a, 2007b) for a 
more in-depth discussion of emotion research background from a computational perspective.  

Emotion research in psychology and neuroscience provides strong evidence that cognitive and 
affective processes function in parallel and in a closely coupled manner (e.g., LeDoux, 1998; Phelps and 
LeDoux, 2005).  Most modern theories of emotion therefore consider cognition to be an important 
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component of affective processing, and vice versa.  This, along with a definition of cognition that 
includes both conscious/deliberative and unconscious/automatic processing, makes earlier debates 
regarding the primacy of cognition (Lazarus, 1984) versus primacy of emotion (Lazarus, 1984; Zajonc, 
1984) in the generation of emotion a matter of semantics. The current consensus regarding this issue is 
that these debates were largely a result of terminological vagueness and misunderstanding regarding 
exactly what constitutes cognitive processes.  

Cognitive-affective architectures share a number of features with the cognitive architectures 
discussed above. Like their cognitive counterparts, emotion models can be standalone models of 
particular aspects of emotions, particular affective processes, or affect-related phenomena. Cognitive-
affective architectures are most frequently symbolic, but they can also contain connectionist components 
and thus be characterized as hybrid architectures.  Purely connectionist approaches are used only for 
limited-scope models of single phenomena, rather than for entire architectures. The specific constructs 
and processes represented in a particular cognitive-affective architecture depend on its objective, level of 
resolution, the specific processes modeled and their theoretical underpinnings, and any particular 
application, as well as the particular implementation approaches. Like their purely cognitive counterparts, 
cognitive-affective architectures typically include modules and functions that correspond to specific 
functions identified in biological agents, for example, emotion generation via cognitive appraisal, 
generation of facial expressions. 

Given the broad range of proposed roles and characteristics of emotions, a systematic description 
of the variety of existing models addressing these phenomena can be challenging. Below we structure the 
description of existing models in terms of a categorization of core affective processes proposed by 
Hudlicka (2007b), processes mediating emotion generation, and those mediating emotion effects on 
cognition and behavior.  Hudlicka further suggests that “the mechanism mediating these two fundamental 
processes then enable the variety of emotion roles identified in biological agents, such as resource re-
allocation, goal management, etc.” (Hudlicka, 2007a).  

The majority of existing cognitive-affective architectures focus on the generation of emotions, 
most frequently via cognitive interpretive processes, termed cognitive appraisal.  The state-of-the-art 
section below discusses examples of these models and architectures.  In the majority of these architectures 
the outcomes of the generated emotions, the emotion effects, are typically limited to influences on 
observable behavior. This includes specific behavioral choices by synthetic agents or robots, as well as 
“emotion expression” in terms of distinct facial expressions, speech, and gestures and movement (e.g., 
Andre et al., 2000; Breazeal and Brooks, 2005; de Rosis et al., 2003; Paiva, 2000). A few cognitive-
affective architectures focus also, or instead, on modeling the effects of emotions on the perceptual and 
cognitive processes that mediate decision making and action selection, problem solving, and learning (e.g., 
the MAMID architecture—Hudlicka, 2007a, 2003a, 1998; Bach, 2007; Ritter et al., 2002).  Figure 5-3 
illustrates an example of a cognitive-affective architecture with a dedicated affect appraiser module for 
emotion generation, a number of cognitive modules for the cognitive and perceptual functions supporting 
the necessary interpretive processes, and a range of modulating parameters that implement the effects of 
emotions on cognitive processing.  

Given the tight integration between cognitive and affective information processing, it follows that 
cognitive-affective architectures necessarily include purely cognitive processes, such as attention, 
planning, situation assessment, action selection, and different types of memories (working memory and 
long-term memories). These functions are necessary to provide the cognitive infrastructure in which the 
affective processes can be modeled.   Thus, for example, cognitive appraisal necessarily requires 
representation of the actual current state of the world and self (referred to as “situation assessment” or 
sometimes “beliefs”), and the desired state of the world (referred to as “goals” or “desires”). Cognitive 
appraisal models also require knowledge about the mappings among specific stimuli (elicitors) and the 
resulting emotions (e.g., a large, rapidly approaching unknown object is likely to induce fear). More 
complex models of appraisal may also require the representation and generation of expectations and the 
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agent’s own abilities to cope with a particular situation. Depending on a particular research objective or 
application, specific cognitive processes of interest may need to be represented (e.g., learning, planning). 
Depending on the particular implementation approach, there may or may not be a one-to-one 
correspondence between the modeled process (e.g., appraisal) and an architecture module (e.g., appraisal 
module).   

As with cognitive architectures, cognitive-affective architectures aim to be domain-independent, 
and their instantiation in a particular domain requires the specification and development of domain-
specific long-term memories that contain the problem-solving knowledge required to perform a particular 
task. 

 

Applications and Benefits of Cognitive-Affective Architectures 

The applications and benefits of cognitive-affective architectures are similar to those of purely 
cognitive architectures, in both the theoretical and the applied realms.  In addition, there are further 
categories of benefits, which follow from the primary roles of emotion in biological agents, as outlined 
above.  The intrapsychic roles of emotion, such as goal management, rapid resource reallocation, and 
coordination across multiple cognitive functions enable more robust and effective autonomous behavior 
by facilitating agent adaptive behavior in complex, uncertain environments (e.g., Bach, 2007; Scheutz, 
2004; Scheutz and Schermerhorn, 2004; Scheutz, Schermerhorn, Kramer, and Middendorff, 2006; 
Velasquez, 1999).  The rationale for using emotion to enhance agent autonomy rests on the assumption 
that since emotions mediate critical adaptive mechanisms in biological agents (e.g., goal monitoring and 
management, reward and punishment processes, resource reallocation), they are likely to enhance 
adaptive behavior in synthetic agents and robots. 

The interpersonal roles of emotion, such as communication of internal mental states and 
behavioral intent, help improve human-machine interaction by enhancing the synthetic agents’ realism 
and believability.  The integration of emotions into purely cognitive architectures also enables affective 
expressiveness and behavioral variability that begins to resemble human behavior and thus enhances 
agent realism and believability, thereby promoting more engaging human-machine interactions.  
Examples of these applications include work in pedagogical applications (Prada, 2005; Prendinger and 
Ishizuka, 2005; Zoll, Enz, Schaub, Paiva, and Aylett, 2006), adviser and recommender systems (e.g., de 
Rosis et al., 2003), and training (Gratch and Marsella, 2004b). As mentioned above, models of the 
interpersonal role of emotions are particularly critical in organizational modeling, in which explicit 
models of social interactions must be represented.  Augmenting purely cognitive architectures and models 
with emotion also enables more accurate and realistic modeling of users in a variety of training and 
tutoring applications.  

 Finally, since emotions play critical roles in biological agents, any computational model of 
biological information processing must necessarily take into consideration affective factors.  This view 
reflects the current consensus in the neurosciences: to understand cognition one must also understand 
emotion (e.g., Phelps and LeDoux, 2005). Representation of emotion is thus necessary to develop realistic 
models of human information processing and behavior, whether for research or applied purposes.  

The results of the theoretically motivated models of cognition-emotion interactions have a range 
of practical applications that include the following:  

• Improved pedagogical strategies in education and training; 

• Design of more effective and safer human-computer systems through improved human-machine 
function allocation, task design, and user interface design; 

• Improved decision making and performance through the development of affect- and workload-
adaptive decision support systems; 
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• More effective personnel selection for both team and individual tasks; 

• More realistic models of social groups, teams, and larger organizations; 

• Assessment and treatment for a range of affective and cognitive-affective disorders. 

 

Like their purely cognitive counterparts, cognitive-affective architectures can also be used for 
behavior prediction in a variety of settings, both individual and team, and across a range of contexts, 
ranging from simple task behavior prediction to adversary modeling for a variety of purposes, including 
counterterrorism. Since they include affective factors, which are considered to be key sources of human 
behavioral variability and an essential component of motivation, it can be argued that these models are 
superior to purely cognitive architectures regarding behavior prediction. The caveat mentioned in the 
cognitive architecture section regarding the current limits in individual behavior prediction also applies to 
cognitive-affective architectures.  Perhaps more so, since the behavioral variability and emotion-induced 
individual idiosyncrasies make accurate prediction of single acts virtually impossible. However, the 
addition of emotion to purely cognitive models does enable more realistic modeling and prediction of the 
possible ranges of behavior, due to varying individual personalities, emotions and moods, and consequent 
variabilities in interpretative processes, motivation, and behavioral expression (Hudlicka, 2007a) [check].  

State of the Art  

Existing emotion models and cognitive-affective architectures are being used both as research 
platforms, to investigate the mechanisms and social roles of emotions, and in a wide range of applications 
to enhance agent and robot behavior and human-computer interaction.  The latter are primarily in the 
form of cognitive-affective user models and cognitive-affective agents, used to enhance some aspect of 
HCI in training, education, and gaming environments. The majority of emotion models have been 
developed in academia, with some in industry research laboratories.  The recent emergence of gaming and 
virtual environments has been a key factor in stimulating an interest in applied models of emotion and 
affective factors (e.g., personalities).  No comprehensive review of emotion models and cognitive-
affective architectures currently exists, analogous to the reviews of cognitive architectures (i.e., Pew and 
Mavor, 1998; Morrison, 2003; Ritter et al., 2003). An earlier review by Hudlicka and Fellous (1996) 
provides descriptions of several older models, a more recent review of some cognitive-affective models 
can be found in Bach (2007), and Hudlicka (forthcoming) will include an overview of existing emotion 
models and cognitive-affective architectures.  Mellers et al. (Mellers, Schwartz and Cooke, 1998) provide 
a review of some models of emotion effects on decision making but focus on more traditional, decision-
theoretic models rather than cognitive architecture models. 

This section provides a brief overview of the state-of-the-art in emotion modeling, not an 
exhaustive catalogue of the large number of existing models. Cognitive-affective architectures structures 
are most frequently developed de novo (e.g., (Bach, 2007; Breazeal, 2005; Sloman, Chrisley, and Scheutz, 
2005; Velásquez, 1999) ), although frequently following an established structure used for cognitive or 
agent architectures (e.g., the Belief-Desire-Intention (BDI) agent architecture is often used as a starting 
point), or a particular model of information processing (e.g., recognition-primed decision making (RPD) 
(e.g.,  Hudlicka, 2007).  In some cases, emotions are integrated into existing established architectures.  
For example, the Soar cognitive architecture has served as a framework for the implementation of several 
models of appraisal and emotion effects on behavior (e.g., ( Gratch and Marsella, 2004; Henninger et al., 
2003).  ACT-R has been used to model effects of emotion on cognition (Belavkin, 2001; Ritter et al., 
2002). 

Given the complexity of affective phenomena, the wide range of roles that emotions play in 
adaptive behavior and social interactions, and the lack of understanding of these processes, it is 
challenging to present the wide range of models in a systematic manner.   Below we follow Hudlicka’s 
approach (2006; 2007a) and divide the discussion of existing models into two categories, based on the 
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fundamental affective processes emphasized in the model: emotion generation via appraisal, and emotion 
effects on perception, cognition, and behavior.  We conclude the section with a brief discussion of two 
broadly scoped cognitive-affective architectures. 

Models of Cognitive Appraisal 

Cognitive appraisal is the dominant theory of emotion generation and the most frequently 
modeled aspect of emotion.  A few architectures aim to incorporate additional modalities into the 
appraisal process (e.g., the “somatic marker” hypothesis: Damasio, 1994; Breazeal and Brooks, 2005; 
Stocco and Fum, 2005), and other noncognitive components (Velasquez, 1999). In computational terms, 
the objective of appraisal is to map the emotion elicitors (stimuli relevant for the generation of emotion) 
to the resulting emotion(s). This mapping may be either direct or via an intermediate stage of domain-
independent appraisal dimensions (Scherer et al., 2001), which include novelty, valence, goal relevance 
and goal congruence, responsible agent, coping, and individual and social norms.  The specific elicitors 
may also be mapped onto a set of two or three dimensions that can be used to characterize emotions; 
typically these are valence and arousal. These mappings are determined in the context of a specific set of 
the agent's goals and beliefs.   

Different models of appraisal vary in the following: theoretical foundations used as basis for the 
computational model (different theories vary in the degree of elaboration of the processes involved, stages 
of processing, specific functions included); specific methods used to implement the elicitor-to-emotion 
mapping (e.g., rules, vector spaces, decision-theoretic formulations, belief nets); the degree to which 
goals and beliefs are represented explicitly by the model and the complexity of their representation and 
relationships; the capability of the model to generalize across ambiguous triggers, reason under 
uncertainty, and to perform approximate matches; whether domain-specific triggers are mapped directly 
onto the emotions or whether this mapping is performed via a domain-independent “layer” of appraisal 
dimensions (e.g., novelty, valence, goal congruence, etc.); the specific triggers, appraisal dimensions, 
emotions, or affective dimensions represented in the model; the ability to represent appraisal 
idiosyncrasies in terms of variability of the matching functions from elicitors to emotions; and whether 
the model exists in isolation or integrated in an overall architecture (Hudlicka, 2006a [check], 2007a) 
[check]. 

 The OCC model of appraisal {Ortony 1988 #4700} remains the most widely used theoretical 
basis for computational appraisal models. The OCC model defines an elaborate taxonomy of emotion 
triggers and clusters them in terms of three broad categories: event-based emotions, reflecting desirability 
(or lack thereof) of an event with respect to the agent’s current goals; attribution emotions, reflecting 
praiseworthiness (or lack thereof) of an event or situation with respect to the agent’s values; and attraction 
emotions, reflecting the degree of like or dislike of an entity. Models of the appraisal using the OCC 
theory include the Affective Reasoner (Bates et al., 1992, the first implementation of the OCC theory), the 
EM (Reilly, 2006), the personality and emotion model of Andre et al. (2000), and the work of Paiva and 
colleagues (Martinho, 2000), all of which have been used to enhance the believability of synthetic agents. 

Recently, the appraisal theories of Scherer (Sander, Grandjean, and Scherer, 2005)[check]; 
Scherer et al., 2001) and Smith and colleagues (Smith and Kirby, 2001) have begun to be used as 
theoretical bases for modeling.  Scherer’s theories provide an elaborate description of the domain-
independent appraisal variables of novelty, valence, goal congruence, and coping potential, whose values 
are extracted from the domain-dependent stimuli.  The theories of Smith and colleagues, based on the 
previous work of Arnold and Lazarus, are similar but emphasize the role and mechanisms of coping. Both 
theories reflect a trend toward more process-oriented theories, which lend themselves to computational 
implementations by providing more detailed descriptions of the mechanisms of the appraisal processes. 
These theories have recently served as basis for several computational models, including EMA (Gratch 
and Marsella, 2004a)[check]. 
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Increasingly, theoretical bases for particular appraisal models combine elements of multiple 
theories and approaches. Examples of these architectures include MAMID (see Figure 5-4) (Hudlicka and 
Canamero, 2004)[check]), which combines elements of the Scherer and Smith models of appraisal; the 
EMA architecture (Gratch and Marsella, 2004a) [check], which combines elements of the Scherer, Smith 
and Lazarus, and OCC models of appraisal; the architecture for the robot KISMET (Breazeal and Brooks, 
2005), which uses elements of somatic marker hypotheses and a 3-dimensional model of the emotion 
space (arousal, valence, and dominance); and the robot Yuppy (Velasquez, 1999), which uses emotion as 
a core component of the robot control system and integrates both cognitive and noncognitive triggers in 
the emotion generation process.  

Another promising trend in computational models of appraisal is the attempt to develop abstract 
formalisms, in which different theories can be compared. The work of Broekens and DeGroot represents 
an example of this trend (Broekens and DeGroot, 2006). 

A number of appraisal models have been developed in the past decade and it is beyond the scope 
of this section to describe all of them. The interested reader is referred to the following recent publications 
which include descriptions of a number of cognitive-affective architectures and a variety of approaches to 
the implementation of emotion generation via appraisal (Dautenhahn et al., 2002; Fellous and Arbib, 2005; 
E. Hudlicka and Canamero, 2004; Trappl et al., 2003; Trappl, Petta, and Payr, 2003) 

In general, several trends are evident in recent models of appraisal.  First, there is increased 
complexity and fidelity (one hopes) of the emotion dynamics (i.e., the functions calculating emotion 
intensity and decay rates). Second, increased effort is made to integrate multiple emotions and to model 
appraisal as an evolving, dynamic process. Third, modelers are recognizing the need to differentiate 
among emotions states based on their duration and model both emotions (lasting seconds and minutes) 
and longer lasting moods, as well as stable personality dispositions (traits). Fourth, increasing attempts 
are made by psychologists to develop more mechanism-oriented theories of appraisal. These so called 
process models then provide more of the details necessary to develop computational versions, and can in 
turn benefit from the empirical hypotheses generated by computational models. Fifth, attempts are made 
to identify domain-independent appraisal dimensions as the intervening variables between domain-
specific situations and the resulting emotions.   While early models provided primarily domain-specific 
triggers and mapped these directly to specific emotions, more recent models interpose an intermediate 
step, whereby more abstract appraisal dimensions are first identified, such as relevance, novelty, 
unexpectedness, desirability, ego involvement, which are then linked to specific emotions.  

Models of Emotion Effects on Cognition and Cognitive-Affective Interactions 

Architectures that focus on appraisal typically link the resulting emotion to specific behavioral 
results, most often to facial expressions, gestures, speech, or behavioral choices by the associated agents.   
The effective and realistic expression of emotion by synthetic agents represents a considerable 
technological challenge.  Much progress has been made in this area in the social agent and robot research 
community.  It is beyond the scope of this section to address the theoretical, methodological, and 
technical challenges.   A recent book provides an overview of the methods and challenges (Prendinger 
and Ishizuka, 2003), and a brief overview of the state of the art is provided by Gratch and colleagues 
(Gratch, Rickel, Cassell, Petajan, and Badler, 2002).  We focus here on an aspect of affective processing 
that remains underemphasized on cognitive-affective architectures: models of the effects of emotion on 
perception, cognition, and the appraisal processes themselves.  

One of the earliest models in this category was the work of Araujo (1991, 1993) [check these], 
who implemented a connectionist (recurrent associative network) model of two phenomena in cognitive-
affective interaction: the effect of emotional state on performance and the effect of emotional state on 
memory and recall, based on neuroscience data.  The model represented two separate but interacting 
systems mediating cognitive and affective processing, each with different characteristics: fast processing 
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of survival-related stimuli in the affective system, yielding approach/avoidance output, and slower, 
differentiated processing in the cognitive system.  

MAMID (Hudlicka, 1998; Hudlicka, 2002b; Hudlicka, 2003a[check these]) represents an 
example of a cognitive-affective architecture whose primary focus is the modeling of the multiple, 
interacting effects of emotions and affective traits on perception, cognition and behavior. MAMID is a 
domain-independent architecture that implements a generic methodology for modeling a broad range of 
individual differences (also referred to as behavior moderators), in terms of a series of external parameters 
that control processing within the individual modules (see Figure 5-2).  MAMID dynamically generates 
emotions via the affect appraiser module (see Figure 5-4). The resulting configuration of emotions (and 
prespecified personality traits) are translated into specific values of the architecture parameters, which 
then control aspects of fundamental processes within the architecture—speed, capacity and specific 
content bias (e.g., bias for processing threatening information). MAMID’s primary purpose is to elucidate 
the mechanisms mediating emotion-cognition interaction, with particular emphasis on the effects of 
emotions on the cognitive appraisal process itself and on emotion regulation.   

Two other examples of parameter-based model of emotion effects are the work of Ritter and 
colleagues (Ritter et al., 2002; Ritter and Avraamides, 2000) and the MicroPsi architecture (Bach, 2007). 
Ritter follows the model proposed by Hudlicka and applies it to the modeling of emotion effects in the 
ACT-R architecture.  The focus is on models of stress, and the parameters modeling these effects 
influence the ACT-R rule selection and conflict resolution algorithms (Ritter, Reifers, Klein, and 
Schoelles, 2007). In addition to the traits, states, and cognitive individual differences modeled in MAMID, 
Ritter also includes such factors as fatigue.   

The MicroPsi architecture uses four parameters to model emotion effects: arousal, which 
determines degree of action readiness; resolution level, which influences the degree of elaboration of 
perceptual and memory processes; selection threshold, which influences the extent to which an agent 
persists in its current activity (versus changing its goals and behavior); and sampling rate/securing 
behavior, which controls the agent’s orienting and novelty-seeking behavior. The MicroPsi architecture 
controls the behavior of simple agents in simulated environments, focusing on navigation and searching 
for objects of interest (e.g., food sources). 

Several agent and robot cognitive-affective architectures also model some aspects of emotion-
cognition interaction. For example, the Yuppy robot’s attention and perceptual processes are influenced 
by emotions, and display differences in orienting response and perceptual biases{Velasquez 1999 #5620}.  

Several attempts have been made to model emotion effects on decision making in the context of 
decision-theoretic models, which need to be augmented to allow for variability of the utility functions as a 
function of the current emotion or mood. Busemeyer, Dimperio, and Jessup (2007) have developed an 
augmented decision-theoretic formalism to model the affective and motivational dynamics over time, 
termed “decision field theory” (DFT).  Specifically, DFT models both the changing goals and differences 
in the time required to meet particular goals as a result of specific action.  DFT currently models affective 
states in terms of valence (positive/negative). Behavioral alternatives are evaluated in terms of the 
anticipated valence that would be generated, and the alternative that generates the most positive valence is 
selected.  The work of Lisetti and Gmytrasiewicz {Lisetti and Gmytrasiewicz 2002 #5490/d} provides 
another example of augmenting older utility models with affective factors. 

Work in modeling behavior moderators (termed “performance moderator functions” or PMFs) 
represents another attempt to model the effects of personalities on behavior (Silverman et al., 2007; 
Silverman, Johns, Cornwell, and O’Brien, 2006).  The PMF-based models combine a variety of 
theoretical models, including the OCC appraisal model and decision-theoretic formalisms, and apply the 
resulting models to simulations of individual and group behavior.   
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Cognitive-Affective Architectures 

Several cognitive-affective architectures have already been mentioned in the context of 
controlling agent or robot behavior and are described above in the context of either emotion generation or 
emotion effects on cognition and behavior (Bach, 2007; Breazeal and Brooks, 2005; Velasquez, 1999). 
Here we highlight two additional cognitive-affective architectures that aim to provide a broad model of 
intelligent behavior and integrate both cognitive and affective processing: the implemented Cog_Aff 
architecture (Sloman, 2003; Sloman et al., 2005) and a design for a cognitive-affective architecture 
proposed by Ortony, Norman, and Revelle (2005).  Both architectures share a number of features, and it is 
interesting to note that while developed independently, there is a degree of convergence in the design.   

Both models propose three levels of functioning, with a reactive stimulus-response layer 
mediating simple, hardwired behaviors; an intermediate level handling simple and routine, but learned, 
behavior (termed “deliberative” by Sloman and “routine” by Ortony); and a third level handling complex 
reasoning and problem solving (termed “meta-management” by Sloman and “reflective” by Ortony).  
Processing occurs in parallel at all three layers, complex feedback mechanisms among the layers 
coordinating the independent processes and influencing the final outcome.  Both models also propose 
different degrees of complexity in the affective reactions arising at each level, with the reactive level 
generating rather undifferentiated affective states corresponding to positive and negative valence; the 
middle level generating simple, primary emotions such as fear, joy, sadness, and anger; and the top level 
generating both complex versions of the primary emotions, as well as complex emotions requiring 
explicit representations of the self and having a strong cognitive component (e.g., shame, pride, guilt).  
Existing agent and robot architectures typically implement a subset of these, usually just one level, 
although increasingly multilevel processing is being implemented; for example, the FearNot! agent 
implements both a reactive and deliberative level of processing in emotion generation (Paiva and Prada, 
2005)[ref needed]. 

Relevance to Modeling Requirements 

Cognitive-affective architectures are relevant for three core areas in military modeling : analysis 
and forecasting in planning, simulation for training and rehearsal, and design and evaluation for 
acquisition.  In addition, the ability of cognitive-affective agents to enhance autonomous behavior is also 
critical for such applications as unmanned vehicle control. As mentioned above, cognitive-affective 
architectures are particularly relevant for modeling team and organization behavior, in which the emotion 
influences not only individual behavior, but also plays a key role in interpersonal interactions. The 
extensive existing work in social agents (e.g., Dautenhahn et al., 2002; de Rosis et al., 2003) is directly 
relevant here. One can envision integration of existing social network models with aspects of cognitive-
affective architectures to improve the validity and utility of larger organizational models.   

Of particular importance in the case of cognitive-affective architectures are training and 
assessments systems, in which the addition of affective factors increases the effectiveness of the training 
system by enhancing the realism of any social aspects of the training environment.  A critical role is also 
played by affect-adaptive systems, capable of assessing the user’s (trainee’s) emotional state and adapting 
the pedagogical strategies accordingly.  This is also a critical factor in operational decision support 
systems. One may wonder whether incidents such as the downing of an Iranian airliner by the U.S.S. 
Vincennes would have happened if an affect-adaptive decision-support system had been in place.  The 
potential for reducing accidents via the use of such systems needs to be explored (e.g., see Hudlicka, 
2002a [check] ). 

Finally, the application of these models to behavior prediction, in both friendly and adversary 
situations, is also critical.  Given the importance of emotion in motivation and behavior control, one can 
argue that any models attempting prediction must in fact include affective factors, while keeping in mind 
the general limitations of predictions of individual behavior already discussed.  These applications include 
those outlined in Chapter 9: disruption of terrorist networks, prediction of adversaries to specific courses 
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of action, prediction of societal reactions to specific events, crowd behavior modeling and crowd control 
training, and organizational design. 

Major Limitations 

Emotion models and cognitive-affective architectures have the same limitations as their cognitive 
counterparts, already discussed in the cognitive architecture section, exacerbated by the difficulties 
associated with modeling the transient, idiosyncratic, and poorly understood affective processes. These 
include lack of underlying theory to support model development, difficulties in obtaining required data, 
brittleness, the labor-intensive nature of model development, and lack of validation. The issue of data is 
particularly critical: while increasing amounts of empirical data are available about affective effects at the 
periphery (attention and behavior), the effects of emotions on the internal cognitive states (e.g., situation 
assessment, learning, goal management) are difficult to assess unequivocally.  Furthermore, it is unlikely 
that the exact nature of these internal states can be identified to the extent required for process-level 
models in the near future. 

As with cognitive architectures, the most critical limitation is architecture and model validation, 
although progress is being made in this area.  This includes the same issues already discussed with respect 
to cognitive architectures: lack of established validation criteria and methodologies, frequent confusion 
between verification and validation, and the lack of a fully-validated, domain-independent cognitive-
affective architecture. These issues are discussed in more detail below. 

Verification and Validation Issues  

In spite of the challenges associated with validation of emotion models and cognitive-affective 
architectures, progress is being made in this area. A promising trend in emotion modeling is the 
increasing emphasis on including evaluation and validation studies in publications. As is the case with 
cognitive architectures, no existing emotion models or cognitive-affective architectures have been 
validated across multiple contexts or a broad range of metrics.  However, some important evaluation and 
validation approaches and studies exist.  

First, it is important to make the distinction between evaluation and validation.  Given the 
increasing proliferation of cognitive-affective architectures in synthetic agents, there is increasing 
emphasis on evaluating the effectiveness of the resulting models in improving human-computer 
interaction. These evaluation studies do not necessarily address model validity or, if they do, focus on 
limited black box validation approaches. They are nevertheless critical in establishing the need for, and 
effectiveness of, augmenting synthetic agents with affective processes, for particular purposes and 
applications—enhance agent likeability, realism, believability, empathy, etc.   Examples of these types of 
evaluation studies include the work of Prendinger and Ishizuka (2005) in evaluating the effectiveness of a 
synthetic agent capable of limited emotion recognition in reducing user frustration.  Results of these 
studies indicate that users experience less stress and perceive the task as less difficult when provided with 
“empathic” feedback from the synthetic agent. Additional examples of this approach to agent evaluation 
include the work of de Rosis, et al. {de Rosis, Pelachaud, et al. 2003 #140 /d}.  Studies have also 
addressed the degree to which a social agent can improve human performance in a mixed human-robot 
team. Scheutz and colleagues (2006) have demonstrated improved effectiveness of human team members’ 
performance as a robot team-member “expresses” emotions. 

Some evaluation studies also focus on assessing the degree to which cognitive-affective agents 
are better able to negotiate complex, novel, and uncertain environments than purely cognitive agents.  
Examples of these studies include work by Hille (1999), cited in Bach (2007). 

In addition to these evaluation studies, attempts are beginning to validate the underlying models 
themselves.  As is the case with cognitive architectures, these validation studies are performed via a range 
of methods, including the weaker heuristic and qualitative evaluations and increasingly focusing on 
comparisons with human data.  Examples of these efforts include evaluation of MAMID’s parameter-
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based model of emotion effects, which used a heuristic evaluation approach to evaluate the model’s 
ability to match human data at a qualitative level; establishing the validity of an augmented ACT-R 
architecture to model effects of stress on subtraction, using data from existing empirical studies (Ritter et 
al., 2002); and recent work by Gratch and Marsella (2004a)[check] establishing a correspondence 
between aggregated empirical data from coping questionnaires and a model of emotion generation and 
coping implemented in the EMA architecture.  The key challenge in these validation studies is the 
selection of the most appropriate dataset. This refers to selecting data from a comparable context, as well 
as selecting the appropriate method and degree of data aggregation. It is not clear to what extent 
comparison of performance at the aggregated level can be used to reflect model validity when such highly 
variable phenomena as emotions are considered. 

The cognitive-affective architecture validation has not yet reached the stage of systematic 
comparisons that is beginning to be used for their cognitive counterparts, such as the AMBR project 
(Gluck and Pew, 2005).  However, given the recent emphasis on validation in the computational emotion 
research community, such studies are likely to be taking place in the near future. 

Future Research and Development Requirements 

Future research and development requirements for cognitive-affective architectures are similar to 
those for cognitive architectures. Additional requirements reflect the challenges in building these 
architectures mentioned throughout the text, as well as the major limitations discussed—that is, issues 
related to a lack of underlying theory regarding emotion and emotion-cognition interactions to support 
model development, difficulties in obtaining required data for theses transient and multimodal processes, 
brittleness, labor-intensive nature of model development, and lack of validation.  In addition, there are 
technical (and theoretical) issues associated with accurate recognition of emotion in humans in affect-
adaptive applications in training and gaming, as well as issues in realistic generation of affective 
behaviors (e.g., facial expressions, effects on natural language generation and speech).  These represent 
important issues in the development of cognitive-affective agents and robots capable of social interaction.  
Some of these issues are discussed in a recent review of requirements for modeling synthetic agents 
(Gratch et al., 2002). 

The very nature of emotion and affective processes as complex, multiple-modality phenomena 
makes modeling affective processes and cognitive-affective architecture more challenging than modeling 
purely cognitive architectures.  It is not clear to what extent the types of abstractions typically made in 
these models (e.g., using sequential processes to model inherently parallel and distributed phenomena, 
abstracting an identified function as a single module within an architecture) hold when it comes to 
modeling the multimodal nature of affective processes.  Cognitive-affective architecture development 
trends may also experience a more pronounced split between the research-oriented and the application-
oriented architectures.  Due to the increasing demand for more realistic and believable agents enabled by 
incorporating affective factors into agent architectures, the future developments in these models are likely 
to be driven by practical considerations for rapidly developing such agents for such applications as 
interactive gaming.  This is likely to contribute to emerging standards for affective markup languages and 
other tools to facilitate rapid development of largely black box models of these phenomena.    

EXPERT SYSTEMS 

A key feature that differentiates expert systems (ESs) from more traditional software programs is 
the explicit representation of knowledge, stored in knowledge bases that are distinct from the inferencing 
mechanisms that control how the knowledge is used.  This feature facilitates the editing of the knowledge 
base to accommodate additional or changing task knowledge and provides flexibility in how the 
knowledge embedded in the system can be used (e.g., to answer previously unanticipated questions about 
the problem).   
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Expert systems have increasingly become integrated with more traditional software development.   
Yet it would be a mistake to think of them as simply another programming paradigm, analogous, for 
example, to object-oriented programming, since a number of important factors distinguish expert systems 
from these lower level paradigms, including the architectures of these systems, the emphasis on explicit 
representation of knowledge and the associated knowledge representation formalisms, separation of 
knowledge and control, and the frequent use of human expertise and heuristics. These factors also make 
expert systems well suited for modeling both individual and organizational behavior (see Hudlicka and 
Zacharias, 2005, 2006 [ref needed] for a discussion of how expert systems can be used in these contexts). 

Expert systems should not be confused with cognitive architectures. Expert systems and cognitive 
architectures are different in both their objectives and their architectures.   The objective of an expert 
system is to solve a particular problem, frequently by simulating human expertise and the use of heuristics. 
The objective of cognitive architectures is to emulate human perceptual and decision-making capabilities, 
frequently in the context of basic research aimed at advancing understanding of these processes, or to 
control the behavior of synthetic agents or robots.4 Expert system architectures are typically much simpler 
than cognitive architectures, the latter typically containing modules that correspond to functional 
components of the decision-making process (e.g., situation assessment, goal selection) or the mind (e.g., 
attention, long-term memory). 

What Is an Expert System?  

Expert systems are software programs that aim to simulate the decision making and problem 
solving of human experts on highly specialized tasks, such as medical diagnosis or mechanical system 
troubleshooting.  Expert systems achieve their “expert” performance by applying large amounts of 
domain-specific knowledge to a particular problem. They are therefore also known as knowledge-based 
systems. 

Three essential components define expert systems:  

• Knowledge base: an explicit representation of domain and problem-solving knowledge for a 
particular task. This knowledge is typically represented in a modular, symbolic format, such 
as rules, frames (objects), logical propositions, semantic nets, constraints or cases, and 
includes factual knowledge as well as heuristics used by human experts. For example, “IF 
(patient has high fever) AND (patient is covered with red spots) AND (patient is a child not 
vaccinated against chicken pox) THEN (patient has chicken pox w/ probability 80%).” A 
typical rule base can contain thousands of rules. 

• Working memory:  the component containing the specific data representing the current 
problem at hand (e.g., the current case), along with particular goals to satisfy or specific 
constraints. The data must be in a format that is compatible with the knowledge base format 
(e.g., “Patient’s fever is 104,” “Patient is covered w/ red spots,” “Patient is 6 years old,” 
“Patient has not had the chicken pox vaccine”). 

Inference engine: an inferencing mechanism capable of combining the existing knowledge with 
the current data to derive conclusions of interest and thereby solve the problem at hand (e.g., derive a 
diagnosis or interpretation of the data in the framework of the knowledge provided).  In the example 
above, a forward-chaining rule interpretation mechanism would derive that there is a 80 percent chance of 
the patient’s having chicken pox.   Other inferencing mechanisms include theorem proving for knowledge 

                                                 

4 To the extent that some systems may contain elements of both expert systems and cognitive architectures (e.g., 
knowledge bases, rule-based problem solving, characteristics of the working memory), they may be considered to partially fall 
within both categories (e.g., Soar; Hill et al., 1998). 
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bases using predicate calculus or case-based reasoning for cases.  Expert systems may also include one or 
more of the following components: 

• A (graphical) user interface and intelligent front end, to facilitate the developers’ and end 
users’ interaction with the expert system during development, refinement, and use. 

• Explanation capabilities to explain the inferencing chains to the end user, to ensure that the 
reasoning process is transparent and that the final conclusions are accepted by the users. 

• Knowledge acquisition capabilities to facilitate the acquisition (from existing technical 
materials) or the elicitation (from human experts) of the necessary knowledge and its 
modification during the knowledge base refinement stage. 

• Learning capabilities to help acquire additional knowledge from patterns identified as the 
system performs its tasks. 

Expert systems have been developed for a range of problem types (e.g., diagnosis, design) across 
a variety of domains, including medicine, computer engineering, process control, banking, law 
enforcement, and others.  Expert systems are useful as decision aids, for training purposes, and to capture 
knowledge and preserve expertise in a particular area. 

Expert systems can be developed using any computer programming language, typically a 
language that facilitates symbolic representation and inferencing, such as LISP.  However, the use of 
expert system shells is more common. Shells are development environments that facilitate ES 
development by providing system components and templates for structuring the necessary knowledge, 
thereby facilitating the knowledge engineering required to obtain the necessary knowledge from the 
expert(s) and encode it within a particular representational formalism. Shells also help maintain and 
modify the knowledge base and may provide a range of additional functionalities, such as a graphical user 
interface and explanation facilities. 

Specific expert systems differ along a number of dimensions. Most important are the domain 
represented and the type of problems the system can solve.  Additional differences include the following:  

• Representational formalism used to encode the task knowledge (e.g., rules, frames, 
procedural knowledge sources, predicate calculus);  

• Reasoning mechanisms implemented within the inference engine and the type of control 
implemented by the inference engine (e.g., forward versus backward chaining, implemented 
in rule-based expert systems; mixed or opportunistic, implemented in blackboard systems);  

• Type of knowledge represented (e.g., deep versus shallow domain knowledge);  

• Source of the knowledge (e.g., acquisition from existing technical materials or elicitation from 
human experts);  

• Type of problem-solving (control) knowledge used to help determine which of several 
competing pieces of knowledge should be used at a given point in the inferencing; 

• Management of uncertainty in both the knowledge representation and the reasoning  (e.g., use 
of representational mechanisms inherently capable of representing uncertainty, such as 
Bayesian belief nets, explicitly representing uncertainty in terms of certainty factors, using 
fuzzy logic);  

• Knowledge about the structure of the expert system itself (meta knowledge);  

• Degree to which intermediate results are available for explanatory purposes (e.g., 
unstructured versus highly structured, allowing the tracing of the inferencing processes);  
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• Ability to learn additional knowledge or to acquire knowledge automatically. 

State of the Art  

Expert systems represent one of the more successful applications of AI and are used extensively 
in multiple types of industrial and government applications in the United States and abroad, particularly in 
Asia. Expert systems have been applied to a range of problem types and across a broad range of domains. 
The generic problem types (Chandrasekaran, 1986) include diagnosis and troubleshooting, data 
interpretation, design, and prediction and induction.  Some domains spanning the time from early expert 
systems to the present include: 

•  Medicine, including diagnosis (e.g., web-based self-diagnosis programs), medication 
management systems (Hagland, 2003), medical emergency management, and toxicology (the 
DEREK system in England provides in silico testing of the adverse effects of chemicals and 
drugs, thereby avoiding live animal testing—Buckle, 2004); 

• Image interpretation, such as the TriPath FocalPoint system, which screens about 10 percent 
of Pap smear slides in the United States);  

• Chemistry, including interpretation of spectroscopic data;  

• Computer engineering, including the early XCON system for configuring computers (Barker, 
O'Connor, Bachant, and Soloway, 1989) and software development and database design;  

• The oil industry, including identification of promising wells for oil drilling [ref. needed.]; 

• Agriculture and land management, including interpretation of satellite images, hurricane 
damage assessment (Drake, 1996);  

• Real-time process control, including system monitoring and performance optimization in 
power plants, such as a Japanese steel plant that uses an expert system SAFIA to control the 
operation of a blast furnace (Feigenbaum et al., 1993); 

• Manufacturing, troubleshooting, maintenance and performance optimization for a variety of 
electromechanical systems and telecommunication networks, for example, NASA’s space 
shuttle engine diagnosis (Marsh, 1988); 

• Law enforcement and homeland security, for example, PortBlue 
(http://www.portblue.com/pub/solutions-law-enforcement); 

• Training and tutoring in various subjects, for example, the MITRE corporation’s F-16 
Maintenance Skills Tutor used to train Air Force technicians (Marsh, 1999); 

• The automotive industry, for example, diagnosis (Gelgele and Wang, 1998); 

• Financial advising and insurance underwriting analysis (Pandey, Ng, and Lim, 2000); 

• Route planning and scheduling [recent ref. needed.]; 

• Contract administration and management [ref. needed.];  

• Organizational design (Burton and Obel, 2004). 

 

Terms such as “knowledge technology,” “hybrid intelligent systems” and “business-process 
reengineering” frequently indicate the use of expert system technologies (Liebowitz, 1997).  A number of 
recent advances in expert systems development contribute toward more rapid development, flexibility and 
extensibility, improved performance, enhanced interaction with human users, and more natural integration 
in the work flow. We discuss the most critical ones below. 
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Expert System Shells and Development Environments 

A wide variety of shells are now available, which greatly speed up the development of expert 
systems. The shells facilitate the knowledge engineering process required to build and maintain the 
knowledge bases by providing knowledge templates required for particular tasks.  By enforcing 
consistency, these templates reduce common knowledge base errors. The shells vary along a number of 
dimensions, including overall complexity, number and type of knowledge representation formalisms 
supported, number and types of problem-solving tasks supported, ease of knowledge base development 
and maintenance, degree of automatic knowledge engineering supported, and cost.  A recent review [ref. 
needed.] listed over 150 shells.  A number of freeware shells are available, ranging from general rule-
based languages, such as NASA’s CLIPS, to specialized shells.  The costs of commercial shells range 
from $50 to over $100,000.  Increasingly, shells are tailored for a particular type of problem (e.g., 
diagnosis, design, scheduling, real-time control, planning) to support more efficient knowledge 
engineering and performance. 

Automatic Knowledge Acquisition and Learning 

Knowledge acquisition is the major bottleneck in building expert systems.  To help address this 
problem, a number of automatic knowledge engineering tools have been developed, some of which use 
established domain ontologies (Puerta et al., 1993), and researchers are exploring the application of 
machine learning methods to the automatic development of knowledge bases from training cases.  In 
some cases, the learning methods may involve the use of additional representational and inferencing 
schemes, such as connectionist approaches or artificial neural nets. 

Hybrid and Embedded Systems 

Frequently, the most successfully deployed expert systems are those that are integrated as 
components of larger, conventional systems.  These embedded systems represent an important trend in 
which multiple methodologies or representations and inferencing mechanisms are applied to the solution 
of a particular problem.  Examples of technologies that may augment an expert system include fuzzy 
logic, neural networks, case-based reasoning, database management systems, genetic algorithms, chaos 
theory, statistical analysis, and data mining. 

Representing and Reasoning Under Uncertainty 

An essential aspect of expert reasoning is the ability to manage uncertainty. Expert systems must 
therefore be able to represent uncertainty in the facts and the knowledge and propagate uncertainties 
through the inferencing process.  Early approaches included rather ad hoc “certainty factors,” associated 
with rules.  More recently, formalisms capable of integrating uncertainty representation and inferencing 
have become popular.  These include multivalued fuzzy logic (Zadeh, 1965)[ref. needed.], and Bayesian 
belief nets (BBNs) (Pearl, [ref. needed.]). BBNs especially have found extensive use in the development 
of “soft” ES-based decision-aiding systems in the Department of Defense (DoD) because of their intuitive 
graphical representation of causality and their ability to “reason” in the face of sometimes vague rules and 
often uncertain information 

Relevance, Limitations, and Future Directions  

Relevance 

From the list of current applications of expert systems above, it is clear that those dealing with 
human individual or social behavior could be useful in many ways.  Expert systems might be used with 
knowledge bases comprising profiles of individuals (e.g., political or military leaders) or groups to 
support what-if exercises estimating the probability of various behaviors, given different courses of action.  
They might be applicable to diagnosis of the intentions of adversaries, given knowledge of those 
adversaries’ former behavior and current intelligence information.  They might also be applicable to 
organizational design problems. Because of the ability to support the capture and direct representation of 
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knowledgeable experts in DoD (e.g., strategic planners, counterintelligence specialists, psychological 
operations officers, etc.), ES-based assessment tools and decision aids are likely to continue to be 
developed for specialized DoD applications in all of these areas. This will be driven by the many benefits 
afforded by expert systems already demonstrated in other domains, including: 

• Improved quality and consistency of solutions, because of the ability to explicitly store and 
retain expertise over time and situation, ensuring permanence, the “capturing and distribution 
of critical knowledge throughout an organization”; (Stylianou, Madey, and Smith, 1992) 
[page no. needed.]. 

• Increased availability of limited expertise, reduced down time, and increased reliability of 
human-system decision-making performance. 

• Improved training via ES-based tutoring systems supporting situation assessment, planning, 
and decision making in understanding individual, group, and organizational behaviors; 

• Extensibility and flexibility, the ability to explain its reasoning, and the ability to handle 
uncertainty in data and knowledge (Georgeff and Firschein, 1985; Giarratano and Riley, 
1998). 

Major Limitations 

In spite of the successes and the potential for the future, some researchers have expressed the 
opinion that the idea of expert systems is futile (Dreyfus,[ref. needed.]) and that such systems are doomed 
to perpetual mediocre performance simply by virtue of the fact that they are not human.  This may well be 
true, but one must remember that their aim is to perform routine, well-established tasks, not to behave like 
Renaissance men.  Perhaps the best solution to this problem is to have the system simply recognize the 
limits of its expertise and refer the problem to another expert system. Nonetheless, several limitations 
contribute to this pessimistic view of ES potential. 

One major limitation of expert systems is the rapid degradation of their performance once the 
limits of their expertise (knowledge base) are reached.  This is referred to as the brittleness problem.  
Unlike human experts, who display “graceful degradation” in their performance when faced with an 
unknown problem (by drawing on their large amounts of stored knowledge and general problem solving 
methods), expert systems can function well only within the very narrow scope of the specific task for 
which their knowledge base was developed.  Expert systems thus resemble idiot savants: they may match 
or exceed the performance of human experts in a very narrow area of expertise, but they cannot perform 
simple tasks outside this area of expertise. 

Another limitation is the extensive effort required to build the necessary knowledge bases and to 
maintain consistency when the knowledge base is modified.  Ideally, the developer or user could add, 
delete, or modify the knowledge base as desired, taking advantage of its symbolic, modular structure, and 
the system would still derive the correct conclusions using the preexisting inference mechanism.  In 
practice, this is not always the case.  Frequently, when a particular piece of knowledge is added, deleted, 
or modified, the dependencies in the knowledge base cause unintended inferences, requiring further 
modification of the knowledge base (tweaking) and, less frequently, changes in the inference engine 
control algorithms.  The main approaches addressing this problem are automatic knowledge engineering 
tools, and shared ontologies, and standardized domain languages. 

Finally, one of the major limitations is the difficulty in deciding whether an ES-based system is 
the most appropriate solution to the problem at hand, given the costs and effort often required for ES 
development. Depending on the task difficulty and problem stability, access to appropriate experts, and 
use of appropriate tools, the required time may range from weeks to many person-years.  It is therefore 
critical that ES technology is applied appropriately. Several characteristics of the problem help determine 
whether an expert system is the appropriate solution: 
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• Stability or persistence of the problem: Is the problem likely to exist long enough to justify 
the investment required to develop an expert system? 

• Appropriate problem complexity: Is the problem sufficiently difficult to warrant the 
development of an expert system, yet sufficiently routine that the necessary knowledge and 
procedures can be obtained and encoded within the ES formalisms?  It has been said that 
expert systems are appropriate for tasks that would take an expert an hour or two (Bobrow, 
Mittal, and Stefik, 1986). 

• Appropriate problem familiarity: Is the problem sufficiently familiar and can a sequence of 
steps be defined for solving it? Expert systems are not suitable for situations in which each 
problem is unique and novel methods must be developed to solve each problem. They are 
appropriate for “automating tasks that are fairly routine and mundane, not exotic and rare” 
(Bobrow et al., 1986),[page no. needed for quote]). 

• Availability of the necessary knowledge: Is the required knowledge available, either from 
technical materials or from human experts? Are the experts capable of articulating the 
necessary knowledge and are they available as necessary throughout the system development 
process, including evaluation and validation? 

• Availability of test cases: Are sufficient test cases available to support a systematic evaluation 
and validation process? 

• Type of knowledge: Is the knowledge highly task-specific or is a high degree of 
commonsense knowledge required? Expert systems are appropriate for problems that can be 
solved with highly domain-specific knowledge, rather than the creative application of a broad 
range of commonsense knowledge. 

It is critical to understand that expert systems do not perform magic.  Expert systems can solve 
only problems for which well-defined solutions already exist and the necessary knowledge can be 
obtained and encoded in the knowledge base. 

Future Research and Development Requirements  

To ensure continued use of ES technologies, the limitations outlined above need to be addressed.  

To address the general issue of the narrow scope of applicability, effort needs to be devoted to 
developing technologies and systems that can  recognize the limits of  expertise and, when exceeded, refer 
the problem to another expert system.  This attempt at “self-awareness” is the underlying motivation of 
the emerging multiagent systems in ES research.  

To address the issue of brittleness, one can pursue several strategies, including the development 
of: 

• An ability of the expert system to automatically acquire additional knowledge or problem-
solving strategies by automatic knowledge acquisition and learning. 

• An ability to represent large amounts of commonsense knowledge. 

• An ability to draw on deep models of the domain and reason from first principles about an 
unfamiliar problem. 

To address the issue of the extensive effort needed to build and maintain expert systems, 
guidelines need to be developed to determine if an ES-based solution is appropriate to the problem at 
hand. In addition, effort needs to be put into the development of shared ontologies, standardized domain 
languages, and automatic knowledge engineering tools. 
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Finally, effort needs to be invested in developing methods for dealing with uncertainty and for 
addressing verification and validation to ensure consistency and correctness of the knowledge bases 
underlying expert systems. 

DECISION THEORY AND GAME THEORY 

Overview 

This section provides a brief overview of decision theory and game theory and their relevance to 
the individual and organizational modeling problem. In the earlier sections of this chapter we discussed 
many of the on-going efforts in developing cognitive architectures and affective models to support the 
understanding of individual behavior within a psychological and situational context, and, in Chapter 3, the 
importance of culture as a means of providing social context and as a determinant of both individual and 
group behavior. And, as we have discussed, even these multidimensional approaches often prove too stark 
to capture the rich variety of individual human and collective group behavior that we observe out in the 
real world. 

Hence, one cannot but be surprised when one looks at the formal modeling literature in 
economics and political science.  Most of that literature ignores culture entirely and only recently have 
cognitive models become part of the mainstream in these areas (Camerer, 2003).  Instead, the standard 
assumption in these disciplines is that people maximize their payoffs.  Payoff maximizing behavior is not 
to be confused with self-interested behavior.  A person can be both payoff maximizing and altruistic at the 
same time.   Knowing payoffs requires an understanding of the motivations of the other players.  That 
may not always be the case.  Nevertheless, game theory and decision theory can handle this type of 
uncertainty as we discuss below. 

Those outside economics and political science criticize the rational choice assumption, that is, the 
assumption of payoff maximizing behavior, on the grounds that it lacks descriptive accuracy.  People 
don't make optimal decisions given a payoff function.  Sometimes people make mistakes.  Sometimes 
they don’t have well-defined payoffs. That is true.  Nevertheless, the assumption of optimizing behavior 
has several reasons to recommend it, at least as a baseline model.  First, it is well defined, which means 
that analytically tractable models can be built.  These models may not be 100 percent accurate, but they 
serve as gold standards against which models with relaxations in this assumption can be tested .  Second, 
it enables prescriptive reasoning.  Thus, using this model we can assess what people should do and then 
use this to generate hypotheses against which to compare actual behavior and identify the sources of 
deviation.5 Third, some theoreticians argue that even though people do not optimize initially, they should 
head in that direction over time, particularly as the fallacy of their behavior is pointed out.  In this way, 
the model becomes a forecaster of ultimate behavior.  Fourth, under special circumstances, there is some 
empirical evidence that people may act as if they optimize.  The empirical evidence is strongest when the 
stakes are large and when the situation is repeated or familiar.   

In general, to measure cognitive and cultural effects, a benchmark is needed for behavior (in the 
absence of those effects).6 The two most widely used benchmarks are that people behave randomly and 
that people behave optimally.   Myserson (1999) argues that rationality (i.e., acting optimally, given 
imperfect and/or incomplete information available to them) makes more sense.  Many economists and 
game theorists use the optimal behavior assumption.  However, for much of the social, statistical, and 

                                                 

5 Often factors that are not typically thought of as rational, including religious and political beliefs, have major 
motivating effects on behavior.  Ignorance—of the actual situation, the relative costs and payoffs of carrying out a decision, and 
other factors—may contribute to choices and behavior as well. 

6 Many would say there is no such thing: all behavior occurs in a cognitive and cultural environment.   
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computer sciences and for the network models and link analysis models discussed later in Chapter 6, the 
random behavior assumption is used as the baseline.  

We can distinguish between two types of models within the rational actor paradigm: decision 
theory models and game theory models.  In a decision theory model, the payoff to a person or group's 
action does not depend on the actions of others (Raiffa, 1997).  In a game theory model, payoffs depend 
both on the person or group's own action and on the actions of the other players (Bierman and Fernandez, 
1998).  We call the former insulated actions and the latter interdependent actions.  This distinction creates 
a demarcation line between decision theory and game theory.   Two highly simplified examples illustrate 
the difference.  A military commander confronted with the problem of how to assign troops to 
responsibilities during peacetime faces a decision problem.  That same commander allocating troops in 
the heat of battle often plays a game—the payoffs from the commander's action depend on the actions of 
the adversary. 

What Are Decision Theory Models? 

In decision theory models, the actor chooses from among a set of possible actions in order to 
satisfy some objective.  In many situations that objective is to maximize a payoff function. Without 
uncertainty, decision theory models are not very interesting: the actor chooses the action with the highest 
payoff.  The payoff depends on action as well as on the state.  The state literally means the state of the 
world—the set of factors that are payoff relevant.   A country’s oil reserves, its military strength, and its 
cash reserves would all be part of its state.  Formally, we write the payoff as a function, f(a|s), of the 
action, a, conditional on the state, s.  In other situations, an actor's objective might be to minimize regret.  
The concept of regret can be formalized as the difference between what the agent receives and what the 
agent could have received with perfect information. 

In a decision theory model, an agent has beliefs over the set of possible states.  Formally, beliefs 
represent what someone thinks is likely to be true either at present or in the future. These beliefs are 
captured in a probability distribution over the possible outcomes.  The expected payoff of an action equals 
the payoff of the action in each state multiplied by the probability of that state occurring as a result of the 
action taken.  Consider a military commander who must decide whether or not to enter a hostile village.7  
The commander has three options: to enter with firepower, to enter with a small group and attempt to 
negotiate, or to enter the village with food and medical supplies.  We define these as actions: attack, 
negotiate, and supply.  The value of each of these actions depends on the hostility level of the village 
leaders.  The village leadership might be hostile, moderate, or accepting. The leadership's attitude can be 
thought of as the state.  We assume that payoffs to the military commander equal the number of lives lost, 
making lower payoffs better.  We further assume that the  military commander can make accurate 
assessments of the number of lives lost by following each action conditional on each state and that those 
are shown in Table 5-1. 

This scenario illustrates why some consider decision theory a useful modeling tool and the 
reasons why decision theory end up being not that useful in practice.  First, the decision theorist must be 
able to specify the complete set of states and the consequences of the actions.  Such information is 
generally not known by the military commander, and the time to gather such information may inhibit 
rapid response.  For military actions, timeliness is often as or more important than accuracy.  Second, the 
decision theorist needs to assume that the military commander knows the probability distribution over the 
attitudes of the village leadership—that the commander has accurate beliefs.  In general, the commander 

                                                 

7 We consider an expanded version of this scenario later in our discussion of model verification and validation.   
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does not have such information; that is, the commander and his staff do not have well-founded beliefs 
over all of the states.8 

Finally, the decision theorist needs to assume that only first-order effects are critical; that is, the 
second-order effects of the actions are negligible.  However, as most commanders will tell you, there are 
unintended consequences of actions (second-order effects) that are often more critical than the first-order 
effects.  For example, a second-order effect of putting in to port in a city and enabling shore leave is an 
increase in money in the city and a consequent increase in corruption.  To deal with this, the decision 
theorist has to make the model more complex so that it captures these second-order effects.  The problem 
here is that these effects are not known a priori. There is simply insufficient understanding to predict the 
consequences of any action on any population or actor, especially given the influence of group think and 
social influence on behaviors. 

If, however, we were to assume that these many obstacles could be somehow overcome, then 
decision theory might still be a useful tool.  For example, one can assume that the probability of an 
accepting leadership equals one-half and that the probability of each of the other types equals one-fourth.  
Given these assumptions, entering with food and medical supplies is the best action.  It results in a loss of 
only six lives regardless of the leadership type, whereas both negotiating and attacking result in expected 
losses of eight and a half and eight lives, respectively.9  Let a denote the probability of an accepting 
leadership, m denote the probability of a moderate leadership, and h the probability of a hostile leadership.   
These probabilities must sum to one.  With a little effort, it can be shown that attacking is not optimal for 
any beliefs.  Thus, the question is whether to supply or to negotiate with the village leader. 

An important caveat is that, were it possible to overcome the obstacles to applying decision 
theory, the commander would still need computational support to correctly apply a decision theory model.  
That is, the scenario assumes that people think in Bayesian terms and that they do not make mistakes 
when computing probabilities.  Ample evidence suggests that people are not Bayesian and that they’re 
particularly bad at computing conditional probabilities and at estimating very low-probability events 
(Camerer, 2003). Thus, even if the commander could get the requisite information and knew all the 
probabilities, the commander would still not find the answer that decision theory would suggest.  Many 
decision aids being developed currently are designed to overcome these two limitations and provide for 
the commander a “recommendation” based on decision theoretic reasoning.  However, as noted, the 
recommendation will be faulty if the assumptions of knowing all states, all responses, and the 
probabilities are not met.  At the current time, little is known about how to put confidence intervals 
around such recommendations. 

Another potential role for decision theory is in determining the value of (perfect) or improved 
information.  Suppose that the military commander has beliefs about the village leadership based on 
incomplete information but that he can become perfectly informed at some cost.  To be specific, suppose 
that at the cost of four lives the military commander can find out the attitude of the village leadership.  
Returning to the initial assumption about beliefs that the leadership was accepting half of the time, one 
can show that the cost of gathering the information exceeds its value.  The information changes the 
military leader's action only when it reveals the leadership to be accepting.  In that instance, the leader 
should negotiate rather than bring supplies.  This action saves four lives.  However, the possibility of 
saving four lives half of the time would not be worth the certain cost of four lives.  Thus, the value of the 
information is less than the cost. In practice, however, there are several problems with this argument.  

                                                 

8 In fact, assessing the attitudes of the population correctly is a key challenge facing today’s military and requires a 
multidisciplinary approach not including decision theory.   

9 We arrive at these numbers by taking the probability of each type of leader by the number of lives lost.  In the case of 
the attack strategy, we multiply 16 by 0.25, 8 by 0.25, and 4 by 0.5 to get the expected value.  
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First, it is often as difficult to determine the cost of information as it is to assess the probabilities.  Second, 
the cost of information and the impact of the decisions may not be measurable in commensurate ways.  
That is, while an action may save lives, it may not cost lives to gather information; rather it may be an 
issue of time, purchasing surveillance cameras, etc.  If this is the case, another limitation arises to the 
decision approach, that of converting all outcomes in to the same currency. 

In theory, decision theory can also be used to model the decisions of an adversary.  However, to 
use decision theory effectively, one needs to know the adversary's beliefs over the relevant states of the 
world.  One of the key difficulties in adversarial modeling in general is understanding the adversary’s 
beliefs, capabilities, available resources, etc.  If these were known, behavior modeling would not be as 
difficult as it is.  Since the adversary tends to operate in a deceptive framework, hiding actions, and is 
adaptive with beliefs and attitudes that change in practice, decision theoretic models of the adversary tend 
not to be that valuable.  In fact, historic models of this type tended to assume that the adversary had 
beliefs similar to those held by one’s own forces, similar ways of engaging in battle, etc. Basing decisions 
on “mirror beliefs” can readily lead to disastrous consequences, 

Even if the adversary’s beliefs were known, the model is incomplete, because the adversary's 
attitude toward risk must also be known.  Current models do not take into account the adversary’s goals 
or strategies but take them as fixed.  To model strategic adversaries, game theory is used, which we cover 
next.  In our earlier discussion of cultural and cognitive models, we noted that people and cultures differ 
in how they respond in uncertain environments.  Substantial evidence shows that people exhibit 
uncertainty aversion (Ellsberg, 1961).  People prefer to take risks with known odds than risks with 
unknown odds.  They will even take actions that appear unreasonable—from a rational choice 
perspective—in order to avoid uncertainty (Bewley, 1986).  However, the extent to which they act in this 
way may be a function of the culture, and the relation of culture to risk-taking still needs exploration.  A 
second aspect of risk that is typically overlooked in decision theory is the role of emotions.  The 
emotional state of the actors can alter dramatically, and possibly in complex, nonlinear ways, their risk-
taking behavior. 

A second branch of decision theory, multi-attribute decision theory, takes a more normative 
approach.  It considers how to make good decisions when those decisions influence multiple dimensions.  
A military action has military, economic, political, and social implications.  Rarely will one action be 
dominant, that is, lead to a better outcome on every outcome dimension.  Thus, decision makers must 
come up with some process that either explicitly or implicitly assigns weights to the various outcome 
dimensions (Edwards and Barron, 1994). Multiattribute decision theory suffers from all the limitations 
already discussed.  Nevertheless, a multiattribute approach is part of the most sophisticated of the agent-
based models discussed in Chapter 6. In these multiattribute decision models,  the actors in the models 
pursue multiple but simple and very well-defined goals.  We must be careful not to be overconfident in 
our predictions, a point we discuss at length in our analysis of voting models in Chapter 6. 

What Are Game Theory Models? 

In a game theory model, as in decision theory, one assumes that each actor has a payoff function.  
And the same caveats apply as with decision theory: it may be impossible to know this function or take to 
much time to determine it.  In game theory, an actor’s payoff depends not only on his own action, a, but 
also on the action of other actors, and this action is called o. For this reason, the actors are referred to as 
players, and the payoff function is written formally as f(a,o). 

One can differentiate between games in several ways.  Games can be sequential, like chess, or 
simultaneous, like rock, paper, scissors.  This distinction is important because in some games advantages 
accrue to either the second mover or to the first mover.  Games can also be one shot or repeated.  In a 
standard repeated game, the same game is played in every period.  Repeated games can be finitely or 
infinitely repeated; in the latter, cooperation is easier to sustain as the future always casts a shadow, that is, 
there are always more rounds to play that can create incentives.  Games can be zero-sum or nonzero-sum.  
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In a zero-sum game, for every winner there is a loser.  In a nonzero-sum game, it’s possible for the total 
payoff to all players to increase or decrease.  Negotiation is often improperly seen as zero-sum, when in 
fact bargains can be reached that benefit both parties (win-win).10  Below we discuss Colonel Blotto, a 
zero-sum game, and show how the competitive nature of such games makes predictions difficult.   

Game theorists distinguish between two types of uncertainty.  In games of imperfect information, 
the players do not know the actions of the other players, even if those actions have happened in the past.  
For example, a military might not know where an adversary has stored its weapons. In contrast, in games 
of incomplete information, players do not know the state of the world.  For example, the military might 
not know how many weapons the adversary possesses. The state of the world most often influences 
payoffs, but it can also change the set of possible actions.  The distinction between these two types of 
uncertainty is of more than academic interest.  Problems due to incomplete information can be overcome 
by gathering data about preferences, capabilities and relevant environmental features. Problems due to 
imperfect information require observation of the other players.  Alternatively, such problems can be 
overcome by changing the rules of the game, for example, by creating new rules that reduce the amount 
of imperfect information.  A problem for the commander, however, is that he may not know what he 
doesn’t know.  Adversaries may act deceptively and provide evidence that makes it appear that 
information is more complete or perfect than it is, thus limiting further the value of game theoretic models. 

Game theory distinguishes between actions, what the players do, and strategies, the rules they use 
to decide what to do. For example, in a repeated prisoners' dilemma, in which players must either 
cooperate or defect in each period, a player's action is either to cooperate or to defect, but the player's 
strategy is the rule used to decide what action to take based on the past history of plays.  A player might 
use the strategy tit for tat, mimicking the action of the other player in the previous play of the game.  This 
distinction hides an important assumption of game theory, that the actors are assumed to always act 
strategically and not just to be reactive.  However, heightened emotional states, exhaustion, religious 
fervor, a reduction in basic needs (no water or food or shelter), and countless other conditions can actually 
all lead the players to simply react rather than to behave strategically. 

When one thinks of a game, be it football or chess, one thinks of sequences of moves, of ebbs and 
flows.  Game theory focuses instead on equilibria.  In what follows, we assume that the game has only 
two players, even though these models can handle any number of players.  Normally, an equilibrium is 
written in terms of strategies.  Here we simplify the definition and write it with respect to actions.  In this 
formulation, an equilibrium (a*,o*) consists of an action for each player such that each action is optimal 
given the action of the other player.  We write this as follows: 

The actions (a*,o*) are an equilibrium if a* optimizes f(⋅,o*) and o* optimizes f(a*,⋅)   

Equilibria in which both players take single actions, are called pure strategy equilibria. Often pure 
strategies fail to exist, and players must randomize their strategies across multiple actions.  Each player 
still takes only a single action but chooses that action from a set of possible actions so as to confuse the 
other player.  For example, an attack might be either by land or sea.  These equilibria  are called mixed 
strategy equilibria.  In general, pure strategy equilibria need not exist, but under some fairly mild 
conditions some type of  equilibrium always exists.  These mild conditions are mathematical assumptions 
about continuous payoff functions and the like.   

                                                 

10 A key limitation of game theory arises because of these different types of games: in practice, one must know what 
type of game is being played; however, the commander often does not have the information to make that determination, and 
assuming the wrong type of game can lead to suboptimal and indeed disastrous results. 
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Although one thinks of equilibria as places of rest, they can include finite punishment regimes, in 
which one player punishes the other for a fixed period of time, and bubbles, in which everyone is overly 
optimistic about the future (Green and Porter, 1984; Blanchard and Watson, 1982).   

Game theorists use equilibrium as their solution concept.  It’s what they think the outcome of a 
game will be. However, equilibrium is a very strong assumption.  Most social systems don’t reach 
equilibrium. Natural disasters, scientific advances, belief changes, learning, external political coupes, etc., 
all lead to adaptations that inhibit equilibrium from being reached.  Understanding what behavior will be 
at equilibrium does not help the commander understand the ebbs, flows, and adaptations with which he is 
faced. Equilibrium as a solution concept for games has been justified on either of two grounds.  First, 
optimizing players would locate equilibria.  However, as we discussed, there is little evidence that the 
players actually optimize.  Second, at least in some cases, agents who learn can locate equilibria.  
However, this tends to be true only for highly simplistic games, and generally those in which each 
individual game has only two players, even if many play in the overall tournament. Thus, a key difference 
between game theory models and nongame-theoretic agent-based models, which we discuss later, is what 
is assumed about behavior.  Game theorists assume that behavior somehow gets the players to 
equilibrium, whereas, in most agent-based models, equilibrium is never reached and behavior is the result 
of various processes—cognitive, social, political, cultural, and so on. 

Most game theory models assume two-person games.  However, in most realistic situations, the 
adversary is not a single entity.  In Iraq and Bosnia, for example, the adversary consists of sets of groups 
that come together and break apart, with varying strengths of alliances.  Then there are coalition partners, 
nongovernment organizations, the population that might harbor insurgents or terrorists, or not, and so on.  
In other words, there are multiple actors with ever-changing agendas.11   

Relevance, Limitations, and Future Directions  

Relevance 

Decision theory and game theory can play four roles in constructing behavioral models:  

• They oblige us to define the actors, their possible actions and strategies, the states of the 
world, and payoffs; 

• They force us to think through what optimal behavior would be given our assumptions; 

• They enable us to gain a quick and powerful understanding of the primary incentives and 
their implications; 

• They provide simplistic, often mathematically tractable models against which deviations that 
engender greater realism can be assessed.   

To see these four roles in an example, consider the Colonel Blotto game, which can be used to 
model military strategy and the actions of terrorist groups.  Colonel Blotto is a simultaneous zero-sum 
game.  Two players allocate fixed resources to a finite number of fronts.  Whichever player allocates 
more resources to a front wins that front. A player's payoff equals the number of fronts it wins.  In trench 
warfare, a front might literally represent a wall of troops.  In using Colonel Blotto to model terrorism, one 
can think of a front as a potential target.  This second, more modern application of Blotto is used here. 

The two players would be the terrorist organization and the host country.  Their possible actions 
would not necessarily be easy to characterize, but subject matter experts might be able to identify the set 
of potential targets.  In the standard Blotto game, all fronts are of equal value.  In a real-world scenario, 

                                                 

11 Computational game theory does allow for more complex multiplayer games.  However, the line between agent-
based models and computational multiplayer game models is more a matter of theoretical intent than methodology. 
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that would not be true.  Nevertheless, we might start by assuming that all targets take on equal value.  If 
we assume that the host country can prevent terrorist acts on a target if they have sufficient resources, 
then the payoffs in the real world are approximated by Blotto.  Already we see the value in using game 
theory in that it forced us to define the targets and their relative payoffs. 

Next, we can use game theory to solve for optimal behavior.  In Blotto, a player tries to mismatch 
the actions of its opponent.  Blotto can be thought of as a higher dimensional rock, paper, and scissors 
game.  The equilibrium to both games is for both players to play mixed strategies: to randomly choose 
from among several actions.  This solution provides a valuable insight: a smart player would randomize, 
making it impossible to know what action it will take. Formal analyses of Blotto reveal a second insight: 
if one player has more resources than the other, it does not necessarily win.  To see why, suppose that the 
terrorist group has 5 units of the resource and that the host country has 20 units in an environment with 5 
targets.  If the host country evenly allocates its resources across the targets (as shown in the Table 5-2), 
the terrorist group can win a front by putting all of its resources on one target. 

 Even though the terrorists win on only one front and the host country would officially be declared 
the winner of the game, most countries would not see this outcome as a win.  They want to avoid any 
terrorist attacks.  Blotto shows why that outcome is difficult to achieve.  

Given that no pure strategy can win with certainty, the host country must still play a mixed 
strategy.  In fact, if we assume that the host country wins ties, its optimal strategy in this case would be to 
assign five units to each of four targets and leave one target completely exposed.   Thus, 20 percent of the 
time, the terrorist group succeeds and the host country has no resources allocated to the target despite 
having a four to one advantage in resources and behaving optimally.  Counterintuitive results like this are 
a hallmark of game theory models. Often what we think is optimal won’t be, when we think through all of 
the implications of actions.  We might note that leaving a target uncovered might be politically infeasible.  
If so, that can be handled by changing the host country’s payoff function.   

In principle, we can use this model as a basis for a more elaborate and realistic model.  Such a 
model could include more general payoffs, it could include externalities between the targets—perhaps 
resources at one target also partially guard another target—and it could make the game repeated.  In that 
repeated game model, we might also restrict the ability of players to allocate resources.  If so, we have a 
situation quite different from that described by Colonel Blotto but nevertheless informed by Colonel 
Blotto.  However, as we have noted, the severe limitations of decision theory and game theory make this 
move to a more elaborate and realistic model impractical and not as trivial a step as the formal theorists 
might wish. 

Game theory has been of moderate use in analyzing institutions. The game theoretic approach 
consists of four steps (Diermeier and Krehbiel, 2003): 

1. Assume behavior. 

2. Define the game generated by the institution. 

3. Deduce the equilibria.  

4. Compare the regularities to data. 

If behavior is assumed to be optimizing, then equilibrium is achieved and institutions can be 
thought of as equivalent to equilibria.  To compare two institutions, we need only compare their equilibria: 
the better the equilibrium (e.g. the greater utility to the relevant actors), the better the institution, and the 
more the actors will prefer it.  The institutions as equilibrium approach proves powerful. If we want to 
compare a parliament with an open rule system, in which anyone can make a proposal, with a closed rule 
system, in which amendments are not allowed, or to compare a parliamentary system with a presidential 
system, we construct models of the two types of institution and compare their equilibria using game 
theory (Baron and Ferejohn, 1989).  The institutions as equilibrium approach of game theory can be 
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extended to include the game over institutions.  In this game, the players first decide which institution to 
use.  This meta-institutional game can explain not only how institutions perform but also why they may 
have been chosen in the first place. For example, we might use such a model to explain why a military 
leader chooses an open rule system even though that system allows greater voice to members of his 
cabinet.  However, as noted, the assumptions that need to be made here are highly unrealistic, hence 
calling the entire approach into question. 

When we expand game theory to include learning models, then we can capture some forms of 
cultural transference.  Many game theorists think of culture as beliefs.  That characterization provides 
some leverage, but it is far from adequate.  More recent work considers cultural learning in which players 
learn from one another (Gintis, 2000).  They can even learn from the other games that they play (Bednar 
and Page, 2007).  Game theoretic models can also be expanded to include networks that can evolve over 
time.  In sum, game theoretic models can include cultural forces, but those forces must be well defined 
and analytically tractable.  The movement to expand game theory by taking networks and culture into 
account are promising.  However, the research here is in its infancy. 

Major Limitations 

Decision theory models and game theory models tend to be overly simplistic, with few “moving 
parts” and with assumptions made with regard to the player behavioral characteristics that can be driven 
more by ease of solution criteria rather than fidelity of representation. Otherwise, the models become 
difficult or impossible to solve.  For example, most game theory models assume either two players or an 
infinite number of players.  The real world often takes place in the space in between, except for extremely 
artificial situations (e.g., chess games, two candidate political races, etc.).    Decision theory and game 
theory models require data about actors that often cannot be gathered with any reliability or within a 
reasonable amount of time determined by the decision window of the commander. 

A further problem with game theory models is that they produce multiple equilibria.  The Folk 
Theorem result states that, for repeated games, establish that almost any outcome can be supported as an 
equilibrium. To overcome this problem of multiple equilibria, game theorists rely on refinements, such as 
symmetry.  An equilibrium is symmetric if both players get the same payoff.  Or they invoke Pareto 
efficiency:  an equilibrium is Pareto efficient if no other equilibrium makes every player better off.  Game 
theoretic models also often ignore the stability and attainability of the equilibria that they predict. 
Although recently game theorists have begun to study learning models, they tend to consider simple two-
person games and not the more complex, multiplayer situations characteristic of the real world. 

Future Research and Development Requirements 

The potential for decision theory and game theory hinges on their ability to capture the 
complexities of real people and the real world.  A concern with realism would seem to undercut the 
mathematical strength of these two approaches: their ability to cut to the heart of a situation.  Nevertheless, 
the few degrees of freedom that these models allow can be tugged in the direction of greater realism with 
potentially large benefits.  In decision theory, we can look to cultural and cognitive explanations to 
explain beliefs.  We can also look to culture as a determinant of what is possible: some actions may be 
unlikely to occur in some cultures.  Therefore, we can rule those actions out.  However, as decision theory 
and game theoretic models become more nuanced to include cultural factors, they become less 
mathematically tractable, require increased data or more unrealistic assumptions, and require more effort 
for validation. 

As already mentioned, game theorists have begun including culture in the form of beliefs, 
networks, and behaviors.  This can also be accomplished less formally.  For example, Calvert and 
Johnson (1999) argue for culture as a means of coordinating on an equilibrium.  By coordination, they 
mean selection of one equilibrium from among many.  In their approach, game theory becomes a 
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preliminary tool: it defines the set of possible outcomes.  Detailed historical and cultural knowledge from 
subject matter experts then selects from among those equilibria. 
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Part A 

Part B 

FIGURE 5-3 MAMID, a cognitive-affective architecture and its modulating parameters.  Part A illustrates 
the modules, data flow, and mental constructs that mediate emotion generation via cognitive appraisal and 
decision making. Part B illustrates how the effects of emotions, personality traits and other individual 
differences are translated into architecture parameters that control processing in the individual modules.   
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FIGURE 5-4 Affect appraiser module of the MAMID cognitive-affective architecture.  SOURCE: 

[ref. needed.] 
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TABLE 5-1 Number of Lives Lost Depending on State and Action 

State/Action Negotiate Attack Supply 

Hostile leaders p = .25 20 16 6 

Moderate leaders p = .25 10 8 6 

Accepting leader p = .5 2 4 6 
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TABLE 5-2 Example of Allocation of Resources for the Host Country and Terrorist That Results in the 
Terrorist Winning on the Target 2 Front 

 

Player Target 1 Target 2 Target 3 Target 4 Target 5 

Host country 4 4 4 4 4 

Terrorist 0 5 0 0 0 
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6 
Meso-Level Formal Models 

In this chapter we describe and discuss formal models of human behavior at a level of 
aggregation and detail between the micro and macro levels. Such models are often referred to as meso-
level models. Typically the models represent interactions and influences among individuals in groups and 
cover both individual and group phenomena and their interactions.  These models include several voting 
and social decision models, social network models, link analysis, and agent-based modeling.  The models 
have been developed in varied disciplines, including social psychology, sociology, anthropology, 
economics, and computer and communications sciences. 

VOTING AND SOCIAL DECISION MODELS 

Understanding and predicting social phenomena requires good models of individuals and groups. 
The behavior of a group can differ from that of the individuals that comprise it.  A science of aggregation 
is needed to model the behavior and actions of collections of people.  There is a need to know how 
individual beliefs, goals, and skills combine on various tasks, such as problem solving and decision 
making.  This section covers voting models that assume people reveal their true preferences, game theory 
models that assume people vote strategically, and social psychological models that consider how 
individual preferences might change in a group setting. 

What Are Voting Models? 

The research and models from voting theory provide a natural place to begin an investigation into 
aggregation for both pragmatic and conceptual reasons.1 Governments, terrorist groups, and alliances all 
make decisions by “voting.” Some follow formal voting rules and procedures and others informally 
aggregate competing desires.  Thus, our use of the term “voting” goes well beyond formal (e.g., electoral) 
registering of a preference to much less formal situations in which a preference is exercised or a decision 
is made with input from multiple individuals. 

Conceptually, voting models are valuable for three reasons: (1) a substantial body of theory exists, 
(2) that theory shows no shortage of counterintuitive results—thus highlighting the challenges of 
aggregation, and (3) the theory highlights a key point: to model groups well, one must be able to model 
individuals and the interactions between them.   

State of the Art in Social Decision Modeling 

We first describe the basics of preference theory.  We then discuss results from social choice 
theory that reveal the problems created by aggregation as well as briefly comment on game theoretic 
models of strategic voting.   The distinction between social choice theory and game theory hinges on 
behavioral assumptions.  Social choice theory assumes that people truthfully reveal their preferences.  
Game theory does not.  It assumes that people act strategically, which may or may not lead them to reveal 
their true preferences.  The game theory models also enable one to understand how and why various 

                                                 

1We might have alternatively considered models of riots or collective ecosystem maintenance, but the related literature 
is not as deep or well thought out.  
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institutional rules matter.  We also discuss research from psychology that addresses how choices are made 
in a group context.  

Preference Theory 

Preferences capture how much people value or desire things.  They differ from choices, which are 
what people select.  Modelers define preferences over a set of alternatives.  These alternatives can be 
outcomes, or they can be policies that produce outcomes (Page, 2007).  Preferences impose an ordering 
over the alternatives.   It is customary to write the preferences of someone who prefers apples (A) to 
bananas (B) as follows: A > B.   Most modelers make two assumptions about individual preferences: that 
a person can compare any two alternatives (completeness) and that a person does not exhibit any 
preference cycles or internal contradictions (transitivity).   If a person claimed to prefer apples (A) to 
bananas (B), and bananas to coconuts (C), and then claimed to prefer coconuts to apples, one might think 
that person was irrational. Formally, it would be said that the person exhibits a preference cycle in which 
A > B > C, but C > A.  When individual preferences satisfy both completeness and transitivity (i.e., A > B 
> C and A > C), then they are called rational. 

If a person has rational preferences and if the modeler rules out indifference, then that person’s 
preferences can be written as an ordered list from the most to the least preferred alternative. Given a set of 
five alternatives, A, B, C, D, and E, one person’s preferences might be written A > B > C > D > E, and 
another person’s might be written E > D > C > B > A.  

This construction does not represent strengths of preferences.   One person might strongly prefer 
A to B and strongly prefer B to C.  Another person might have the same preference ordering but strongly 
prefer A to B and only weakly prefer B to C.  To capture these relative strengths, one can assign payoffs 
or utilities to each alternative.  Payoffs are not considered here because comparing these utilities across 
people is considered a dubious practice.    

Social Choice Theory 

If the members of a group have identical preferences, then aggregating those preferences is 
straightforward. One can think of the group as one big individual—and, for some groups, that may not be 
a bad assumption. The aggregation of preferences becomes problematic when the group members’ 
preferences are diverse. Preference diversity can be fundamental (people want different outcomes) or 
instrumental (people want the same outcomes but differ over the means to achieve them).  In what follows, 
that distinction is ignored, but it becomes important when thinking about linking models.  If voting 
models are to be linked with cognitive models, then the source of preference diversity is important to 
define because information can reduce instrumental preference diversity but has little effect on 
fundamental preference diversity.  

A collection of individuals with rational preferences may fail to have rational preferences as a 
group.  We give an example and then state a general theorem.  

In this example, three military leaders have preferences over which city to use as a base of 
operations.  The three candidate cities are Paris, London, and Berlin.   The leaders are denoted L1, L2, 
and L3.  Their preferences are as follows: 

Leader L1: Paris > London > Berlin 

Leader L2: London > Berlin > Paris 

Leader L3: Berlin > Paris > London  

Were these three leaders to vote on their choice between each pair of cities, London defeats 
Berlin two votes to one, Berlin defeats Paris two votes to one, and Paris defeats London two votes to one.  
Thus, the collective preferences exhibit a cycle.  Although the collective consists of rational individuals, 
the collective is not rational.   In theoretical terms, the property of rationality does not aggregate. 
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The possibility of a cycle is not an artifact of majority rule voting.  Kenneth Arrow proved that 
any rule for aggregating preference orderings that is not a dictator produces cycles (Arrow, 1951). It 
requires only that preferences are diverse, rankings between two alternatives do not depend on a third 
irrelevant alternative, and rankings reflect unanimity—if everyone prefers A to B, then so does the 
collective.  

Arrow’s theorem does not imply that cycles are unavoidable, only that if one wants to avoid 
cycles, one has to sacrifice one of the other conditions of his claim—appoint a dictator, sacrifice 
unanimity, or violate independence of irrelevant alternatives. In general, as argued by Donald Saari, 
preferences cycles are more a function of the voting system than the voter.  He suggests that voting 
paradoxes arise when the voting system fails to respect the natural cancellations of votes and so generates 
preference cycles (Saari, 2001). For example, one such voting system or scoring rule, the Borda rule 
(Marchant, 2000), does not create cycles.  Under the Borda rule with three alternatives, a person's top 
choice gets three points, her second gets two points, and her third gets only one point.  Each alternative 
gets a score, making cycles impossible.  Borda rule can, however, result in a tie, which is what would 
occur in the example of voting over cities.  A tie isn’t necessarily a bad thing.  It reflects equal support for 
each alternative.  Borda rule may thus seem to be better than majority rule, but we must keep Arrow’s 
theorem in mind.  Borda rule must violate one of his conditions, and, in fact, Borda does not satisfy 
independence of irrelevant alternatives.  In the example above, a fourth, irrelevant city could be 
introduced and change the outcome under Borda rule.  The fact that by introducing irrelevant alternatives 
someone could change the outcome argues against using Borda rule.  The debate thus moves from a 
discussion of the voter to a discussion of the scoring rules (Saari, 2006). 

Given that regardless of the voting rule individual agents may fail to reach a stable aggregation, 
organizational and institutional structures take on great importance.   The rules for how a group makes 
decisions can have large effects on outcomes.   For example, if someone has the power to set the agenda, 
then that person may have substantial power.  Thus, even if an organization is democratic in principle, it 
may not be democratic in practice, especially if one person controls the agenda.  

Strategic Voting 

In aggregating preferences, it can be assumed either that people vote sincerely or that they vote 
strategically.  Strategic voting occurs even in large groups in mature democracies; people vote for 
candidates who they think can win rather than the candidates whom they most prefer. Alan Gibbard and 
Mark Satterthwaite have shown this incentive to misrepresent to be universal (e.g., Satterthwaite, 1975).  

Why does strategic voting further complicate matters?  We have shown that rational individual 
preferences need not aggregate into a rational collective preference.  Thus, it may not be possible to 
discern what a group would decide even if one knew the preferences of every member of that group. 
Given that people have incentives to misrepresent their preferences, they wouldn’t reveal their true 
preferences anyway. Thus, one must discern how people’s true preferences get mapped into their 
actions—in this case, their votes.  And that requires a model of individual behavior in groups. 

The possibility of coalitions further complicates the analysis of voting models.  Subgroups may 
have an incentive to form a coalition to steer outcomes toward desired ends.  This is seen in parliamentary 
systems, with Israel as an example. It may not be possible to predict which coalitions will form: politics 
makes strange bedfellows, and predicting those bedfellows can be difficult.  

In a group setting, social influence dynamics can muddy the picture even further, as people may 
change their preferences to align with the real or the inferred preferences of others. Concern for the 
preferences of others and for one’s own standing in a group creates more indeterminacy in collective 
decisions.  A striking example of such social influence effects is provided by the Abilene paradox, in 
which each person privately prefers X but believes that others prefer Z.  If all group members revealed 
their true preferences, the group would clearly choose X.  However, the desire to conform to what is 
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(incorrectly) perceived to be the normative opinion can lead a member to suggest Z and others to agree 
(Harvey, 1974). 

While this counterintuitive outcome is probably rare in practice, it highlights the importance of 
realizing that social influence is not simply a matter of one person seeking to change the preference of 
another.  People also actively seek to align their preferences with important others.  Both computational 
models and empirical studies have demonstrated that the impact of others on individual preferences tends 
to create uniformity of preferences among people who are closely connected.  Dynamic social impact 
theory (Latané, 1996) predicts that people will change their preferences to match those of others, with the 
impact based on both the strength (status) and immediacy (social closeness) of others.  The result is 
emerging pockets of uniform attitudes based on social network clusters.  Research on minority influence 
(e.g., Nemeth, 1986) also shows that the views of a cohesive minority, when clearly and consistently 
stated, can also change the opinions of majority members. Hence, knowing what the majority of 
individuals prefer at time 1 may not allow one to predict confidently what a group will choose at time 2.  

Relevance, Limitations, and Future Directions for Social Decision Models 

While voting models per se, especially those than compare specific voting rules like Borda and 
majority rule, may seem more relevant to political science than to the situations that concern us here, the 
insights that can be drawn from these models are of critical importance.   Two of the main 
recommendations of this report are that modelers should recognize diversity of background, activity, and 
preferences and that they should embrace uncertainty.  Nowhere does that advice ring more clearly and 
loudly than in understanding the link from individual incentives to group behavior. Moreover, one can 
link diversity of background, activity, and preferences and uncertainty about all three into a general 
insight: the more diverse the members of a group in their general makeup (their background), their 
preferences, and their actions, the more uncertain one should be about their collective decisions and 
actions.  For example, models that attempt to make predictions about the attitudes and behaviors of a 
group of noncombatant civilians must consider the diversity of that group in terms of the sociocultural-
ethnographic-economic background, preferences, and available actions.  The more diverse the group on 
any of these three dimensions, the less certain the predictions.  At a very practical level, the implication of 
recognizing diversity is to make the models more complex.  Another practical implication is that model 
results should often be characterized in terms of how the diversity of the population being modeled 
impacts the results (e.g., show entropy or diversity indices to characterize the initial population and show 
how outcomes change as the initial population varies on this metric). 

Even if group models cannot be expected to make point predictions, they can provide a way to 
predict sets of possible outcomes.   If one has even crude approximations of preferences, possible 
coalitions, and a set of possible voting rules, he can write game theoretic or agent-based models, and 
those models can provide some guidance for what might happen and, equally important, what probably 
will not happen.  For a recent survey of these methods, see Kollman and Page (2006). 

The ability to apply voting theory depends on data, knowledge, and theory.  For many of the 
problems relevant to this study, one would not have information about individual-level preferences.  And, 
even if one did have access, the theory tells us that it is not possible to predict outcomes with certainty 
from that data.  Equally important, one may not have knowledge of the voting rules.  And, as discussed 
above, the voting rule has a substantial influence on the outcome.    Thus, even with information about 
preferences, one would also need to know something about the process of preference aggregation in the 
group of interest.  Finally, to apply these models, one needs models of how people behave in groups.  Are 
the group members strategic? Do coalitions form, and who belongs to those coalitions?  

Imagine a model that includes the actions of a terrorist organization or of a nascent nation-state.  
One could make a black box assumption about how that organization or government acts.   In other words, 
one could treat the group as an individual, presumably an individual who is the average of the group 
members. 
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The voting models reveal the problems with that approach.  Groups do not make choices as 
though they were a single individual. The natural way to improve the model would be to make the black 
box transparent and to allow for multiple characterizations of the collective decision-making processes 
that produce those outcomes.  This will require data, knowledge, and models of the group of interest, but 
the potential payoff is large, as it will provide a more accurate assessment of the likely distribution of 
behaviors over the set of possible actions.  

Finally, empirical voting studies demonstrate that humans do not act in a strictly rational or 
strategic manner, hence calling in to question the formal mathematical “rational” and “strategic” voting 
models.  Summaries of the empirical literature point to the social rather than rational nature of voting 
behavior; for example, people vote primarily along ethnocultural lines rather than according to their 
economic interests and display widespread voter ignorance (Friedman, 2005). As another example, 
research on the “voter participation paradox”—in which it is asked why people vote at all, as each 
individual has virtually zero probability of affecting the outcome (Green and Shapiro, 1994; Converse, 
1964)—demonstrate both this lack of rationality and suggest that there are huge variations in individual 
behavior. Turnout depends on a number of social factors, including the size of the electorate (as the size 
of the electorate grows, fewer voters turn out), the closeness of the competition (the closer it is, the higher 
the turnout), and the presence of an underdog (more turnout).  While this empirical work suggests both 
that the formal models and simplistic game theoretic models are inadequate and that the more detailed and 
nuanced behavior possible in agent-based models (ABMs) are better at capturing the complexities of 
voting behavior. 

SOCIAL NETWORK MODELS 

Networks are ubiquitous, and many techniques have been developed for analyzing, predicting, 
and understanding the world in terms of the set of connections among entities—a network.  As the focus 
here is on social and behavioral modeling, we limit our discussion of network modeling techniques to 
those that have been and are being used to address individual, social, organizational, political, or cultural 
issues, rather than, say, gene interaction networks or computer networks. For a review of the field of 
network analysis, see Freeman (2004), and for the methodology, see Freeman, White and Romney (1991) 
and Wasserman and Faust (1994).  

What Are Social Network Models? 

Social network models view groups as consisting of a set of nodes (the members of the group) 
and a set of ties that connect them, which link together to form a network.  The ties are often seen as pipes 
or roads along which various kinds of traffic flow, such as informational and material resources, as well 
as influences and coordination.  Thus, a key aspect of network modeling is concerned with predicting 
(and controlling) what flows to whom at what time.  Ties are also seen as providing a kind of underlying 
structure or topology that has effects on the performance of the group or individuals.  A fundamental 
proposition of social network models is that a node’s position in the network (in conjunction with its 
attributes) determines the opportunities for and constraints on action that it will encounter.  A group-level 
corollary of this proposition is that the network structure of a group (together with other attributes of the 
group), determines the performance or outcomes of the group.  Thus, network models differ from other 
models in placing less emphasis on characteristics of the nodes and more emphasis on the structure of 
connections between the nodes. 

Social network analysis (SNA) has received a great deal of attention since the terrorist attacks of 
September 11, 2001 (Borgatti and Foster, 2003).  Phrases for fighting terrorism, such as “disconnect the 
dots” and “it takes a network to fight a network,” and for doing business, such as “it’s not who you know 
but who or what who you know knows” and “are you networking?” have appealed to the imagination and 
raised awareness of this area.  In addition, there have been successful applications of this approach.  For 
example, social network information was used to locate Saddam Hussein, and several SNA tools have 
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been used in various criminal investigations.  Social network information is used in popular social 
networking web services, like Friendster, to help students vet their dates. 

Traditionally, most social network analysis has focused on the analysis of relatively simple 
datasets involving a small number of social relations (often of just one kind) connecting a set of persons 
in some kind of group at a single point in time.  Analysts in this area use computational techniques 
primarily to statistically analyze these networks.  This area has a long tradition, predating World War II.  
It emerged from the social sciences, particularly from social psychology, anthropology and sociology, and 
has now spread to organization science, economics, physics, and computer science. 

More recent work has focused on more complex networks involving large numbers of nodes of 
differing types (see section on Multimode Networks below). For example, Carley (2003) has developed 
social network metrics that take into account not only relations among individuals, but also relations 
among tasks, relations among items of knowledge, assignments of tasks to individuals, relations of 
knowledge to individuals and other relationships. 

In addition, a key research interest today is in understanding network dynamics, both in the sense 
of how networks change over time (especially in response to attacks) and in the sense of how things flow 
over the network links. Carley (2003) has used multiagent models in a network context to predict and 
reason about change in social and other networks. 

State of the Art in Social Network Models 

In this section, we lay out the key concepts of social network analysis, starting with a discussion 
of the nature of the data and followed by an outline of the key analytical constructs, namely cohesion, 
centrality, equivalence, and clustering. The section ends with a discussion of network evolution. 

Nodes and Ties 

The set of actors or agents that form the nodes of a network can consist of either individuals or 
collectives, such as organizations, cities, or countries.  Nodes are assumed to possess characteristics that 
define their goals and affect their ability to achieve and exploit their network positions.  These 
characteristics are modeled as a set of categorical and/or continuous attributes. 

In general, relations among nodes are modeled as dyadic 2-tuples (called ties, links, or edges) that 
bind exactly two nodes to each other.  Therefore, a conversation among three people A, B, and C is 
typically modeled as three separate dyadic interactions consisting of A with B, B with C, and A with C.  
For the most part, the ties modeled among nodes typically belong to a general class known as social 
relations.  These include such things as acquaintance (e.g., knows), kinship (e.g., brother of, father of), 
other social roles (e.g., friend of, teacher of) and affective relations (e.g., likes, dislikes).  Each type of tie 
can be further characterized by relevant characteristics or attributes.  For example, a friendship tie can be 
characterized in terms of intensity, closeness, and duration. 

In addition, network modelers often represent interactions over time—such as in-person meetings, 
communication, or fighting—as ties.  Hence a tie is considered to exist between two nodes if at least one 
interaction between them is observed during a given period.  The actual number of interactions may be 
recorded as an attribute of this tie. Interactions are inherently transitory and evanescent but are often seen 
as revealing the presence of underlying social relations.  For example, the communication of secrets both 
signals and is enabled by a close positive relationship. 

Interactions, such as conversations, provide the mechanism by which things flow through social 
relations, as when an actor transmits information to a friend through communication or when a person 
infects another with a disease via personal contact.  Thus flows represent a third category of tie that a 
network modeler can choose to model.  Typical flows of interest have been information, ideas, infections, 
material goods (such as guns and money), and such intangibles as energy and motivation.  These are often 
referred to by network analysts as “tokens.” 
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Multimode Networks 

When a categorical variable exists that distinguishes between different types of nodes, and, in 
addition, ties exist only between nodes of different types (and not within types), the resulting networks are 
referred as k-mode networks or, in graph theory, as k-partite graphs, where k refers to the number of 
distinct types of nodes.  These kinds of data typically arise in the context of recording affiliations between 
individuals and groups or events.  For example, Davis, Gardner, and Gardner (1941) recorded which 
women attended which social events in a given season. Ties exist between women and events, but not 
among women and not among events.  Similarly, it is common to record for each person in a group the 
organizations to which they belong(ed).  And in organizational analysis, one can collect the number of 
hours that each person worked on various tasks or projects. 

Multimode networks can be analyzed directly or converted into simple 1-mode networks by 
deriving co-occurrence indices.  For example, a 2-mode women-by-events network can be converted into 
a 1-mode women-by-women network in which a tie between each pair of women is characterized by the 
number of events they attended in common. 

With multiple modes, it is possible to represent the system as a whole as a meta-matrix (Carley, 
2003).  The meta-matrix is a conceptual device for identifying the set of networks within and among 
nodes of multiple classes.  For example, given the three classes of nodes—people, knowledge, and 
activities—the set of subnetworks possible is shown in Table 6-1.  The second key concept is the entity 
ontology—for network analysis, this is the set of categories that defines the node classes and the link 
classes among the nodes used in a particular study.  The table illustrates a particular ontology; other 
ontologies are needed for other applications. 

Cohesion Models 

A fundamental concept in network modeling is cohesion.  Cohesion refers to the connectedness 
or structural integrity of a network, and it is often interpreted in terms of the network’s potential for 
coordinating among its members or exploiting knowledge that is distributed across the network. 

One aspect of network cohesion is density, which refers to the proportion of pairs of nodes that 
have a direct tie (i.e., are not dependent on an intermediary).  A high density implies that, on average, 
each node is directly connected with many others.  If the ties represent something like trust relations, this 
indicates a group in which information can flow quite freely. 

Another aspect of cohesion is the average path distance, also known as characteristic path length.  
Path distance refers to the number of links in the shortest path between two nodes.  A network with low 
average distance is one in which the lengths of the shortest paths between pairs of nodes are quite small, 
so that things flowing through the network can reach any or all nodes comparatively quickly.  In the case 
of viruses or other infections, this is a measure of the vulnerability of the network to disease.  In the case 
of the spread of best practices, it can be seen as a determinant of the potential performance of a 
continuously adapting system. 

Centrality Models 

A frequent analytical strategy in network modeling has been the identification of key players who 
are disproportionately important due to their structural position in the network (Borgatti and Everett, 
2006).  The structural importance of a node in a network is conceptualized as its centrality.  One way to 
think about centrality is in terms of a node’s direct or indirect contribution to the cohesion or structural 
integrity of the network.  For example, degree centrality is defined as the number of ties that a node has.  
If the total number of ties in the network is a measure of the cohesion of the network, then clearly degree 
centrality can be seen as each node’s “share” of the total cohesion.  In this sense, the centrality measure 
implies a model of the sources of cohesion. 
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Other well-known aspects of centrality include closeness centrality, betweenness centrality, and 
eigenvector centrality.  If the graph theoretic distance between two nodes in a network is defined as the 
length of the shortest path from one to the other, then closeness centrality is defined as the sum of 
distances from a node to all other nodes.  To the extent that social ties among network members constitute 
pipes that transfer such traffic as information or influence, closeness centrality gives the average time 
until the arrival of something flowing along the shortest paths.  Betweenness centrality is the share of all 
shortest paths in the network that pass through a given node.  High betweenness nodes are a kind of glue 
holding the network together; deleting nodes with high betweenness from a network tends to disconnect 
the network or make all paths much longer.  Eigenvector centrality can be described, in simplified terms, 
as the extent to which a node is connected to many nodes that are themselves well-connected—a kind of 
turbocharged version of degree centrality. 

Another way to think about centrality is in terms of the exploitability of a node position.  This is 
the perspective taken by social capital theorists, who see a node’s position in the network as a kind of 
capital that the node can exploit for personal advancement or achievement.  For example, a node with 
excellent closeness centrality is a short distance from other nodes in the network and is therefore well-
positioned to hear information flowing through the network early, when it still confers a competitive 
advantage.  A node with high betweenness centrality is in a position to make demands on others because 
these others need the central node in order to connect with others in an efficient manner. 

Finally, centrality can also be thought of as providing expected values for certain node outcomes 
in a particular flow process.  For example, the formula that defines betweenness centrality gives exact 
estimates of the expected number of times that something flows over a node in a process in which tokens 
travel exclusively along shortest paths.  Similarly, closeness centrality gives the expected values of the 
time to first arrival of a token flowing through a network, again using exclusively shortest paths.  Degree 
centrality gives the frequency of arrival of a token in a process in which tokens travel along unrestricted 
random walks through the network.  Thus, definitions of centrality carry with them a model of how things 
flow in a network. 

Equivalence Models 

Equivalence modeling refers to the branch of network modeling concerned with detecting nodes 
that play similar structural roles in the network (Borgatti and Everett, 1992).  The simplest equivalence 
model is that of structural equivalence.  A pair of nodes is structurally equivalent to the extent that they 
are connected (and not connected) to precisely the same third parties, regardless of whether they are tied 
to each other.  Structurally equivalent nodes are structurally indistinguishable and substitutable.  A 
fundamental claim in this kind of modeling is that, by virtue of being structurally isomorphic, structurally 
equivalent nodes will tend to have similar outcomes.  Structural equivalence can also be seen as providing 
a formal definition for concepts of node environment and niche.  

Another equivalence model is called regular equivalence.  This is a recursive model in which two 
nodes are regularly equivalent to the extent that they are connected to regularly equivalent third parties 
(but not necessarily the same third parties).  Thus, two nodes do not have to have any contacts in common 
to be seen as equivalent, and indeed they can belong to entirely separate groups.  As a result, the model 
can detect that both leaders of wholly unrelated organizations are playing the same role vis-à-vis their 
respective groups.  Thus, it is a better model for the concept of social role than is structural equivalence.  
For example, given a network defined as the set of observed relationships among all people working in a 
hospital, regular equivalence can detect that two doctors of different patients are both playing the same 
role (i.e., doctor), whereas structural equivalence can detect only that two doctors of the same patients are 
playing the same role.  The importance of regular equivalence is that it can discover latent or emergent 
social roles that have not been named and that the members of the network are themselves unaware of.  
However, the recursiveness of the definition, in which one needs to know the extent of regular 
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equivalence between all other pairs of nodes in the network in order to calculate the regular equivalence 
of a given pair, makes this model computationally much more difficult than structural equivalence. 

Cohesive Subgroup Models 

An active area in network modeling is the identification of cohesive subsets—dense regions of a 
network that have more ties within than to the rest of the network—that operate as units.  The 
fundamental assumption in this work is that members of a cohesive subset will have more in common 
with each other than with nodes outside the subset (Borgatti, Everett, and Shirey, 1990).  This occurs both 
because nodes with common attributes will tend to seek each other out, forming the cohesive subsets in 
the first place and, because members of cohesive subsets have disproportionate influence on each other, 
creating homogeneity within the group.  Thus the homogeneity of cohesive subsets results both from 
selection processes (similar nodes joining together) and from influence processes (interacting nodes 
becoming similar to each other). 

Network Evolution 

Because social network modeling is a relatively young field that until recently had to fight for 
legitimacy, it is natural that it has concentrated on the impact of network variables on non-network or 
“traditional” outcome variables, such as career success or team performance. However, as interest in 
networks has increased, so has research on the antecedents of network structure—in short, network 
evolution—and the antecedents of a node’s position within network structures (e.g., why some nodes 
become more central than others) or of the emergent structural properties of the whole network (e.g., why 
some network structures are more robust than others.  

Empirical research has demonstrated several key factors that determine who has ties with whom 
in a variety of networks.  People who are physically near each other tend to communicate more, even in 
an age of asynchronous electronic communication.  This effect of proximity (sometimes called 
propinquity) is a special case of a more general principle known as homophily—the tendency for 
individuals to have ties of various kinds with people who are like them on socially, culturally, or 
politically significant variables, such as geographic location, race, gender, age, social class, religion, 
culture, language, organizational affiliation, centrality, etc. Thus, these variables form the grist of most 
simulation models of network change.  However, it should be noted that heterophilous mechanisms (in 
which opposites attract) also exist.  Sexual relations, for example, are overwhelmingly heterophilous with 
respect to gender. In addition, most nonreciprocal relations such as “seeks advice from” or “gives orders 
to” are heterophilous, so that less knowledgeable people seek advice from more knowledgeable people 
rather than from those equally knowledgeable. 

An important factor with elements of both homophily and heterophily is the activity focus.  
Common activities bring together people with similar interests, such as a bowling league or a political 
action group, creating homophilous linkages.  However, as Alexis de Tocqueville noted as far back as 
1835 (de Toqueville, 1835), these foci also tend to bring together people from different walks of life, 
creating heterophilous linkages across social boundaries. 

Another important factor—not unrelated to homophily—is the transitivity induced by such 
mechanisms as cognitive dissonance (Festinger, 1957) or balance (Heider, 1988). For example, if node A 
likes node B, and node B likes node C, then in many circumstances node A experiences some pressure to 
at least not dislike node C, thus increasing the probability of a tie forming between A and C. 

Finally, there are status-based mechanisms that are neither homophilous nor heterophilous in 
which nodes are sorted by status, and all nodes prefer to interact with high-status nodes.  In such cases, 
the high-status nodes exhibit homophily, because they prefer each other, while the low-status nodes 
exhibit heterophily, because they prefer high-status nodes.  The model of preferential attachment 
developed to explain the pattern of which websites link to which other websites is a kind of status model.  
In preferential attachment, new websites link to existing websites with a probability proportional to the 
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number of links the existing website already has, creating a situation in which, in terms of incoming ties, 
the rich get richer. 

In recent years, a number of researchers have modeled network change using simulation methods, 
typically variations of agent-based modeling (Zeggelink, 1994; Snijders, 2001; Carley, 2003).  For 
example, in a stream of research she refers to as “dynamic network analysis,” Carley (2003) defines a 
subclass of agent-based models that have multiple agents who dynamically form a network that evolves 
as the agents themselves learn and adapt.  Agents take action on the basis of what they know, whom they 
know, and their own internal cognitive architecture, possible actions, and other factors.  These models 
have been used to explore information diffusion, the impact of new technology, the evolution of networks, 
and the impact of interventions (e.g., to analyze the relative impact of different courses of action on 
terrorist groups).  Key features are that there can easily be thousands of actors, with the exact number of 
actors limited only by storage space on the computer.  The cognitive/communicative complexity of the 
model is limited by available computational capacity and processing time. 

Relevance, Limitations, and Future Directions  

Social network models and dynamic analysis network models can be used to identify key actors 
or groups.  They are useful in understanding terrorist networks and in analyzing the criticality of nodes in 
those networks.  They are also useful in locating individuals: as mentioned, Saddam Hussein was located 
through a social network analysis of his contacts.  Dynamic network analysis models can also be used to 
illustrate how the isolation of particular actors or groups will disrupt the flow of information or goods and 
services in both the short and long term dynamically.  They can be used to show how groups or networks 
are likely to evolve under different conditions, technological environments, etc.  For example, the 
Construct model  (a combined dynamic network and agent-based model) was used to contrast the effect of 
removing the top-leader of al-Qaeda (BinLadin) and of Hamas (then Yassin) (Carley, 2004) and 
suggested that, for Hamas, performance would improve temporarily and the next leader would be Rantissi; 
in contrast, for al-Qaeda, performance would decrease and the next leader was indeterminate. In addition, 
they can be used to examine the impact of changes in recruitment on organizational performance, the 
effects of policing policies on civil unrest, the effect of technology and information sharing on 
organizational performance, the effect of detection technologies on information flow, etc.  Dynamic 
network analysis models can also be used to create dynamic war-gaming scenarios by predicting the 
effects of courses of action on enemy and noncombatant behavior.  

Early work in social network modeling was mostly based on a branch of discrete mathematics 
known as graph theory. As a result, the models were fundamentally deterministic in character.  These 
deterministic models do not lend themselves to prediction of populations (in which there tends to be a 
probabilistic distribution of behaviors and outcomes) nor of complex systems (see System Dynamics, 
Chapter 4).  In these models, probabilistic thinking came into play only in relating deterministic variables 
to each other statistically.  More recently, however, the field has begun to incorporate stochastic thinking 
at a more fundamental level.  For example, the exponential random graph models (ERGM, also known as 
P* models) seek to model networks in terms of their latent tendencies to form micro structures, such as 
transitive triples or starlike subgraphs (called “motifs” in the physics literature) (Milo et al., 2002).  By 
estimating a parameter for each kind of micro subgraph, the models can achieve a parsimonious 
description of the network in terms of a string of estimated parameter values, together with standard 
errors.  This begins to make it possible to compare networks statistically with each other or with theory.  

Stochastic models also facilitate comparison of networks over time and indeed enable the 
estimation of rates of change in model parameters.  In the long term, this line of work promises to yield 
continuous time models of network evolution, as opposed to current approaches to longitudinal analysis, 
which are limited to comparing snapshots of the network at discrete intervals in time. 
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Similarly, most network models that are based on graph theory (and most are) are designed for 
binary data (i.e., a tie exists or it doesn’t).  Validation of and extension of the metrics for nonbinary data is 
an ongoing research area that will eventually enable the capture of a wider range of social phenomena, 

Finally, most standard social network tools available on the web, in practice, are limited in their 
ability to handle more than 100,000 nodes; with the exception of ORA (Carley et al., 2007).  
Visualization routines in general tend to be underdeveloped and work best with small datasets; however, 
for most military users, the goal is not to be able to visualize millions of nodes, but to have good 
preprocessing systems that subselects just the small portion of the network to view.  From a military 
standpoint, many of the existing tools, because they are oriented around metrics, are too complex for the 
average soldier to use and contain little guidance on when to use which metric.  Finally, much military 
data are multimode and multilink, and as a result they are cumbersome to process with most social 
network tools, with the exception of ORA.  Rarely in military applications is it the case that the social 
network exists separate from, and needs to be assessed separately from, other types of networks, such as 
the activity network. 

All this being said, of the modeling tools described in this chapter, network models have had, to 
date, the biggest impact on military decision making.  In particular, dynamic network tools that take into 
account the metamatrix or that link to agent-based models have been used to identify vulnerabilities in 
insurgent and terror networks, characterize political elites and track changes, identify local opinion 
leaders, and assess changes in beliefs and social influence.  The most promising future directions involve 
linking these network approaches to other approaches, such as strategic reasoning à la game theory, or 
forecasting via agent-based models, or geospatial identification by combining networks and map-based 
techniques. For example, placing network analysis in decision contexts enables reasoning about 
organizational change (Butts and Carley, 2006), while combining networks with spatial reasoning is 
facilitating analysis of the movement of terror groups to new locations of activity (Moon and Carley, 
2007). 

LINK ANALYSIS 

Link analysis or link mining is related to social network analysis but has emerged as a distinct 
field centered on discovering patterns by looking at the relations among entities (see Getoor and Diehl, 
2005, for a survey).  Much of the work focuses on anomaly detection and link identification. 

What Is Link Analysis? 

Link analysis has emerged largely from computer science and forensics, with particular attention 
to work in machine learning.  Historically, the term “link analysis” was used, particularly in the law 
enforcement area, to refer to approaches that let the analyst display and reason about the links between 
multiple types of nodes. 

Modern link analysis is a new subfield largely centered in computer science and statistics. 
Researchers and analysts in this area use computational techniques to locate patterns and subgroups based 
on given a set of information about paths, in which a path consists of a series of links that may connect 
nodes of different types, such as Joe + hamburgers + McDonald’s. Extraction of links often requires 
massive data preprocessing or restructuring of databases (Goldberg and Wong, 1998).  Given a set of 
paths, advanced data-processing techniques are combined with machine learning to enable rapid database 
transformation and pattern extraction.  Key questions often addressed are what paths are anomalies and 
what patterns can be inferred.  Thus, much of the work in this area has focused on the identification and 
recognition of patterns, data mining, and node identification and de-identification.  Inferred patterns are 
then used to infer the “cause” of the pattern or to make predictions about future links. 

The main feature that distinguishes "social networks" from "link analysis" in general and from 
"link prediction" in particular is the richness of the phenomena that is being explored and modeled.  In 
social networks, the focus is often on producing qualitative and quantitative assessment about various 
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items, such as leadership or influence or performance, testing, and estimation, whereas in link analysis the 
focus is on predicting quantities, such as the number of nurses who work at the hospital and give blood.  
Therefore, in social networks, the goal is to produce realistic models based on believed and theoretically 
grounded assumptions, a good descriptive model is looked for, and the researcher worries about how to 
do inferences. 

Parameter values encode semantics of interest in a specific application, and the research asks 
what the estimated values are and how much can one believe such estimates.  It is only at the last stage 
that the social network theorist worries about predictions.  Good description is thought to yield good 
prediction. In contrast, in link analysis, the richness of a model is often sacrificed to statistical or 
computational efficiency. The prediction task, not necessarily the link prediction task, is the key focus. 
Accurate predictions and a quick black box that produce them are often viewed favorably in the literature. 
The analysis and comparison of various link analysis approaches is typically weak; that is, little is done to 
compare the methods other than to compare speed.  Furthermore, it is hard to make a case about why one 
should believe the guesses they produce other than on statistical grounds. In a sense there is no science 
that backs such predictions up, no theory for why these anomalies exist. Breiman (2001) discusses the 
differences between statistical and data mining approaches to analysis.  These same differences apply to 
networks science (statistical) and link analysis (data mining).  

State of the Art  

Link analysis tools result in a mathematical representation of the relation of different entities to 
each other vis-à-vis some problem.  This mathematical representation or “model” of the underlying social 
behavior is discovered from the data and can then be utilized in other types of models, such as multi-agent 
systems, to characterize a type of behavior. 

In modern link analysis, there are three fundamental concepts and two more 
general related concepts. First, there is the notion of similarity or distance among nodes.  This distance is 
typically used to infer connectivity under the assumption that nodes that are similar or close will connect 
with other nodes in a similar fashion. Such a notion can derive from a formal (probabilistic) model or 
from other theoretical concerns and so is more deterministic. Link analysis algorithms can generally be 
categories by their approach to similarity, or distance, and can be further divided by whether that distance 
is model based or algorithm based, and whether that distance is explicit or implicit.   

The second core concept is that of groups or clusters of elements of a network (typically of nodes) 
and the way both single elements and groups of them interact with one another. The idea of groups is not 
taken advantage of by such authors as Lise Getoor or Andrew Moore but is central to most other link 
analysis papers.  The third key concept is the link function, which translates similarity into the presence, 
absence, or weight of a link.  Key differences in link analysis algorithms are often expressed in terms of 
differences in the link function.  Less central ideas include types of nodes and links and of course time.  
 In modern link analysis the analysis is done on the data itself, rather than on the network that has 
been inferred from the data.  This avoids errors from the inference itself and from the relationship model 
that is being fitted.   In addition, by assuming conditional independence of links, link analysts can 
leverage general statistical machinery.  This provides an elegant way to deal with missing data—any data 
one has are just a tiny snapshot of a rich distribution.  Link analysis also deals easily with "rich links," 
like multiparty links or multiple links between the same entities.  In contrast, many of the social network 
tools have been developed with the "one dyad, one link" approach. 

In link analyses, the paths typically include nodes of multiple types, such as people and events 
and resources.  In contrast, in a typical social network, the nodes are generally all of the same type or at 
most of two types.  Each of the paths in link analysis is a single observation, hence temporal information 
on when a path occurred is available.  In link analysis, no effort is made to take the paths and form the 
implicit networks.  No assumptions are made about the completeness of the underlying network.  In 
contrast, the social network modeler starts with a network and typically does not preserve path 
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information, in the sense of information about observed temporal trajectories.  Furthermore, social 
networks assume that the links are not independent events, whereas much of the work in link analysis 
assumes that each instance of a link is an independent event but subject to parameters that can be deduced.  
Finally, link analysis as a theory of anomaly detection is agnostic about the types of links and nodes that 
form the paths, whereas social network modeling has historically focused on networks in which the nodes 
are information-processing entities, such as people, organizations, or groups, and the links are the various 
factors by which they are connected, such as friendship, mentoring, financial transactions, or marriage. 

There are a growing number of link analysis tools, many of which are available on the web. 
Illustrative tools include GDA (Kubicka et al, 2002, 2003)[ref. needed.], PROXIMITY (Jensen and 
Neville, 2002), and PRMs (an extension of Bayesian Nets) (Getoor, Friedman, Koller, and Taskar, 2001; 
Getoor, Friedman, Koller, and Taskar, 2002; Taskar, Abbeel, and Koller, 2002; Taskar, Wong, and Koller, 
2003). Common tools exist for doing a variety of tasks, including extracting of links from databases 
(Goldberg and Senator, 1998) and texts (Lee, 1998) and analysis of the extracted links (Chen and Lynch, 
1992; Hauck, Atabakhsh, Ongvasith, Gupta, and Chen, 2002). 

Relevance, Limitations, and Future Directions 

Link analysis has widespread military applications in the creation of actionable intelligence from 
large diverse data sources and in the development of network models—such as terrorist network 
models—from partial and incomplete transaction data.  Modern link analysis has focused on anomaly 
detection in large datasets. 

For many of the techniques that rely on machine learning, a key issue is having sufficient data 
with appropriate distributions so that the model can be “trained.”  In general, link analysis tools require a 
large quantity of labeled data that has been pre-extracted.  A second key limitation of this approach is that 
many of the tools assume that the data exist in a file or database and cannot handle streaming data as they 
arrive or data that are “out of order” in terms of the entity classes.  Third, many of the current 
nonproprietary methods do not scale well, greatly reducing the size of the datasets that can be handled.  A 
fourth related limitation is that the models that are discovered when using a link analytic approach 
inherently assume that “tomorrow is like today.”  Hence using these models to predict future behavior 
may be limiting.  Fifth, to be useful, these models need to be expanded to handle streaming data.  This is 
work in progress and Bayesian updating rules are being developed for an increasing number of models.  A 
final limitation of link analysis is that the models that result, although fitting strong mathematically based 
theory, may not be reasonable from a social or behavioral perspective.  For example, knowledge 
discovery routines for finding groups will find groups that meet some predefined statistical requirement; 
however, these groups may not match the definition of a group in empirically grounded social theory or 
even the everyday sense of what constitutes a group. 

While link analysis is generally useful for locating patterns and discerning structure, it is very 
limited in its ability to analyze downstream effects. For example, using link analysis to answer such 
questions as who has the most connections (degree centrality) can be done in only the most rudimentary 
way when links are viewed as independent. Consider the question, “Is Mustafa important because of the 
number of communications that go through him, or because his communications are the only ones 
connecting different sectors of a terrorist group?” Using social network analysis, this question can be 
addressed directly and easily with existing and well-validated metrics. When a link analysis approach is 
taken, in which links are viewed one at a time and treated as independent, a special-purpose and 
extremely complex model would need to be constructed. 

In principle, link analytic tools can be used to locate and construct the networks, and then social 
network or dynamic network metrics can be applied for predictive purposes.  This is a promising direction 
for creating actionable intelligence.  However, current link analytic models always use customized 
representations of the underlying network, making it difficult to transfer their results to other tools 
designed for prediction. A generalized standard for representing the underlying network is needed.  
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Advances in this direction include graphml and dynetml (Tsvetovat, Reminga, and Carley, 2004), which 
are XML languages for dealing with network data; however, both of these are insufficient to meet the 
needs for which link analysis results are used. 

An important issue for network modeling is the robustness of the models in the face of errors in 
the data. This is particularly an issue for hidden or stigmatized populations (e.g., criminals, terrorists) and 
for illicit or private relations (covert operations, political influence, etc). To date, very little work has been 
done to assess the robustness of different network models in the face of different kinds of errors in the 
data, such as missing ties, missing nodes, gratuitous ties, and gratuitous nodes (as when a person who 
uses two different names is mistakenly entered as two different nodes). Similarly, few network models 
provide standard errors or confidence intervals for their outputs. Thus, it is simply unknown how much 
error in the data can be tolerated or whether a network model of flawed data does more harm than good. 

Another increasingly important issue for network modeling is the bounding of empirical 
networks—that is, determining which nodes to include and which ones to exclude. Part of the conceptual 
base of network modeling is the interdependence of nodes. This creates a problem for artificially 
bounding the networks that one wishes to model. One can arbitrarily choose to model the members of an 
organization or the residents of a village, but this does not stop the nodes from having ties with people 
outside the sample frame. To the extent that these unobserved ties affect what happens to the nodes, the 
models will fail to predict outcomes of interest. This problem cannot be eliminated, but it can be 
ameliorated by including larger chunks of the human network in the analysis, particularly chunks that 
correspond to natural boundaries. For example, if the computational and data collection issues can be 
overcome, modeling an entire village or other geopolitical unit is clearly preferable to arbitrarily 
modeling half of the village because of practical limitations. What is needed is investigation into the 
consequences of the different ways of bounding networks and into alternative ways of framing research 
issues to get around the boundary specification problem. 

A major area for future research is the study of models and algorithms to recover and/or discover 
link connectivity patterns, rather than node connectivity patterns (in the sense of Milo et al., 2002). This 
has potential for application, for example, to network privacy (reidentification, deidentification), to 
subgraph matching, and to motif discovery. Of primary importance for real-world applications is the 
development of fast approximation algorithms that replicate the solution of successful algorithms for 
solving various problems, thus addressing the scalability issue that typically burdens algorithms that 
involve counting links in various ways. Another area that requires investigation is how to connect models 
of static and dynamic networks to observations and measurements. This is a general issue for all modeling 
techniques, and its implication for the broader impact of research are far-reaching and would include as a 
subtopic the integration of information from multiple sources, à la metamatrix, to support the discovery of 
interesting patterns.  

In addition, any advances in automated data collection and simultaneously computational 
algorithms for very large networks would significantly improve the usefulness of link analysis for the 
problems at hand. It is already possible to construct communication networks based on telephone logs, e-
mails, etc. However, the degree to which one can infer different kinds of social relations—such as trust, 
kinship, aid, conflict, etc.—from these data is still unknown, nor are alternative data currently available. 
Much of social network research has been based on survey research methodology, which is not applicable 
in the case of unwilling actors, such as enemies. 

AGENT-BASED MODELING OF SOCIAL SYSTEMS 

The social and organizational sciences seek to understand not only how individuals behave but 
also how interactions among individuals generate macro-level outcomes. Understanding a social system 
requires more than understanding the individuals in it.  It also requires understanding how the individuals 
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interact with each other and how the results can be more than the sum of the parts. Agent-based modeling 
(ABM) is well suited for this objective.2 

What Is Agent-Based Modeling? 

Agent-based modeling is the computational study of systems that are complex in the following 
sense: (1) the systems are composed of multiple interacting entities and (2) the systems exhibit emergent 
properties—that is, properties arising from entity interactions that cannot be deduced simply by averaging 
or summing the properties of the entities themselves. 

What distinguishes ABM from general complex systems modeling, however, is the form of the 
entities that make up the system.  A system can be complex even if its constituent entities are 
homogeneous units, such as CO2 molecules.  In contrast, the constituent entities of an agent-based model 
are heterogeneous “agents” with internal states that can vary over time in response to internal 
deliberations as well as external forces, thus admitting the exploration of systems of heterogeneous agents 
with a range of social and learning capabilities. 

More precisely, the agents in an agent-based model can represent people (e.g., consumers, sellers, 
voters).  They can also represent social groupings (e.g., families, firms, communities, government 
agencies, nations), biological entities (e.g., livestock, crops, forests) and even physical systems (e.g., 
weather, geography, transmission grids).  When the interaction network formed by agents is contingent on 
past experience, and especially when the behaviors of agents in this interaction network continually adapt 
to past experiences, standard mathematical and statistical tools typically have only limited ability to 
derive the dynamic consequences.  In this case, ABM might be the only practical method of analysis. 

Agent-based modeling is a general-purpose technology.  On one hand, the only constraints are the 
modeler's purpose, imagination, and ability to encode. A modeler is free to make assumptions believed to 
be most relevant and realistic for an issue of interest.  On the other hand, the realism of the resulting 
model will depend strongly on the extent to which the modeler's assumptions are driven by data. In 
general, the more tightly a model has been constrained by real-world data, the smaller the space of 
possible outcomes. 

As detailed by Axelrod (1997, pp. 206-221), simulation in general, and agent-based modeling in 
particular, is a third way of doing science in addition to deduction and induction.  Scientists use deduction 
to derive theorems from assumptions and induction to find patterns in empirical data. Simulation, like 
deduction, starts with a rigorously specified set of assumptions regarding an actual or proposed system of 
interest, but, unlike deduction, simulation does not prove theorems with generality.  Instead, simulation 
generates data suitable for analysis by induction. In contrast to typical induction, however, the simulated 
data comes from controlled experiments rather than from direct measurements of the real world.  
Consequently, simulation differs from standard deduction and induction in both its implementation and its 
goals.  Simulation permits increased understanding of systems through controlled computational 
experiments. In particular, agent-based modeling can be used to investigate how macro-level effects and 
social behaviors arise from the micro processes of interactions among many agents.   

A general phenomenon exhibited by agent-based models is large events. The logic of the central 
limit theorem states that the sum of a collection of random events produces a bell curve.  In such cases, 
deviations from the mean, large or small, are rare.  In agent-based models, random effects can accumulate.  
These accumulations can be more than additive or even multiplicative.   The result can be huge cascades: 

                                                 

2Several research communities are currently exploring methodological approaches closely related to agent-based modeling under 
a variety of other names.  Examples include multiagent-based systems, agent-based computational economics, agent-based social 
simulation, multiagent systems, and individual-based modeling.  A sample of introductory readings from these various research 
communities can be accessed online at http://www.econ.iastate.edu/tesfatsi/aintro.htm.  



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

 

Prepublication Copy 

6-16 

forest fires, riots, stock market crashes, epidemics, and even the collapse of governments.  Moreover, 
ABMs can be used to estimate the probability of such extreme events (Gladwell, 2000). 

In summary, agent-based modeling applied to social, cultural, and organizational processes uses 
concepts and tools from social science and computer science.  It represents a methodological approach 
that could ultimately permit three important developments:  (1) the rigorous testing, refinement, and 
extension of existing theories that have proved to be difficult to formulate and evaluate using standard 
mathematical and statistical tools; (2) a deeper, more integrated understanding of fundamental causal 
mechanisms in multi-agent systems, whose study is currently hampered by artificial disciplinary 
boundaries; and (3) a tool for exploration and evaluation of the potential impact of course of action and 
policy alternatives. 

State of the Art  

The goals pursued by ABM researchers take six general forms: empirical description, empirical 
prediction, normative analysis, behavioral understanding, heuristic understanding, and methodological 
advancement. 

Researchers pursuing empirical description ask: Why have particular macro-level structures and 
social behaviors evolved and persisted, even when there is little top-down control? Examples include 
trade networks, socially accepted monies, mutual cooperation based on reciprocity, and social norms. 
ABM modelers seek causal explanations grounded in the repeated interactions of agents operating in 
specified environments. In particular, they ask whether particular types of observed macro-level 
regularities can be reliably generated from particular types of agent-based models. 

ABM researchers interested in empirical prediction ask: If this history of events were to take 
place, what would be the likely future consequences?    These types of questions can be pursued in the 
context of ABM frameworks in which the modeler builds in scenarios of interest, introduces agents with 
realistic degrees of adaptability, and then tests to see how the agents react over time as the scenarios 
unfold. 

A third goal is normative analysis: How can agent-based models be used as laboratories for the 
discovery of good rules of operation?  ABM researchers pursuing this objective are interested in 
evaluating whether policies and institutional arrangements proposed for various types of social systems 
result in desirable system performance over time.  Examples include the design of auction systems, voting 
rules, and law enforcement practices. 

A fourth goal is the understanding of diverse behaviors.  The performance of markets, 
democracies, and even traffic laws varies around the globe.  We chalk up these differences to cultural or 
behavioral differences, but we lack a calculus of culture.  We do not know whether or not slight variations 
in behavioral rules will result over time in widely divergent outcomes.   ABM can help to illuminate the 
accumulation of effects from diverse behavioral rules and the extent to which slight variations in 
behavioral rules have substantial effects. 

This goal overlaps with both the empirical goal of prediction and the normative goal of good 
operational design, yet it is distinct from each.   It necessitates a fundamental shift in how one looks at 
social systems.   Standard models typically focus on the means of variables, the average expected 
outcomes. Yet often in agent-based modeling, the tail of the distribution wags the dog, so to speak.  For 
example, to predict the likelihood of a riot, what matters most is not the average level of civil unrest 
among a population but the percentage of people enraged enough to trigger a riot through disruptive 
behavior that others will then mimic. 

A fifth goal is heuristic understanding: How can greater insight be attained about the fundamental 
causal mechanisms in social systems? Even if the assumptions used to model a social system are simple, 
the consequences can be far from obvious if the system is composed of many interacting agents. The 
macro-level effects of interacting agents are often surprising because it can be hard to anticipate the full 
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consequences of even simple forms of interaction.  For example, one of the earliest and most elegant 
agent-based models—the city segregation (or "tipping") model developed by Nobel laureate Thomas 
Schelling (1978, pp. 147-155)—demonstrates how residential segregation can emerge from individual 
choices even when everyone is fairly tolerant. 

A sixth goal is methodological advancement: how best can ABM researchers be provided with 
the methods and tools they need to undertake the rigorous study of social systems through controlled 
computational experiments?  How best can they examine the compatibility of experimentally generated 
theories with real-world data?  ABM researchers are exploring a variety of ways to address these issues, 
ranging from careful consideration of methodological principles to the practical development of 
programming, visualization, and validation tools. 

Perhaps the most provocative consequence of these methodological advancements is in the area 
of non-equilibrium science.  Much of existing social science research, particularly research relating to 
organizations and institutions, is predicated on an assumption that systems are in equilibrium.  This 
allows one to compare modeled systems by the equilibria they implement.   In contrast, the real world 
routinely exhibits a wide variety of non-equilibrium phenomena, such as abrupt transitions, crashes, and 
path dependencies. Agent-based modeling permits researchers to study out-of-equilibrium behaviors, 
hence it should ultimately help them to understand, evaluate, and characterize these phenomena (Arthur, 
2006); (Page, 2006)[check].  

ABM Structural Properties 

Agent-based models can be structurally specified in widely diverse ways. Five distinguishing 
structural properties of particular interest are as follows: the number of agents, the basic manner in which 
agents are represented, the cognitive sophistication of the agents, the social sophistication of the agents, 
and whether or not the agents are situated in a relational or spatial grid.  

Table 6-2 illustrates how these five structural properties differ across four classes of models 
currently used by ABM researchers:  cognitive ABMs; dynamic network ABMs; cellular automaton 
ABMs; and rule-based ABMs.  

The table must be interpreted with some care.  One caveat is that, in each model class, the actual 
level of realism depends on the degree to which agent attributes are based on actual data and the degree to 
which agent behavioral rules faithfully represent real-world processes. Another caveat is that, in principle, 
agent-based models are ubiquitously applicable to problems that involve two or more agents whose 
behavior depends, at least in part, on each other.  Thus, differences commonly exhibited in current use do 
not necessarily reflect fundamental differences in capabilities.  For example, the fact that cognitive ABMs 
currently tend to comprise relatively few highly sophisticated cognitive agents is due to processing power 
limitations and not to modeling or coding limitations per se. 

We now consider the ABM structural properties in greater depth. 

Number of Agents and Cognitive Sophistication 

As a general rule, the cognitive sophistication of the agents in an agent-based model is inversely 
proportional to the number of agents.   On one hand, a model could comprise from 2 to 10 very 
cognitively sophisticated agents doing very in-depth knowledge-intensive tasks.  In such a model, 
interactions among agents would typically be prescribed by protocols for interaction and by hierarchical 
precedents regarding who does what.  Such models are more common in computer science and 
engineering; illustrative models are those involving BRAHMS, Soar, ACT-R, or Neural Networks (see 
Chapter 5).  Models of this type are valuable for studying aspects of small team behavior, including 
modeling small adversarial teams.  However, they are generally not appropriate for more societal or 
cultural issues, such as state failure, crowd control, or adaptation in terrorist networks.   



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

 

Prepublication Copy 

6-18 

On the other hand, an agent-based model could comprise tens of thousands or millions of 
cognitively simplistic agents doing relatively simple tasks.  In this case, interactions among agents would 
be the result of the agents meeting and greeting each other, trying to occupy the same space, or 
exchanging or consuming resources.  Such models are more common in biology, physics, and the social 
and organizational sciences; illustrative models are those involving SWARM, REPAST, or MASON. 
Such models are often used to examine whether the complexity of real-world social processes can arise 
from agent interactions rather than from the complexity of individual agents.  Models of this type are 
valuable for academic research, suggesting possible scenarios, providing very high-level guidance, and 
studying migration and crowd control.   

Mid-range models often are comprised of 10 to 10,000 agents with moderately sophisticated 
learning capabilities. Such models are often written directly in high-level languages like C++ for reasons 
of processing speed.  In this case, interactions among agents are the result of deliberate decision making 
and learning processes that are strongly informed by empirical data.  Agent behavior can be quite detailed, 
such as a detailed mapping of activities taken in a day and the influence of a bioattack on those activities.  
Such models are increasingly used in such application areas as epidemiology, state failure assessment, 
crowd control, organizational design, adversarial modeling, and counterterrorism.  Models of this type, 
particularly when they are strongly tied to data and employ socially sophisticated agents, can provide 
actionable intelligence in the areas listed.  

Social Sophistication 

As a general rule, the social sophistication of an agent-based model varies with the number of 
agents, with the level of sophistication being highest for mid-size populations and lowest for models with 
only a few agents or with millions of agents. Realistic social behavior requires a certain level of cognitive 
sophistication (Carley and Newell, 1994).  However, many social issues do not emerge as relevant until 
intermediate-sized social groupings are considered.  

Typically, models with either a few agents or with millions of agents impose assumptions that 
limit the use of such models for examining social issues.  For example, in ABMs with only a few 
cognitively sophisticated agents, social factors are typically either ignored or prescribed in terms of a 
communication and command hierarchy, implying that the structure governing social behavior is time 
invariant. For example, in models comprising millions of cognitively simplistic agents, real social 
networks are typically not modeled.  Instead, agents are differentiated using from two to five 
sociodemographic dimensions and “network” links are characterized by nearness in a grid.  As such, these 
models are insufficient for modeling terrorist networks. This high level of simplification means that such 
models rarely generate actionable intelligence. 3    

Agents in Grids 

 In many models, particularly those comprising large numbers of cognitively simplistic agents, 
the agents are generally constrained to interact within some form of grid structure.  There are two main 
ways in which agents are laid out in grids: relational and spatial. In a relational approach, each grid cell 
represents an agent, and the attributes and actions of this agent are determined in part by the attributes and 
actions of agents in nearby cells.  In contrast, in a spatial approach, each grid cell is a location that agents 
move through (right-left, up-down).  Agents consume or leave resources in the cells they occupy, and 
they interact with the agents they meet in the same or neighboring cells. 

The classic example of an agent-based model using a grid is John Conway’s Game of Life (see 
Gardner, 1970).  Today, many grid-based ABMs are barely more complex than the original Game of Life, 

                                                 

3See http://www.econ.iastate.edu/tesfatsi/anetwork for annotated pointers to ABM research on the formation and 
evolution of social networks. 
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although modern systems use a doughnut-shaped grid (torus) rather than a rectangular grid to avoid edge 
effects.  Grid-based modeling facilitates rapid model development and is supported by agent-based 
modeling toolkits such as SWARM, REPAST, and Netlogo.  However, it is not adequate to support the 
realistic modeling of four-dimensional social behavior (in space and time) or to capture social network 
effects in any great depth. 

In particular, then, ABM frameworks with grid layouts are currently of limited utility for 
modeling military situations requiring high levels of realism. Space-time action sequences and 
sophisticated social network effects are important factors that need to be carefully accounted for in a 
variety of military models.  For example, they are needed if one is to build a model of adversarial 
behavior in an urban setting in which an adversary can move from subways to rooftops and can receive 
shelter from friends. 

ABM and Learning 

In agent-based models, the agents learn.  A major issue is how to model the minds of the 
cognitive agents who populate ABM frameworks.4  Should these minds be viewed as logic machines for 
planning and reasoning with appended data filing cabinets, the traditional artificial intelligence view 
(Franklin, 1995), or should these minds be viewed as controllers for embodied activity in keeping with 
the artificial life view (Clark, 1997)? 

On one hand, as with any simulation system, if the purpose of an ABM framework is to 
determine an optimal design for a fully automated process, there is no particular reason why agent 
cognition should mimic that of real people.  Indeed, this could be positively detrimental to good process 
performance.  On the other hand, if the purpose is to replicate and forecast human social behavior, then 
mimicry of real human behavior might be essential to ensure predictive content. 

As detailed in Brenner (2006), ABM researchers are increasingly moving away from the 
unconsidered adoption of off-the-shelf machine learning representations, such as conventionally specified 
genetic algorithms and reinforcement learning algorithms. Some ABM researchers are systematically 
investigating the performance of alternative learning representations in various multiagent decision 
contexts. Others are attempting to calibrate their learning representations to empirical decision-making 
data and human subject experimental data. 

ABM and Social Networks 

Social networks comprise one of the more active research areas in agent-based modeling.5  One 
critical issue is the manner in which social networks are determined through deliberative choice of 
partners as well as by chance and necessity. For example, in economics a key concern has been the 
emergence of trade networks among collections of buyers and sellers who determine their trade partners 
adaptively, on the basis of past experiences with these partners (Tesfatsion, 1997). 

A second critical issue concerns the management of a social network for a common (team) goal 
when participant agents have different motivations for when and how to interact.   An example would be 
the optimal organization of a corporate enterprise comprising multiple divisions. 

A third critical issue concerns the disruption of harmful social networks.  For example, research 
on terrorist networks suggests that they are difficult to destabilize when they have a cellular organization, 
with participant agents in communication only on a need-to-know or similarity basis. 

                                                 

4See http://www.econ.iastate.edu/tesfatsi/aemind.htm for annotated pointers to ABM research on agent learning 
representation. 

5See http://www.econ.iastate.edu/tesfatsi/anetwork.htm for annotated pointers to ABM research on interaction networks.  
See, also, the volume of readings edited by Breiger et al. (2003) and the surveys by Vriend (2006) and Wilhite (2006). 
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For each of these issues, it is important to consider the extent to which social networks affect the 
ability to predict social and cultural outcomes with accuracy based on observable structural conditions 
and institutional arrangements.   More precisely, to what extent and with what fidelity does a modeler 
need to capture social network effects together with structural and institutional effects in order to achieve 
satisfactory predictive power? 

For illustration, consider the case of markets.  Some types of markets can be expected to display 
only weak social interaction effects, for example, pool-based wholesale electric power markets under the 
strong control of a system operator.  In this case, the structural aspects of the market (e.g., numbers of 
buyers and sellers, costs, capacities) and the institutional aspects of the market (e.g., the legal contractual 
arrangements governing market participation) will presumably be the primary determinants of market 
outcomes.  Other types of markets can be expected to display strong social interaction effects.  This is true 
for labor markets, in which work contracts are highly incomplete and outcomes are strongly dependent on 
work site interactions between workers and employers.  For such a market, given any single structural and 
institutional starting point, there will presumably be a wide variety of possible outcomes based partly on 
random social interaction effects. 

As another example, consider modeling of state failure.  A model that examines only the social 
network among the various stakeholders will not be able to predict state failure with accuracy, nor will a 
model that examines only the resources or actions available to the different participant actors.  However, 
by combining these considerations into a single model in which agents are encouraged or discouraged 
from taking actions by those to whom they are linked, state failure can be better predicted. 

In summary, applications that require the generation of actionable intelligence in social situations 
will generally require careful consideration of social network effects along with structural and 
institutional effects. 

ABM Development Issues 

A computational laboratory (CL) is a framework that permits the study of complex systems by 
means of controlled, replicable, computational experiments using an integrated array of specialized 
software tools.6   In particular, computational laboratories providing a variety of agent-based tools 
facilitate the integrated development of agent-based models. 

A number of critical issues arise regarding the development of computational laboratories for 
ABM applications.  For example, should a separate computational laboratory be constructed for each 
application, or should researchers strive for general multifaceted platforms?  How can experimental 
findings be effectively communicated to other researchers by means of descriptive statistics and graphical 
visualizations without information overload?  How might these findings be verified and validated by 
comparisons with output and data obtained from other sources?   How might they tell researchers to look 
at existing data in different, more dynamic ways?  A particularly important unresolved issue is the need to 
ensure that findings from CL experiments reflect fundamental aspects of a considered problem and not 
simply the peculiarities of the particular hardware or software platform used to implement the 
experiments. 

Computational laboratories clearly ease the entry barrier for researchers wishing to use ABM in 
various problem applications.  However, it is important to keep in mind that the use of such integrated 
development environments permits even novice simulators to build seemingly powerful ABMs in the 
course of a few months.  As a result, we are now seeing thousands of small systems being built by 
individuals or small teams with little or no training in simulation, and the models are being used to inform 

                                                 

6See http://www.econ.iastate.edu/tesfatsi/acomplab.htm for annotated pointers to ABM research on computational 
laboratories.  See also Dibble (2006) for a detailed discussion of computational laboratory use for spatial agent-based modeling.   
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critical decision making and policy. In the absence of any accepted criteria for validation (see discussion 
below and in Chapter 8), it is impossible to judge whether these models are adequate for their intended 
purposes. 

On the positive side, the use of agent-based models enables the analyst to systematically consider 
the interaction among more factors and so base decisions on a more thorough analysis.  On the negative 
side, the development of agent-based models by those not trained in simulation means that the results of 
the models are often misinterpreted and classic mistakes are often made, which cause the results from the 
models to reflect incorrect simulation practices rather than interactions among the modeled factors. 

In summary, great care must be taken in the development of ABM frameworks.  Although 
computational laboratories permit rapid individual development of ABM frameworks, detailed, 
sophisticated ABM frameworks that produce actionable results often need to be developed by a team 
working collectively for three to five years. It makes sense to use separate teams for data gathering, 
validation, and usability testing, as each of these areas requires different types of scientific skills.  In 
addition, the team building the model often needs to employ many of the same techniques for 
development that are used in system engineering. 

Relevance, Limitations, and Future Directions  

Military operations intrinsically involve military engagements with rival forces, and forces 
intrinsically involve equipment and human participants in dynamic motion over geographic terrains.   
Stated more abstractly, military operations are complex dynamic processes involving multiple, 
heterogeneous, strategically interacting agents operating through time over spatial landscapes. 

Framed in this way, the modeling of military operations is seen to be precisely the type of 
modeling challenge that agent-based modeling is designed to address.   What, specifically, are its key 
advantages for military applications? 

First and foremost, agent-based modeling provides flexibility.  Agents can be modeled as 
autonomously driven entities operating on their own time scales in fulfillment of individual or group 
goals.  Their methods of operation can be constrained by idiosyncratic personal and cultural 
considerations.  They can be equipped with social communication capabilities permitting adaptive 
information acquisition and transmission.  They can survive or not depending on their ability both to 
secure life-sustaining resources and to manage or prevent life-threatening situations. 

In particular, agents in ABM virtual worlds can be designed to live in their world with the same 
degree of flexibility as their real-world counterparts.  System behaviors emerge from the bottom up, 
through the decentralized actions of autonomous agents situated in space and time.   This contrasts with a 
command and control approach to modeling in which outcomes are enforced from the top down.   A top-
down approach requires that every contingency be anticipated. A bottom-up approach need not anticipate 
all contingencies, but it must have a sufficiently rich behavioral repertoire at the individual level so that 
the system can respond to whatever situation arises.  This is precisely the type of modeling flexibility that 
agent-based modeling provides. 

Also, agent-based modeling is particularly well suited for studying information diffusion and the 
evolution of norms, trust, and reputation.   The classical game theory approach to these issues seeks to 
explain behavior on the basis of individual rationality considerations, such as explaining the evolution of 
norms in terms of anticipations of future reciprocity (Gintis, 2000).  In contrast, the ABM approach tends 
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to place equal or greater stress on peer emulation, parental mimicry, and other socialization forces thought 
to underlie the transmission of culture.7  

 ABMs have been used to evaluate the likelihood that the general attitudes of the population 
would become more pro or con regarding the United States in the face of elections and changes in 
leadership. ABMs have also been used to forecast state failure, regime change, and the emergence of 
corruption in various nation-states (Popp et al., 2006). 

In summary, the issue is not whether agent-based modeling is relevant for modern military 
operations: it clearly is.  The issue is whether it has reached a sufficient stage of development to provide 
practical support for military operations.   

Major Limitations  

ABM frameworks as currently constructed have limitations that could affect their ability to meet 
critical military needs.  This section discusses some of these limitations. 

Degree of Realism 

The value of any simulation, including any ABM simulation, is partly tied to the level of realism 
in the model.  Any simulation system is a model and so should be less complex than the real world.  
However, oversimplification results in models so high level or so incorrect that the results can be 
misinterpreted and so should not be used for policy setting or decision making.  The rule of thumb is to 
make the model only as complicated as it needs to be to address the issue of concern and to achieve the 
necessary level of fidelity. 

Adding more rules or equations that increase the realism of the resulting model should 
presumably increase its usefulness for decision making.  Yet opponents often argue that the more 
equations or rules, the worse the model.  Arguments include appeals to parsimony, Occam’s razor, 
understandability, and so on.  A typical argument is that, as the model increases in complexity (number of 
variables and rules/equations), it becomes increasingly likely that the model can be made to fit any 
possible outcome. (“Overfitting” is discussed further in Chapter 9.) 

This argument derives from econometrics, in which, as the ratio of parameters to data increases, 
ultimately the data can be completely and perfectly modeled.  This argument, however, is not directly 
applicable to agent-based models.  In them the addition of new rules and equations serves to increase the 
number of outcomes or dependent variables (data) that can be generated; the data are not given a priori as 
in econometrics.   Moreover, the addition of empirically based rules and equations can increase the 
plausibility of these generated outcomes by reducing the possibility of implausible results. 

The realism of agent-based models can be increased, and their military value increased, as they 
are linked to real data.  Most groups that build them have contrasted, at best, the results of one dependent 
variable with real data.  Only a few agent-based models, such as some recently created for the Defense 
Advanced Research Projects Agency or the BioWar system, use massive amounts of real data to set the 
input specifications of the models and other data to validate the system.  In general, this requires the 
linking of the models to database systems.  The key technical challenge here is that, as the ontology in the 
database changes, the model needs to be augmented.  There are currently no tools to facilitate such 
changes. A second challenge is that, for validation, it is important to have the model produce data in the 
same form as the real data, that is, to create a comparable database.  There are currently no standardized 
tools for doing statistical comparison of data in two identically structured databases. 

                                                 

7See http://www.econ.iastate.edu/tesfatsi/asocnorm.htm for annotated pointers to ABM research on the evolution of 
social norms.   See also Young (2006) for a proposed ABM methodology for studying the long-run evolution of social norms. 
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Model Trade-Offs 

Agent-based models using cognitively sophisticated agents tend to require the use of knowledge 
engineering techniques.  Such models tend to be special purpose and permit minimal reuse.  The key 
value of such models is to take the place of human teams in war-gaming situations, equipment testing, 
and design situations and to evaluate processes that facilitate team behavior.  In general, these models use 
various cognitive architectures with multiagent components added and so are often limited to only a small 
number of agents.  Their strength is looking at detailed task-related behavior. As previously noted, such 
models tend to use predefined social interactions.  This limits their use in war games because the ABMs 
do not exhibit a full range of adaptive interaction but model only limited task-based communications and 
actions. 

The typical grid-based agent-based models, with millions of cognitively unsophisticated agents, 
are generally useful only for high-level explorations of general concepts. They are valuable for starting 
groups to think outside the box and for provoking discussions.  These models are rarely sophisticated 
enough to be used as an adaptive adversary in war-gaming or for evaluating task-based behavior.  The 
strength of these models is their ability to look at population-level trends resulting from local action.  As 
such, they show promise in such areas as marketing, impact of psychological operations, information 
diffusion studies, and disease transmission studies. Rarely do such models generate actionable 
intelligence. 

Now consider dynamic network ABMs tied to empirical data.  Such models utilize agents with 
moderate levels of cognitive sophistication and high levels of social sophistication.  This results in models 
that can be used for war-gaming to look at adaptive adversaries.  Given current technology, this 
combination results in models that can handle more agents but that run more slowly.  The strength of 
these models lies in representing and reasoning about fairly large-scale units, such as the army’s unit of 
action, cities at 20 percent population, or terrorist networks. The added cognitive and social sophistication 
inherent in these models makes it possible to produce actionable results.  However, getting a model to the 
point of producing actionable results takes a multiperson, multiyear data collection effort on top of a 
multiyear model development effort. 

Modeling of Actions 

One of the key factors limiting agent-based models from a military perspective is the modeling of 
actions.  Currently actions can be modeled at a very high level (pro-con, hostile, friendly, or neutral) or at 
a very detailed level (fire a particular weapon). There is neither a middle ground nor a hierarchy relating 
actions at one level to another.  Therefore, those that try to model actions tend to be either very generic or 
single use. A basic ontology of actions is needed for the state of the art to advance. 

Research and Development Requirements 

Several requirements can be identified for the further development of ABM models that could be 
of use in military settings.  The next section discusses tool development, data farming, linkages of agent-
based modeling to other modeling efforts, and the development of the human resources and expertise 
needed to support ABM development. 

Tool Development 

Key advances and applicability to military modeling require agent-based modeling and network 
analysis techniques to be integrated into tool chains.  For example, pattern discovery techniques can be 
used to derive equations from historical data that can then be used in agent-based models to evolve future 
systems.  ABM techniques can be used to evaluate courses of action and to suggest areas for further data 
collection.  Combining these techniques will enable new types of problems to be solved; for example, 
combining social network metrics with pattern discovery techniques is the key to building an 
understanding of how networks grow and evolve. 
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This is not to suggest that the military should move to large integrated behavioral models—quite 
the contrary.  What is needed is increased interoperability of the tools. The development of ABM 
computational laboratories and the explosion of network analytic tools are putting social behavioral 
modeling into the hands of the masses. Moreover, these trends are leading to the development of many 
small, single-purpose tools.  This should be taken advantage of by encouraging interoperability. 

It is important to note that it would not be feasible to require all tools to be written in a single 
language or to require the use of a single framework; rather, the solution needs to enable the integration of 
models not only from diverse domains but also in diverse languages. Multiple models, visualization tools, 
and the like should be available to address diverse problems, but in such a way that data (real and virtual) 
can be shared easily among the various tools. 

There are a variety of things needed to support such interoperability.  Standards for the 
interchange of relational data need to be developed.  Behavioral modeling tools need to be web enabled, 
and XML Input/Output languages need to be developed.  A uniform vocabulary for describing relational 
data also needs to be developed; this is particularly critical because the tools and metrics are coming out 
of at least 20 different scientific fields.8 

For defense and intelligence applications, common platforms and data sharing standards need to 
be explored and developed so that tools written in the unclassified realm can be rapidly moved, without 
complete redesign, to the classified realm.   Enabling interoperability and providing a platform and 
common ontologies for these tools will enable novel problems to be more rapidly addressed by 
regrouping existing models.  It will also enable various subject matter experts to interact through the 
interaction of their models.  In turn, this will enable a broader approach to problems, reduce the likelihood 
of biased solutions, and facilitate rapid development and deployment. 

Current tools are either very data-greedy or become more valuable as they are linked to real data.  
However, there is a dearth of relevant data currently available in clean preprocessed form.  Thus, to 
reduce the time analysts spend on data collection and to increase the time they spend on analysis, 
automated and semiautomated tools for data gathering, cleaning, and sharing are needed.  Such tools 
should include natural language processing tools for extracting relational data from audio and text sources, 
“web-scraping” tools, automatic ontology generators, and visual interpretation tools to extract network 
data from photographs and visual images. 

Appropriate subtools for node identification, entity extraction, thesaurus creation, and other 
functions are also needed.  The development and availability of these tools in an interoperable 
environment are critical for providing masses of data that can be used for model tuning and validation. 
Moreover, these tools reduce time spent on data collection and thereby free the analysts' time for analysis.  
More rapid data collection would also mean the availability of more datasets for doing meta-analyses, 
thereby enabling improvements in the theoretical foundations of the field and in the understanding of 
social behaviors. Finally, these tools are essential for providing the wealth of data needed by social 
behavioral models to make reasonable forecasts or to provide reasonably accurate analyses of situations 
and organizations. 

Improved speed for many of the algorithms could be provided by computer architectures 
designed for relational data or by the use of special integrated circuits with embedded versions of the less 
scalable algorithms.  Note this would enable a speed savings beyond that afforded by the use of current 

                                                 

8These fields include: anthropology, sociology, psychology, organization science, marketing, physics, electrical 
engineering, geology, ecology, economics, biology, bioinformatics, health services, forensics, artificial intelligence, robotics, 
computer science, mathematics, statistics, information systems, medicine, civil engineering, communication, and rhetoric. 
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vector technology. Such technology would facilitate faster processing and enable more real-time solutions, 
particularly for large-scale networks. 

To reduce the “art” aspect of interpretation in this field, a living archive of collected network data 
is needed, replete with information on metrics for the nodes in each dataset.  Such an archive could be 
used to set context information.  For example, such information could be used to evaluate whether the 
density of particular networks is exceptionally high or low or to identify exceptional values of 
connectedness of individuals.  Such an archive would facilitate meta-analysis and comparative analysis.   
This is critical for improving the theoretical foundations of the field as well as for the understanding of 
social behavior. 

Forecasting and Possibility Analysis 

Of the models described here, those that have shown the most promise in terms of forecasting are 
the voting models, the dynamic network models (that combine agent-based technology and metamatrix of 
relations), and the social influence models.  These models have had limited success in forecasting voting 
outcomes, changes in beliefs and attitudes at the macro level, and identifying emergent new leaders.  For 
other modeling techniques, including the ABM and system dynamic techniques for complexity modeling, 
the models are best at providing insight into the space of possibilities, that is, demonstrating what possible 
futures might exist and their relative likelihood.  However, for these models to provide an adequate map 
of the possibilities (a reasonable response surface), the models need to be run a vast number of times 
under diverse scenarios; hence, as is discussed in the next section, there is a need for placing these models 
in a data farming environment. 

One question that arises is: how can these models be made more predictive?  This topic, in and of 
itself, is quite complex and a full treatment beyond the scope of this study.  However, several factors are 
worth noting. As more of these models are placed in data farming environments, statistical tools are 
developed for mining the vast data so generated, and repositories of metamatrices are developed and 
shared with scientists for testing and validating, then one can expect that many of these models will 
become more reliable in their forecasts.  However, there will still be many classes of social phenomena 
for which prediction, of the form used in engineering and physics, will simply not be possible due to the 
lack of stationarity in the underlying social possesses, the paucity of data, and the lack of continuity in 
key variables.   

A second question often arises regarding the concern that, if the models are truly predictive, the 
mere act of making a prediction public will cause actors to change their behaviors and so alter the 
outcome.  While this issue is addressed in other sections of this report, several key factors directly related 
to the nature of the models described here are worth mentioning.  For most of the models described here, 
other than the simple voting models, making the models transparent to the public (so that others can infer 
the predictions) or making the predictions themselves public is not likely to invalidate the predictions.  
There are three basic reasons for this: lack of temporal forecasting, level of specificity, and hyper-
confluence. Temporal forecasting tends to be weak and predictions are often vague in terms of when 
something will occur; rather than point predictions, most predictions are of the form “A will likely occur 
after B” or “at some time in the future more than two weeks but less than two years from now.”  Most 
models produce rather general results, such as that a state will fail, civil violence is likely to erupt, or 
corruption will increase; rather than the more specific “the state will fail due to a regime change where 
General X takes over” or “civil violence will take the form of riots in these five cities” or “corruption will 
increase the most in the area of infrastructure development in county X.”  Finally, most models generate a 
prediction due to hyper-confluence, that is, the strongest predictions are those for which there are a large 
number of interconnected causes that weave together in complex ways.  But single actors can best counter 
a specific event that is likely to occur at a specific time with only one or two actions or activities.  Even 
with sufficient research funding, improved theory, and available data to overcome the issues of vague 
temporal forecasting and lack of specificity; the problem of hyper-confluence will remain.  That is one of 
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the key reasons why social and behavioral models need to be driven by the science of the possible, rather 
than the traditional science of point predictions involved in traditional physical science and engineering 
models. 

Data Farming 

Agent-based models designed for applied settings need to be placed in data farming environments.  
These environments need to be augmented with special-purpose tools for running massive virtual 
experiments.  These tools should enable improved visualization and analysis and facilitate the 
development of semiautomated response surface generators.  Current data farming tools often are 
cumbersome to use, require code modification of the ABM, and are limited by the processor speed and 
storage capabilities of the machines that they run on. 

In order for ABM frameworks to run routinely in data farming environments, more flexible 
environments need to be developed and made easily available to researchers.  Moreover, ABM 
frameworks need to be developed with wrappers,9 so that they can be placed in these environments.  
Standardized IO formats need to be developed.  By routinely placing ABM frameworks in a data farming 
environment, a better understanding of the space of possibilities predicted by the frameworks will be 
derived.  This will enable ABM frameworks to better support policy and decision making. 

Currently, when ABM frameworks are used to inform policy and critical decisions, they are 
typically run only a few times in carefully controlled computational experiments.  While this approach 
enables the analyst to explore more possibilities more systematically than not using a simulation, it still 
leaves open the possibility that errors might be made if the results are generalized beyond the scope of the 
experiment.  By placing ABM frameworks in a data farming environment, the number of computational 
experiments conducted, the space of possibilities examined, and the scope of analyzed conditions can be 
expanded, often by several orders of magnitude, thus providing a stronger basis for decision making.  
Furthermore, once an ABM framework has been validated, the response surface equivalent can be used as 
a “rapid” model in training situations in which the users do not have time to wait for an ABM experiment 
to finish running. 

Cross-Disciplinary Initiatives 

Another avenue that may promote major breakthroughs is the linkage of ABM social behavioral 
modeling to gaming environments, particularly online multiplayer games such as Everquest and 
America’s Army (see Chapter 7). Research initiatives that explore the link of ABM social behavioral 
modeling to gaming tools may be valuable.  Possible research areas include using agent-based modeling 
to explore the realism of the social behaviors exhibited in gaming models; using it to provide flexible 
opponents or to make the apparent number of game players larger and so force players to think about 
group scale issues; and using agent-based modeling to track and analyze game behaviors using dynamic 
network analysis techniques.  Key benefits here would be improved training tools and visual what-if 
scenario evaluation. 

As previously noted, additional ABM development needs to be done in a number of areas.  These 
include attachment of ABM frameworks to data streams, improved ABM visualization, metric ABM 
robustness studies, and so on. Moving ahead in these areas will require linking social networks to other 
types of data, such as location and event information, and linking diffusion theory to other forms of 
theory, such as action and cultural theory.  This will require the funding of both basic and applied 

                                                 

9“A wrapper is a software layer used to change the interface of a component or to give new properties, such as fault tolerance or 
security, to the interaction between components. Software wrappers are often used to glue existing subsystems into a larger 
system with new properties and functions. The wrappers know the protocols needed 
to make the subsystems work together, even if they were not originally designed for a common purpose” (Webber, 1997, p. 1). 
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research. It will also require an increased recognition for, and acceptance of, applied social science 
research in universities. 

Currently there are a number of funded research efforts in the areas of cultural modeling, 
geospatial link analysis, and adversarial modeling, all of which are supporting work along these lines.  A 
key to much of this work is that it combines dynamic network analysis with geospatial reasoning or 
anthropological data-gathering techniques.  Much of this work is applied, directed at providing usable 
systems in several years.  This is a positive development, particularly when such modeling efforts are 
based on strong empirical and theoretical foundations. However, there is still a huge amount of basic 
research to be done in such areas as the development of an ontology for tasks, a unified model of culture, 
or even a shared definition of culture.  Relatively little research funding is being directed to the basic 
research questions in this area. 

The key here is not simply to invest in the social sciences but to invest in the mathematical and 
computational social sciences to engender the development of work that will support defense needs.  The 
benefit will be an improved understanding of basic social and cultural phenomena.  Another benefit will 
be a decrease in the development of misleading models that appear to be social but that are not 
theoretically or empirically sound. 

At the same time, most of the research community, particularly in the social sciences, is not 
focusing on strongly applied problems.  The mere idea of hard deliverables, while accepted as common 
practice in engineering and computer science, is contrary to the basic culture of most social science 
departments.  Thus, while there is a strong need for quantitative social science modeling on defense issues, 
there is a dearth of social scientists involved in and trained to do applied work. 

Building Expertise 

The lack of highly trained professionals is a key difficulty in this area.  Universities need to 
expand their undergraduate social science curricula to include more of the mathematical and 
computational social sciences.  In particular, undergraduate courses should be routinely taught that cover 
social network analysis and agent-based modeling, and that permit the mastery of ABM programming 
tools.  Universities need to encourage and facilitate applied research.  New curricula are needed that have 
an engineering style but that are focused on social and policy applications. Master’s programs that 
combine social and computational science need to be developed.  Military universities, such as West 
Point and the Naval Postgraduate School, should also offer social network courses and possibly ABM 
courses, particularly those for evolving networks, and they should integrate dynamic network measures of 
shared situation awareness, leadership, and power into the standard curriculum. 

The development of these curricula and degree programs is vital to the nation’s intellectual 
strength in order to remain at the forefront in this area. The clear benefit of these programs will be a 
stronger workforce of computational social analysts capable of developing and using social behavioral 
models. 

Analysts engaging in ABM but trained in computer science, engineering, or physics should work 
in teams with social scientists to avoid duplicating work already done or making commonsense 
assumptions about social processes that have no empirical bases.  Corporations need to provide time and 
resources for selected personnel to become jointly trained in computer and social science, either by 
increasing the number of personnel sent to master’s programs, bringing in relevant faculty to teach short 
courses, or engaging in more joint research with universities as equal partners (in which the university 
provides the missing skill, social or computational). The key advantage of teaming is that it will enable 
improved model development and will serve as a stop-gap until more computational social analysts are 
trained. 
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Expected Outcomes 

Across the board, success in the activities outlined above would facilitate the rapid development 
and deployment of agent-based modeling.  The advantage is that it enables systematic reasoning about 
various courses of action in a wide range of complex environments.  More courses of action could be 
evaluated in less time and more systematically than is done with conventional table-top war-gaming or 
current non-computer-assisted analysis of relational data. The dynamic social network and ABM tools 
outlined above reduce the time spent on data processing and increase time spent on analysis and 
interpretation.  They would facilitate what-if analysis and could ultimately support near-real-time what-if 
analysis in the field.  This would be a valuable force multiplier. 

In summary, the activities listed above would increase the maturity of the modeling field, 
improve scientific theory, facilitate rapid linking of computational models to empirical data, particularly 
network data in a unified reasoning framework to solve novel problems, and encourage new discoveries.  
These activities would also promote the development of a new science that combines computation and 
society, just as the previous joining of computer science, design, and psychology led to the new science of 
human-computer interaction. 
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TABLE 6-1 Illustrative Meta-Matrix 

 People Knowledge Activities 

People Social network Knowledge network Activity network 

Knowledge  Information network Needs network 

Activities   Precedence network 
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TABLE 6-2  Structural Differences Commonly Exhibited by Agent-Based Models 

Model Number of 
Agents 

Agent 
Representation  

Cognitive 
Sophistication 

Social 
Sophistication 

Grid Based 

Cognitive  Few Rules High Low No 

Dynamic-
network 

Many Equations + 
rules 

Moderate High No 

Cellular 
automata 

Few to many Equations or 
rules 

Low Low Yes 

Rule-
based 

Few to many Rules Low Low Often 
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7 
Games 

This chapter deals with massive multiplayer online games (MMOGs) as a tool for social and 
organizational modeling.  An MMOG is a type of computer game that enables hundreds or thousands of 
players to simultaneously interact in a game world to which they are connected to via the Internet. 
Typically this kind of game is played in an online, multiplayer-only persistent world (Wikipedia, 2007).1  
These games are a different kind of animal from the models and modeling approaches previously 
discussed.2  MMOGs are simultaneously tools that allow players to interact with behavioral models, 
frameworks for building such models, and laboratories in which these models can be tested. 

WHAT ARE MASSIVE MULTIPLAYER ONLINE GAMES? 

Games, particularly videogames, are a recent addition to the modeling and simulation (MandS) 
tool suite. A videogame is defined as a mental contest, according to certain rules, played with a computer, 
for entertainment. In the Department of Defense (DoD), the term used is “serious game,” which we define 
in this report as a mental contest, according to certain rules, played with a computer, that uses 
entertainment to further government or corporate training, education, health, public policy, and strategic 
communication objectives. An early examination of the potential for using games for modeling, 
simulation, and analysis originates in the report Modeling and Simulation: Linking Entertainment and 
Defense (National Research Council, 1997).  

Games are an interaction medium, a set of engaging and immersive models, and an interactive 
laboratory with which models and simulations can engage. As an interaction medium, games provide a 
way for humans to provide input and receive feedback in real time, participating in a running simulation. 
If the game is immersive enough, this running simulation will fully engage the attention of the game 
player, and that player will focus on game play to the neglect of the external world. The most 
commercially successful interactive games cyclically increase the adrenaline levels of the player, while 
demanding little in the way of mental focus. Games that demand great mental focus do poorly in the 
market and typically lose player interest. Modeling and simulation systems that are embedded in such an 
interaction paradigm need to take this into account if the expectation is to make the MandS system as 
engaging as a commercial game. The desired outcome for this paradigm is that the MandS system will be 
so engaging that soldiers will continue to work with the simulation during personal time. Many training 
simulations derived from the game America’s Army (described in more detail below) and similar games 
belong to this category (Zyda, Mayberry, McCree, and Davis, 2005). 

                                                 

1In this chapter, the committee makes references to online communities and game manufacturers. Because of the nature 
of the games world, scholarly references are not often available, nor are they the most up-to-date or accurate source of 
information.  

2They are also not to be confused with “game theory” (although some researchers do so; see, e.g., 
http://www.halley.cc/ed/gaming.html), a mature research area with strong mathematical foundations established by Von 
Neumann and Morgenstern (1944), but, as noted in Chapter 5, having significant constraints for application to real-world 
problems, the most notable for this context being the massiveness of the multiplayer community-inhabiting MMOGs; few game 
theory studies consider more than a handful of independent players or “agents” (Moss, 2001).  There are a number of other 
limitations to the game theory approach, discussed extensively in Chapter 5. 
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Games also contain a set of engaging and immersive models, models that look very interesting 
from the perspective of DoD. For example, a large number of meetings start out with the phrase “if only 
we could build an engaging game like SimCity” —that is, SimNavy for the Navy, SimAir for the Air 
Force, etc. (Zyda et al., 1998). There are many problems with such statements. The purpose for which the 
personal computer (PC) game SimCity 3 and The Sims,4 its direct descendent, was written was to entertain 
and engage the game player.  No real attempt was made in that game or its successors to accurately model 
the real world, nor was there any attempt to verify, validate, or accredit the results of that game—it is pure 
entertainment. It does, however, suggest a way in which one can develop potential outcomes or possibility 
spaces that can then be considered for further analysis. Probably the most interesting aspect of games like 
SimCity (http://simcity3000unlimited.ea.com/us/guide/), The Sims (http://thesims.ea.com/), and 
Civilization IV (http://www.2kgames.com/civ4/home.htm) is that these games were built for relatively 
small amounts of money and on schedule, and they still perform as extremely successful entertainment. 
DoD MandS programs with budgets two orders of magnitude larger have failed to deliver even a tenth of 
the capability to create a space of potential outcomes for consideration (Bennington, 1995). 

Games are also an interactive laboratory with which models and simulations can engage. They 
can play the role in social and organizational modeling that linear accelerators play in particle physics—
testbeds built and used to perform experiments and analyze results (Carley, Moon, Schneider, and 
Shigiltchoff, 2005). Like linear accelerators, MMOGs are expensive to build.  The costs of successful 
immersive game development run from $8 million for the first two years of game development for a 
Spartan effort like America’s Army to more than $100 million to develop a massive multiplayer online 
game and its infrastructure.  

To use a game as an interactive laboratory, it must be built or acquired before experiments can be 
performed with it. If the intention is to connect a social model to an MMOG for validation or 
improvement of the social model, money is needed either to build the MMOG or to acquire the use of it 
and the tools and permissions that allow its modification from a willing game development partner. Note, 
however, that the entire FY 2008 estimated budget of the Defense Advanced Research Projects Agency, 
$3.085 billion (see http://www.darpa.mil/body/budg.html [accessed July 2007]), is comparable to the 
current cash assets of a gaming giant like Electronic Arts (see 
http://finance.yahoo.com/q/bs?s=ERTSandannual [accessed July 2007]), plus the expected revenue of $1 
to $1.5 billion from an operating MMOG.5 The size of the financial stakes for MMOG game companies 
means that getting the attention of a game development partner may rely more on personal connections or 
a fully funded joint basic research agenda than on any financial incentives that DoD could offer. 

STATE OF THE ART  

Our review of the state of the art in MMOGs considers the three roles of games separately—
games as an interaction medium, games as a set of models, and games as interactive laboratories. 

                                                 

3SimCity is a PC game in which the user controls several elements of managing a city, such as allocation of funding, 
distribution of community resources (police and fire stations, schools, etc.), and community layout. Maxis (now Electronic Arts 
Inc.) released the first version of SimCity in 1989. SimCity was the first game in the Sims franchise, and was the inspiration for 
other nonviolent open-ended games, such as Sid Meier’s Civilization (Electronic Arts Inc., 2006b). SimCity is partly based on 
Jay Forrester’s urban planning model, which is described in Chapter 4 (Electronic Arts Inc., 2007). 

4The Sims is a PC game in which the user controls individual characters (Sims) in a “virtual dollhouse.” The user is 
responsible for managing day-to-day needs of the Sims, such as their need for fun, hygiene, food, rest, and social activity. 

5Consider the single MMOG World of Warcraft with an estimated 8 million+ players paying $12.99 a month, for 
annual revenues of approximately $1.2 billion. 
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Games as an Interaction Medium 

Games as an interactive medium are always changing and improving. The drivers for innovation 
in the game industry are new technology for making the games ever more immersive and interactive, as 
well as industry competition and emulation. The driver for many years has been the increasing graphics 
speeds for PCs and consoles. That drive has made photorealism one of the major pushes for interactive 
games. Soundscape complexity has also made games more immersive as PCs and consoles have 
improved their sound support capabilities. The first Dolby 5.1 certified game, America’s Army, was 
developed in 2002, and now this feature is included in almost all games.  

We are near the point of diminishing return for graphics improvements, and people are now 
focusing on “fully interactive worlds.” The best example of the fully interactive world style is Rockstar’s 
Grand Theft Auto: San Andreas (GTA-SA). While the story line may lack redeeming social value, the 
game is so popular because the game player can interact with everything in the game’s world in a 
nonlinear fashion. This means that the player can navigate the world and do whatever comes to mind, 
without being constrained to a single story path, as in many games. The fact that there are missions to 
complete in GTA-SA is perhaps unimportant. It is the journey and the accompanying interaction that 
immerses and retains the player. If one wanted to have one game as representative of state of the art, then 
GTA-SA is that game with its fully interactive world paradigm, but the number of games attempting to 
copy that paradigm is quite large; the most notable is the Godfather game of Electronic Arts. 

Games as a Set of Engaging and Immersive Models 

The games Sims 2, by Electronic Arts, and Civilization IV, by Firaxis, represent the state of the 
art with respect to games as a set of engaging and immersive models. Sims 2 is a game that allows the 
player to create virtual characters, or Sims, and then direct them over a virtual lifetime. Settable 
parameters include gene mix across generations, life goals, popularity, fortune, family, romance, 
knowledge, financial status, and lifestyle. Sims can be pushed to extremes “from getting busted to seeing 
a ghost, from marrying an alien to writing a great novel” (Electronic Arts Inc., 2006a). The game allows 
the player to fulfill dreams, to try extremes, and to basically explore potential outcomes and possibility 
spaces.  

Civilization IV is a game that allows the player to create a civilization from its inception to its 
pinnacle and eventual demise. Players can chose peace and growth or choose a war footing, all from an 
easy-to-use interface. Civilization IV comes with a stream of easy-to-use modification tools that allow 
players to create and integrate their own interests into the game. As in Sims 2, Civilization IV allows the 
player to explore possibility spaces and potential outcomes. It is that capability that makes the modeling 
and simulation of these games very interesting to DoD and to the Department of Homeland Security. The 
question is often asked, “How do we connect these games, with near-zero modification, to real news feeds 
so that we can compare their ‘predictions’ against what subsequently happens in the real world?” Of 
course, these games are written to explore potential outcomes and not to be predictive, but there is a 
continual quest to achieve predictions, as in the film “Minority Report.”  

Games as an Interactive Laboratory  

MMOGs as interactive laboratories provide a state-of-the-art capability with respect to DoD goals. 
The idea is, for example, that if it were possible to test models of what causes insurgencies against large 
groups of real online people, one could then understand and run the models backward to change the 
conditions so that the insurgencies do not happen. This is a tall order, built on several premises. The first 
premise is that models exist of the cause of insurgencies, and there is no way to test those models in real 
life. An additional premise is that if one could test and prove those models against real people in 
MMOGS, one would then have greater confidence in deploying the ideas embodied in the models in real 
life. The interesting point of such discussions is the desire to test social models using existing MMOGs 
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rather than having DoD create its own testbed, thereby saving $100 million of testbed development costs 
that could be used to create models. 

To consider the top 10 MMOGs, how relevant or close to the problem are they? World of 
Warcraft, City of Heroes, City of Villains, Final Fantasy XI, Eve Online, Guild Wars, RuneScape, 
Everquest 2, Maple Story, Dark Age of Camelot, and Lineage 2 were the top 10 MMOGs listed by one 
site as of July 2007 (see http://www.the-top-tens.com/lists/top-ten-mmorpg-games.asp [accessed July 
2007]). Although their visuals are far from realistic, and their stories are mostly about worlds that don’t 
exist and quests not linked to real life, the stories are all about the fights between good and evil, not unlike 
today’s global war on terrorism. So the thought is to take one or more of these MMOGs, modify the story 
a bit, put in links to the predictive models to be tested, and then see if one can begin the process of 
predicting player behavior in the MMOG with connected systems. If that can be done, then perhaps it will 
be possible to run the models backward to stop insurgencies before they form or interdict them earlier 
before they gain strength. 

RELEVANCE, LIMITATIONS, AND FUTURE DIRECTIONS  

This section explores how MMOGs can be used to address DoD problems, the limitations on that 
use, and the next steps needed to address those limitations.  The discussion is organized around the three 
major capabilities offered by MMOGs: an interaction medium, a set of models, and an interactive 
laboratory. 

Games as an Interaction Medium 

Interactive games are great interfaces to models and simulations, because designers have created 
an interface typically more intuitive than that in comparable DoD-developed MandS systems. Interactive 
games typically require no reading of manuals and have the player up and running in three minutes or less. 
The corresponding time is typically months for comparable DoD MandS systems. So if the goal is to put 
models and simulations into the largest number of hands possible, then an interactive game interface is 
the right way to go. An additional advantage of interactive games is that their development and 
modification tools are easier to use than the simulation setup tools used by DoD.  If defense simulations 
were as easy to set up as games, modelers’ ability to explore possibility spaces and potential outcomes 
would be dramatically increased. 

Games as an interaction medium are limited, at the moment, to games designed and implemented 
by the game development industry for entertainment purposes. For DoD use, those games must either be 
used as they are or modified with available tools. An additional limiting factor is that DoD does not 
typically have access to personnel skilled in game development. 

Interactive games, their supporting hardware infrastructures, their supporting software, and their 
input devices are under constant pressure to innovate and evolve. The biggest change coming in the next 
few years will be in the underlying models of human and organizational behavior, particularly with 
respect to the modeling, display, and input of human emotion into the interactive game. Think of this as 
adding to the communication modalities already employed in games: visual display, auditory display, 
haptic display, and (coming soon) two-way emotional communication and display. Low-cost sensors that 
read parts of the human emotional state have already been designed for use as game input devices. These 
sensors provide virtual sensors indicating mental focus, adrenaline, surprise/response, and relaxation, 
along with physiological measures of heart rate, blink rate, breathing rate, and oxygen level in the blood. 
Software using these measures is already under development for use in evaluating games before they are 
shipped to determine what does or does not work in the produced game. Experiments are under way to 
determine how to use emotional inputs in games, including how to display appropriate emotions back to 
the player based on his/her personal state. 
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Games as a Set of Engaging and Immersive Models 

The set of models inside engaging and immersive commercial games are proprietary and 
somewhat of a black box. We (DoD and its modeling researchers) cannot look at those models or modify 
them, other than the parameters exposed from the game’s interface or provided via modification tools. We 
cannot verify, validate, or accredit (VVandA) those models—but we probably haven’t really been able to 
achieve real VVandA with defense models and simulations, either (see Validation, Chapter 8). What we 
do know is that games like The Sims 2 and Civilization IV look quite capable for use in defense problems, 
if only we could modify them, even slightly, for defense purposes.  It would be interesting to know 
whether one could explore more of the space of potential insurgency outcomes with Civilization IV, 
developed at a cost of some $20 million, than with JSIMS, developed at a cost of $1.8 billion.  Could 
modelers do that exploration with just the available Civilization IV modification tools? 

Likewise it should be possible to run experiments in virtual worlds similar to Second Life 
(www.secondlife.com), perhaps with a somewhat less benign set of rules, which would have military and 
strategic applications.  For example, imagine Second Life with sovereign state entities, some of which 
were motivated to expand and dominate other regions of the game space.  What would be the 
behavioral/organizational reactions of the other players? It is likely that genuine social experiments could 
be undertaken in settings like this, at a cost far below JSIMS.  As another example, the popular board 
game Diplomacy is already available for online play (see http://www.diplom.org/index.py); it ought to be 
possible to modify it to bring it up to date in terms of state actors, allow for multiplayer states with their 
own internal decision-making processes, political parties, cultures, etc.  Of course, there would be issues 
that would need to be thought through, such as access to the online games by hostiles, the potential for 
abuse of human subjects by traumatizing their avatars, and how to make the costs and benefits “real” (so 
that the players are not casual about starting virtual wars, for example).  However, it seems clear that the 
potential gains are large enough to warrant some real effort devoted to overcoming these obstacles. 

Since the models inside games are typically proprietary and not precisely what DoD requires, this 
mismatch makes it hard for DoD to accept and utilize such models.  If DoD were to establish its own 
serious game development studio, this limitation could be overcome.  

Also, since games are typically designed for entertainment, they often provide a 
misrepresentation of reality—for example, compressed time, inaccurate social networks, missing cultural 
factors.  If games are to be used for training, then greater attention needs to be paid to which aspects of 
reality need to be more carefully characterized in the games.  This requires basic research on what factors 
are needed for what purpose, the inclusion of facts about social and cultural behavior, and the inclusion of 
social and organizational scientists as members of the game development team. 

Games as an Interactive Laboratory  

MMOGs are proprietary and written for a particular entertainment purpose, with rules very much 
unlike those found in real life. Players get to be heroes, villains, and superheroes in MMOGs and are 
often able to transport their virtual characters across large terrains without apparent cost in time or physics. 
So while it looks as if modelers might be able to do some experiments with MMOGs relevant to DoD 
concerns, there are definitely issues in the details. 

MMOGs as interactive laboratories are limited in their use for DoD purposes because they were 
built for entertainment.  For MMOGs to become widely used in DoD, DoD may need to establish its own 
studio to build such an MMOG, using a mix of game industry veterans and defense MandS personnel. A 
vision for what this might look like is the collection of art resources and animations from the America’s 
Army game ported to a larger, more open platform (U.S. Army, 2007). Right now, America’s Army is 
built on the Epicgames Unreal-2 game engine, an engine limited to small squad-on-squad play (32 players 
total) and small areas of terrain (1km x 1km). In addition, access to the art resources and code from 
America’s Army has been restricted to DoD due to proprietary game engine license issues and close 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 

7-6 

control of those resources by the Army project management team. Good small training systems have been 
built using the America’s Army material (see http://info.americasarmy.com), but in general, the close 
hold of the source code and game resources has made it difficult for DoD scientists desiring to use that 
material to be able to build the additions and extensions necessary to carry out their research. As DoD 
moves to the larger realm of MMOGs for social model experimentation and to a game engine capable of 
handling much larger terrains of concern, the openness and accessibility challenge needs to be solved for 
the greater DoD good.  

Funding a specialized MMOG game studio outside the government would be one approach to the 
challenge, perhaps within the environment afforded by a specialized cross-departmental university center, 
such as the Entertainment Technology Center (ETC) at Carnegie Mellon University (see 
http://www.etc.cmu.edu/) or as a university-affiliated research center but with more internal development 
capability than seen at labs like the highly successful Institute for Creative Technologies (ICT) at the 
University of Southern California. There are many applications for which this MMOG will be of value. A 
particular MMOG that would have great applicability is one that implemented the various alternative 
futures as described in the report Mapping the Global Future (National Intelligence Council, 2004). 
Understanding those potential outcomes and being able to roll back to a state in which the potential 
outcome does not happen would be a great tool for designing better national policies. 
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8 
Common Challenges in IOS Modeling 

This chapter discusses broad issues and challenges that are encountered across the range of 
individual, organizational, and societal (IOS) modeling approaches and methods, highlighting problems 
that need to be solved for these modeling approaches to be most useful for the military’s needs.  We first 
describe issues of integration and interoperability, the challenges that confront modelers and simulation 
developers when they attempt to integrate multiple models and simulations, with the goal of making them 
interoperable—that is, able to use output from one model as input for another.  Next we describe some of 
the challenges (and potential benefits) of developing and using modeling frameworks and tools that 
facilitate the development of IOS models.  We then describe issues of model verification, validation, and 
accreditation (VVandA), issues that are especially challenging for the modeling of human behavior.  
Finally, we discuss some of the challenges posed by the data requirements of IOS models in light of the 
realities of the data and information available to model developers and users.  In each section we note 
some potential solutions to the challenges. 

INTEGRATION AND INTEROPERABILITY 

In this section, we discuss the issues that confront modelers attempting to integrate models 
developed with different internal structures, at different levels of granularity, or with inconsistent inputs 
and outputs.  The nature of the challenges requires that the discussion be quite technically sophisticated 
and use terminology and concepts that may be unfamiliar to many readers.  We have tried to define some 
of the terms in footnotes, but a simplified discussion would not do justice to the subject matter. 

Model Interoperability: Incompatibilities and Functionality Gaps 

There are several fundamental issues (and associated hard problems) that need to be addressed in 
undertaking the development of an interoperable framework of IOS models. First and foremost is the 
problem of making existing or even new models interoperable, as these are developed independently (i.e., 
with no coordination) by different software design and development teams, in consultation with domain 
experts having various levels of skills and expertise. A very common approach is to build a wrapper 
around an existing model, thus converting it to an input-output (I-O) black box, or to provide an 
intelligent agent operating autonomously, which communicates with other models in the network. But this 
approach is likely to introduce other types of gaps and incompatibilities between models, some of which 
are identified in Table 8-1 and illustrated in Figure 8-1. We discuss here the need to identify an overall 
methodology to fill these gaps, including various intelligent automated techniques, processes, and 
guidelines, as well as aid from human subject matter experts and analysts whenever needed. 

Interface Incompatibility 

The first problem shown in the figure (in the top row) concerns interface incompatibility between 
two models that either already exist or are being developed independently. If we intend to feed output 
from model A about a certain object X as input to model B, then some mismatch between the output and 
input may occur in terms of the assumptions about the numbers and types of X’s attributes. This is often 
straightforward but tedious to deal with, often merely involving translation from one descriptive 
framework to another (e.g., from numerical values—1, 2, 3, …—to “fuzzy” values (low, medium, 
high, . . .). A bigger problem ensues when different levels of resolution are used to represent the same 
object in two different models. If model A provides a high-resolution object representation of X (e.g., a 
map, enemy force estimates) for model B, and model B needs a low-resolution representation (e.g., 
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latitude/longitude of enemy center of gravity), then some aggregation process must be conducted, usually 
based on one approximation method or another. The reverse process is much more difficult, going from a 
low-resolution output to a high-resolution input, since, in effect, missing input attributes have to be 
inferred or approximated and filled in. A number of approaches can be used to resolve the interface 
incompatibility. These are described in the section on interoperability recommendations below. 

Ontological Incompatibility 

The second problem illustrated in the figure is ontological incompatibility between models, which 
arises due to differing vocabularies and expressive power in their respective ontologies.1  Different teams 
of engineers and subject matter experts with a diverse range of expertise, knowledge, and cognitive 
capabilities independently creating models will inevitably develop and use different underlying ontologies, 
which in turn will give rise to incompatibilities across models. Initially, one might suggest the 
development of a common ontology for the set of all possible models; however, many failed efforts in 
this direction make it clear that developing a universal ontological standard for model creation is 
impractical, if not theoretically impossible. Moreover, if models are to be built rapidly, analysts should 
ideally be free to use a model-building environment of their own choosing without assistance from 
knowledge engineers. The analysts should not be constrained by a predefined ontology to express their 
knowledge, which usually inhibits their expressive flow. Hence, rather than proposing to develop a 
common ontology for the model space, one approach is to focus on facilitating better mapping capabilities 
between differing ontologies. For example, there are tools that can map ontological terms from one 
domain to another by solving the problems of synonymy and polysemy;2 these clearly offer hope for 
translating differing ontologies used in the models. In some cases of incompatibility between the 
underlying ontological structures of the models (e.g., semantic networks versus logical expressions), one 
domain can be mapped to another by providing a more expressive ontological structure for one of the 
models (e.g., semantic networks can be mapped to first-order logical sentences). Therefore, some parts of 
the ontological incompatibility problem can be addressed via automated techniques. A number of 
approaches can be used to resolve the ontological incompatibility, described below. 

Formalism Incompatibility 

While ontological incompatibility creates problems due to multiple ways of designating an entity, 
the formalism incompatibility shown in Figure 8-1 is concerned with multiple ways of instantiating the 
object entity computationally represented in the model. For example, uncertainty can be expressed not 
only in terms of probability values, but also via various other formalisms, such as certainty factors, the 
Dempster-Shafer measure of beliefs (Shafer, 1976), and numerous other qualitative dictionaries. These 
are fundamentally incompatible with each other, both in terms of their underlying conceptual 
representation of uncertainty and probabilistic reasoning, and in the sense of having different types of 
scales. Conversion between two such formalisms often requires deep understanding of the models and 
their formalisms, thus breaking the simple I-O black box idea of encapsulation. Specialization of 
formalism is often appropriate to map one approach to another. For example, probability theory is a 
special case of Dempster-Shafer theory that allows beliefs to be expressed only on singleton sets, 
facilitating development of a mapping from probability models into Dempster-Shafer models.  

                                                 

1An ontology, for the purposes discussed here, is “a systematic arrangement of all of the important categories of objects 
or concepts which exist in some field of discourse, showing the relations between them. When complete, an ontology is a 
categorization of all of the concepts in some field of knowledge, including the objects and all of the properties, relations, and 
functions needed to define the objects and specify their actions” (http://www.answers.com/ [accessed July 2007]). 

2Synonymy refers to one referent (concept) with several words that can denote it (plain English examples: big, large); 
polysemy refers to one word denoting multiple referents (plain English examples: break; park). 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 

8-3 

Subdomain Gaps 

If one wants to feed the output from a model in one domain to another, it will require an analyst 
or domain expert with knowledge of both domains to bridge the subdomain gaps. This is due not only to 
the ontological gaps between the domains being considered, but also to differing dynamics between the 
domains. Addressing this problem requires the skills of experts from the respective domains or ideally 
ones who are expert in both domains.  

A number of approaches can be proposed to bridge such gaps, by highlighting possible 
correspondences between concepts and variables across domains, described below. Recommendations are 
also made for more comprehensive approaches that could be part of a long-term development effort. 

Figure 8-2 provides an illustration of model interoperability—focusing on political, military, 
economic, social, information, and infrastructure (PMESII)-related issues—with interactions among three 
layered models: one focusing on the social structure, one on the community infrastructure, and a third on 
the underlying information models, respectively from top to bottom. 

 The infrastructure model in the middle models a stabilization and reconstruction operations 
(SRO) model, developed by the Air Force Research Laboratory, Information Directorate3 (Robbins, 
Deckro, and Wiley, 2005) using a system dynamics modeling approach (see Chapter 4), and captures a 
sequence of influences among variables, starting from the power supply at an electrical power substation. 
The generated power is fed into an industrial water plant, which produces water consumed by oil field 
work. An oil field produces crude oil to be refined by a refinery. Refined fuel is used to generate power, 
which in turn is supplied to various power substations, thus forming a loop. It is especially difficult to 
reason with these types of graphs, containing such loops spanning many variables, as it creates an 
additional burden for discounting the variables’ self-influence. 

The social model at the top of the figure captures the impact of these infrastructure-related 
variables on the society, using influence modeling technology (see Chapter 6). The model specifically 
captures the influence of the four variables of power, drinking water, refined fuel, and sufficient food 
supply on a variable representing the level of anger of the population in a town aligned with coalition 
forces. The dynamics of the social model are that short supply in any one of these three consumable 
products will increase the level of anger among the local population. In fact, if a terrorist organization 
became aware of the mid-layer SRO model sequence in the infrastructure, then the power substation 
would assume heightened importance in the eyes of the terrorist strategists: an attack on a substation 
would not only cripple other services in the loop, but would also drive the sentiment of the local 
population against the coalition. Note that the diamond box represents the expected mission utility in line 
with the level of anger. The utility (although difficult to quantify here) should go up when the anger level 
is down and vice versa. 

The behavioral information model at the bottom of the figure illustrates how a model of a terrorist 
leader can be built using a concept graph approach (Sowa, 1984) in which concepts are represented by 
rectangles (e.g. [Person: Leader X] and [Behavior: Aggressive]), and conceptual relations are represented 
by circles (e.g., has Attributes), and soft-cornered rectangles (e.g., Leads, Causes).  An analyst can query 
such a model to determine who the terrorist leader is and the nature of the leader based on various 
observable intelligence. Such a leader X, who leads the terrorist group A, can possess different types of 
behavior attributes, including aggressive, diplomatic, quick to anger, etc. If the leader is quick to anger 
and there are some stimuli to make the leader angry, then an attack on friendly targets may be imminent. 

                                                 

3Much of the work described in this and the following sections was performed by John Langton and Subrata Das at 
Charles River Analytics with support from the Air Force Research Laboratory, Information Directorate (AFRL/IF) under contract 
FA8750-06-C-0076. 
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One such stimulus would be coalition forces stopping the supply of oil to the region, as indicated by the 
link to the SRO model above. 

The key issue here is the interoperability among the models. Note that although an I-O connection 
has been made between the two variables Oil Refinery and Refined Fuel of the top two models, they are 
ontologically incompatible as defined earlier. However, they can be made compatible by recognizing that 
the term “Oil” is synonymous with “Fuel,” and “Refined” and “Refinery” have a common base word. 
Another difficult compatibility problem is illustrated by the fact that there is no input for the variable 
Sufficient Food Supply in the social model, illustrating the interface incompatibility described earlier. 
One can envision, however, that this “sufficiency” concept could be automatically computed from the 
supply of food previously recorded in available databases to bridge this last gap. A number of 
recommendations for resolving specific model incompatibilities and functionality gaps are provided 
below. More general approaches to resolving more than one of these gaps simultaneously is a current area 
of study (Langton and Das, 2007).  

Recommendations for Resolving Gaps in Model Interoperability 

A number of approaches can be taken to maintaining, adapting, and integrating diverse models in 
the context of the interoperability gaps just defined.  

Dealing with Interface Incompatibility 

Interface incompatibility generally refers to two or more models having different types of data for 
their inputs and outputs and thus not being able to interoperate without some form of data conversion. 
There are at least three types of interface incompatibilities:  

• I-O format incompatibilities: string versus binary, real versus integer, fixed versus floating 
point, numeric versus Boolean, incompatible scale, incompatible zero point, date-time format, 
color format.  

• Logical incompatibilities: number of I-O points (e.g., 3 outputs versus 4 inputs—RGB to 
CMYK is a trivial example), I-O timing (e.g., fast output versus slow input). 

• Model persistence format incompatibilities: XML versus YAML, OWL versus RDF, etc. 

 

One way to deal with these issues is via a development interface that provides a basic set of 
translation functions that can learn from user interaction over time. A graphic user interface (GUI) would 
allow users to explicitly modify, add, and remove interface translation functions, as illustrated in Figure 
8-3. Users could also specify these translation functions within an ontology or the XML schema of a 
model, based on specifications derived, for example, from an evolved, global ontology. A full-scope GUI 
would then allow users to explicitly modify, add, and remove interface translation functions. A number of 
potential translation functions are described below in the context of the type of incompatibilities each 
addresses. 

Dealing with I-O Format Incompatibilities 

Many interface incompatibilities fall within this category, and most solutions can be resolved by 
some combination of the following: 

• Normalization: mapping any value to lie between 0 and 1 relative to its minimum and 
maximum possible values. 

• Weighting: scaling a value, typically in relation to other values. 

• Fuzzification: randomly generating a number to lie within some constraining interval (e.g. 
some random number between 0.3 and 0.6). 
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• Discretization: “binning” values according to their range and a range they must fall within—
somewhat like rounding—sometimes taking their distribution into account (e.g. 0.5 within a 
range between 0 and 1 can be discretized to 1 for a range of only 0 or 1). 

 

XML schemas often exist to support model file persistence. These schemas define the elements of 
a model along with the possible values they can take on. XSLT can then be used along with a number of 
standard translation functions for integrating inputs and outputs of two models on relevant nodes or links. 
These functions can also be adapted according to user interaction over time. 

Dealing with Logical Incompatibilities 

In some cases, one model may have more outputs than another’s inputs or vice versa. When 
integrating models, we therefore need methods for addressing these situations. For an overabundance of 
values, we can simply use some form of aggregation. Again, a model schema or ontology can specify how 
this aggregation should be performed, or the user could specify this through the above-mentioned GUI. In 
the case in which we have only one value but must map to more than one, we can simply duplicate the 
value or partition it according to any context provided in the model schema or ontology.  

In some cases, the sample rates rate of inputs and outputs may differ. One way of dealing with 
this is through smoothing and resampling. 

Dealing with Model Persistence Format Incompatibilities 

In essence, this issue really mirrors the greater task of integrating models. The existence of a 
standard schema or ontology for different models would immediately resolve this issue. However, we 
cannot now depend on such a standard or on adherence to it.  A partial solution may be to evolve or 
derive a standard schema or ontology. In either case, most effective solutions will entail the use of XML 
and XSLT for the translation of one model format to another.  

Dealing with Ontological Incompatibility 

Ontological incompatibility refers to two models having different structures, including the entities 
they specify and the relationships between them. For instance, a rules system model may have several 
pairs of nodes connected by one link (precedent and consequent), whereas a Bayesian net typically has 
more of a tree structure. Nodes can have different names, graphs can be directed or undirected, and two 
models representing the same system can be at different resolutions and thus include a different number 
of nodes and links. The principal issue of this incompatibility is determining which entities, nodes, or 
links in different models should map to one another for interoperation. 

Syntactic heuristics: The labels and descriptions of nodes and links in differing models can be 
compared on the basis of their raw string content. If these string components match, then the nodes or 
links may be a match as well. For instance, “runway16” may map to “runway.” A threshold for how many 
characters must match to infer a string match must be specified. This type of matching can also include 
matching nodes/links based on the range, cardinality,4 and other attributes of their possible values. 

Semantic heuristics: Nodes and links from different models can be compared on the basis of the 
semantics of their labels, descriptions, and any other textual metadata specified in an XML file, XML 
schema, or ontology. Elements from different models that have a semantic similarity can then be mapped 
to one another for model integration. For instance, a node with the name “airport” in one model may be 
mapped to a node with the name “runway” in another model on the basis of the semantic similarity of 

                                                 

4In mathematics, the cardinality of a set is a measure of the "number of elements of the set" (Wikipedia, see 
http://en.wikipedia.org/wiki/Cardinality [accessed Feb. 2008]. 
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their labels. Semantic similarity is determined by the relations between two words as derived from 
statistical usage, ontologies, thesaurus, dictionaries, etc.  There are both service-oriented architectures and 
application program interface specifications for this purpose, including WordNet (Al-Halimi and Kazman, 
1998) and Lexical Freenet (Beeferman, 1998).  

Relation mapping: Relation mapping can be used to address ontological incompatibility by 
mapping nodes from one model to nodes of another based on their relations (how they are connected) 
within their individual models. With this information, we can then suggest potential mappings between 
nodes of different models based on the similarity of their relations within their respective models. 
Consider the nodes α of model A and β of model B. Although these nodes may have very different names, 
they may have very similar relations. For example, both could influence five other nodes and be 
influenced by four other nodes. Based on their similarity, we may be able to deduce that these nodes can 
be mapped together for model integration. It is important to note that relations encompassing a node are 
not merely all of its incoming and outgoing links; they also include features identifying how the node 
affects any other nodes in the model. While this approach should rarely be used to draw links 
automatically, it could be used to make effective recommendations. 

Model node aggregation: Model aggregation can be used to address ontological incompatibility 
by identifying how sets of nodes in different models with differing cardinalities may be mapped to one 
another. It may be the case that a node α in model A maps to a subset of nodes N in model B, resulting in 
incompatible ontologies. For example, consider α to be the node airport and N to be the subset of nodes 
runway, plane, radar, and air traffic control. The question is, which nodes should airport be mapped to 
for model integration? We can use the semantic similarity of the labels on the nodes of N (e.g., interfacing 
with WordNet for ontological inference) to aggregate N into one meta-node: airport′. Using semantic 
similarity between airport and the constituent nodes of airport′, we can then infer that these two entities 
should be mapped for model integration. More specifically, the inputs to airport could potentially be 
mapped as inputs to all nodes of airport′.  

We can also infer the pairing of airport and airport′ using relation mapping. To continue the 
example, consider relations between airport and the other nodes of model A, and airport′ and any 
remaining nodes of model B. If their relations are similar, then airport could be a candidate for 
integrating with all of the nodes of airport′. For instance, both airport and airport′ could be connected to 
the nodes passenger, ticket, and pilot. With ontological inference, we can see that the relations of airport 
and airport′ are similar within their respective models (even though the relations of airport are not similar 
to the relations of any of the constituent nodes of airport′). We can then deduce that these nodes should be 
mapped for model integration. 

Dealing with Formalism Incompatibility 

Established Formalism Mappings 

There has been a great deal of research on mapping between different algorithm formalisms, and 
there are a number of established standards. Table 8-2 shows a matrix in which the following illustrative 
formalisms appear in the outer cells of both the X and Y axis: Bayesian probability, Dempster-Shafer, 
fuzzy logic, possibilistic theory, certainty factor, and symbolic dictionary. Each internal cell denotes the 
mechanism used for mapping between associated formalisms on the outer cells of the X (to) and Y (from) 
axis. Note that the mechanism for mapping from X to Y may not necessarily be the same mechanisms 
used for mapping from Y to X. Shaded cells represent established mechanisms for mapping between 
different formalisms, while nonshaded cells represent potential mapping approaches. In other words, there 
are known and established algorithms for mapping between the formalisms that are joined by a shaded 
cell. 
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Using XML Schemas and Ontologies for Formalism Mapping  

Ontologies can explicitly identify mappings between formalisms in the attributes of links within a 
model. For such formalisms as Bayesian networks and argumentation networks, relations correlate with 
the links between nodes. We can add an attribute to each link in a Bayesian network XML schema, 
declaring a “causes” relationship between a parent and child node it connects. Furthermore, we can 
specify that types of links declaring a “causes” relationship should be mapped to the “entails” relationship 
of a rule-based model. When mapping from a Bayesian network model to a rule based model, we can then 
infer from the ontology that a “cloudy” node in a Bayesian network that “causes” a “rain” node should be 
mapped to a rule that has the variable “cloudy” as a precedent and “rain” as a consequent. 

Subdomain Gaps 

Subdomain gaps can be addressed by learning ontologies and ontological evolution in which the 
relationships between models are implicitly specified as models are built. Mixed initiative approaches can 
also be used to address all of the interoperability gaps, including differences in subdomains. For example, 
the system might offer suggestions about what nodes or links should be related between two models. The 
user could then accept, edit, or ignore these suggestions. One simple mixed initiative approach would be 
reinforcement learning (Kaelbling, Littman, and Moore, 1996) guided by these user selections. If a user 
accepts a suggestion, the system could increase the number of related suggestions. If a user rejects a 
suggestion, then the system should learn not to make similar suggestions in the future. Even devoid of 
other heuristics, this approach would allow the storage of historical information as to what input and 
output types the user typically maps together and offer these mappings as suggestions for subsequent 
model integration efforts. 

In summary, there are no currently agreed-upon and widely used standards for model integration 
and interoperability.  The field of IOS modeling is fragmented, with models being developed from 
different perspectives, at different levels of detail, and using different theoretical frameworks and 
architectures. To address these issues, we suggest improvements in “translation” interfaces, schemas, or 
ontologies that could guide integration, as well as mixed initiative efforts in which model developers and 
users from different perspectives work together to create models.  Architectures and standards for that 
would support the development of integrated interoperable federated models identified as a key area for 
future research in Chapter 11. 

FRAMEWORKS AND TOOLKITS 

General Issues and Requirements 

Earlier chapters have described many IOS modeling and analysis techniques, but it is generally 
accepted that no single approach or modeling formalism can or should be applied to capture all of the 
complex dynamics of modern military missions and activities. The previous section has described some 
of the fundamental modeling issues that arise when we consider linking up or “federating” different 
models, and it is clear that considerable progress will have to be made at the conceptual level before such 
activities become commonplace in the IOS modeling and simulation (MandS) community. In the 
meantime, there has been and continues to be progress in the development of more specialized (and 
therefore less globally encompassing) frameworks and toolkits that attempt to address some of the more 
practical issues of model development, verification and validation (see following section for more 
complete discussion), and integration across modeling concepts and instantiated simulations.5 In general, 
these efforts attempt to provide an integrated development environment (IDE) that enables:  

                                                 

5Much of the work described in this and following sections was performed by Karen A. Harper, Jonathan D. Pfautz, 
Chen Ling, Sofya Tenenbaum, David Koelle, and Marc Sageman, with support from the Air Force Research Laboratory, Human 
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• The development of simpler, more focused submodels to represent specific features of the 
behavior of interest to the analyst, using the most appropriate tools for modeling those 
features. 

• The straightforward integration of those submodels into a cohesive and sophisticated 
representation of the overall operational environment. 

• The effective accounting of the complex interdependencies between modeled variables within 
the integrated system.  

Most of the work in developing frameworks and tools has occurred in the individual 
“stovepipes”—some refer to these as “cylinders of excellence”—that characterize each modeling 
community. Perhaps the best funded over the longest development history is the OneSAF System (One 
Semi-Automated Forces; see Chapter 2) of the Department of Defense (DoD). OneSAF is an MandS 
environment with a strong Army legacy that models combined arms tactical operations up to the battalion 
and brigade level, at variable levels of resolution (“entity”) from the individual soldier on up. A key 
driver in its development was to ensure “composability,” which is another way to say that the associated 
development environment provides for user-specifiable systems, entities, units, and associated behaviors 
(with variable “dial-in” levels of fidelity). This is accomplished via a Product Line Architectural 
Framework, illustrated in Figure 8-4, a layered architectural approach that allows for “plug and play” 
modules at many different levels and via a model-developer suite of GUIs that provide the following 
functionalities to the MandS developer: 

• System composer: High-level control and testing of the overall simulation. 

• Entity composer: Specification of hardware components (weapons, sensors, …). 

• Unit composer: Specification of the organizational structure. 

• Behavior composer: Specification of the entity behaviors in terms of a task-network 
branching structure comprised of conditional branch points and behavior primitives  (this is 
the heart of the OneSAF behavior model). 

• Management and control tool: High-level control of the mission objectives, order of battle, 
route plans, etc. 

OneSAF’s capabilities are impressive, buts its focus on the ground war, its limited repertoire due to 
prescripted behavior primitives, its inability to model deep cognitive or social interactions, and its narrow 
focus on military missions (in contrast to more encompassing PMESII considerations) all point to the 
need for further model development in this area. Its focus on bringing the modeling out of the hands of 
the programmers and into the hands of the analysts and users, via a focused effort on IDE development, is 
commendable and should serve as a model for parallel efforts now ongoing in other MandS communities. 

 

                                                                                                                                                             

 

Effectiveness Directorate (AFRL/HE) under contract FA8650-06-C-6731, and by Karen A. Harper and John Bachman with 
support from the Air Force Research Laboratory, Information Directorate (AFRL/IF) under contract FA8750-06-C-0078, to 
Charles River Analytics. 
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 Another modeling community working on IDEs is the group of researchers and model developers 
focusing on the behavior of the individual human, often based on the framework of the particular 
cognitive architecture underlying the model (see Chapter 5 for additional discussion). Table 8-3 provides 
a sampling of some of the individual behavior models discussed earlier, along with their associated IDEs. 
As can be seen, the IDEs are very specific to each cognitive modeling paradigm; can range from highly 
generic programming language development environments (e.g., CLOS) to very specific model 
development environments (e.g., iGEN); assume varying levels of expertise on the part of the model 
developer, from general programming expertise to “drag and drop” graphic construction skills; and 
provide a range of developer support, from little beyond the basic programming IDE to extensive 
debugging, logging, and visualization. Again, this is not meant to be a survey of such IDEs, but rather an 
illustration of the variety of IDEs in use by the development community. 

 Yet another modeling community engaged in developing frameworks and toolkits is the 
widespread and diverse group of researchers, model developers, and applications specialists focusing on 
group and organizational models. One of the best clearinghouses for gaining an overview of available 
models and tools is maintained by the Computational Analysis of Social and Organizational Systems 
Center at Carnegie Mellon University. Although there exists some conflation of models and the 
associated IDEs for their development, the site provides useful pointers to a number of model 
development tools and frameworks at Carnegie Mellon and elsewhere, as illustrated by: 

• Construct (http://www.casos.cs.cmu.edu/projects/construct/info.html ), a multiagent model 
development environment 

• OrgAhead (http://www.casos.cs.cmu.edu/projects/OrgAhead ), an organizational structure 
analysis tool 

• DyNet (http://www.casos.cs.cmu.edu/projects/DyNet) 

• BRAHMS Composer (http://www.agentisolutions.com/products/composer.htm ), the IDE for 
BRAHMS, an agent-based organizational modeling framework 

• SimVision (http://www.epm.cc/solutions/simvision.htm ), a bundled software environment and 
methodology for organizational design 

• CONNECT (http://www.cra.com), a social network analysis tool for organizational modeling and 
simulation 

• DDD (Distributed Dynamic Decision-making; http://www.aptima.com/a-sim.php), a simulation 
building and execution environment for predicting and assessing team performance 

A quick perusal of these tools (and others) makes it clear that, like the cognitive modeling frameworks 
described earlier, the associated IDEs run the gamut in sophistication, from those demanding high levels 
of user expertise in the underlying theory and the associated modeling language, to those stressing ease of 
use, but imposing limited applicability for selected domains. Considerable work is still needed to bring 
these highly specialized models out to the general user community, via IDEs that provide wide 
applicability as well as usability.  

 In the general area of developing representations for “soft” problems in IOS behavior,6 such as 
modeling the evolution of a terrorist organization or understanding the multiple possible paths in nation-
state rebuilding—and the interplay of critical diplomatic, information, military, and economic (DIME) 
and PMESII variables—little has been accomplished in the way of developing associated IDEs to support 

                                                 

6Soft in the sense of heavily driven by human and social rules of behavior, as opposed to more readily modeled 
problems that are well constrained by generally accepted physical, economic, or doctrinal factors. 
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the DIME/PMESII MandS community. This is primarily due to the fact that such nascent modeling 
efforts are still grappling with the conceptual underpinnings of representation; considerations of model 
development infrastructure and user- (developer-) friendliness are still considered a secondary objective. 
However, the lack of such environments may actually be hampering conceptual development, because 
unwieldy development environments slow the “test and evaluate” spiral cycles that must inevitably occur 
in this field. 

As noted earlier, modeling of military activities in which IOS behaviors dominate outcomes (e.g., 
asymmetric threats embedded in urban environments) demands a clear understanding of the complex 
sociopolitical context. This translates to the analysis of the potential effects that a given set of DIME 
actions will have across the full range of the PMESII context. Within the context of the Integrated Battle 
Command program of the Defense Advanced Research Projects Agency 
(http://www.darpa.mil/sto/solicitations/IBC/), these analyses are viewed in two ways, as shown in Figure 
8-5. From left to right, the figure shows a causal analysis in which, given a set of possible DIME actions 
to be taken, a system of complex and integrated behavior models is used to predict the potential effects 
those DIME actions may have across the PMESII dimensions. From right to left, the figure shows a 
diagnostic analysis in which, given a set of desired PMESII effects in the operational domain, the same 
system of integrated behavior models is used to identify the candidate sets of DIME actions that might be 
applied to achieve those desired effects. By conducting both types of analyses—ones that move well 
beyond the limits of conventional military “metal-on-metal” modeling embodied by OneSAF, for 
example—commanders will be able to develop significantly deeper insight into the dynamics of the big 
picture operational context (see additional discussion later in this section). 

The key to successfully executing such encompassing analyses lies in the development of the 
embedded behavior models representing the full range of PMESII variables and how they can be 
individually and collectively affected by specific DIME actions. For example, as described earlier in this 
chapter, the SRO model (Robbins et al., 2005) analyzes the organizational hierarchy, dependencies, 
interdependencies, exogenous drivers, strengths, and weaknesses of a country’s PMESII systems using a 
complex set of interdependent systems dynamics representations. While approaches like this have 
demonstrated some success in modeling subcomponents of the PMESII environment, it is generally 
accepted that no single approach or modeling formalism can or should be applied to capture all of the 
complex dynamics of modern asymmetric warfare: in other words, it is not necessary to stick with a 
single modeling formalism (e.g., systems dynamics modeling) to model something as complex as a 
nation-state undergoing political upheaval, foreign intervention, or civil war.7 

A better approach is to provide for an IDE that enables the interconnection of disparate modeling 
methods representing DIME/PMESII features using the most appropriate method to modeling those 
features. A key issue is providing compatibility across models and their underlying modeling formalisms, 
such as the models described in Chapters 4 through 6 and the generic formalisms presented in Table 8-2. 
As noted above, this is a conceptually difficult problem to solve theoretically, but some progress can be 
made with the development of sufficiently flexible IDEs. 

IDE Development Goals and Examples 

An ideal IOS integrated development environment, especially one targeted for the complex task 
of developing DIME/PMESII models, would include: 

                                                 

7A brief overview of potentially useful modeling paradigms for DIME/PMESII modeling and analysis issues is given in 
Appendix C. 
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• An intuitive graphical model development environment supporting the specification of 
heterogeneous submodels using a variety of modeling formalisms (Bayesian reasoning, fuzzy 
logic, system dynamics models, rule-based expert systems, etc.). 

• A suite of model integration tools enabling user-driven sharing of data and information 
among constituent DIME/PMESII models. 

• A suite of model verification and validation tools enabling user-driven verification of 
individual and integrated DIME/PMESII model behavior as well as the large-scale data 
collection required to support validation of model behavior against empirical data. 

• A model analysis infrastructure that enables user-driven causal and diagnostic reasoning 
within the integrated modeling framework using sampling techniques and sensitivity analysis, 
respectively. 

• A suite of multiresolution modeling tools and supporting infrastructure to support the user-
driven specification of DIME/PMESII submodels at multiple levels of modeling fidelity. 

• A model management infrastructure that enables the capture, distribution, and maintenance of 
large libraries of DIME/PMESII submodels. 

 

We describe here an exemplar effort in developing such an IDE: the Human and System Modeling and 
Analysis Toolkit (HASMAT) developed for AFRL/HEC (Harper et al., 2007; Bachman and Harper, 2007) 
and describe two specific modeling efforts conducted with this framework, to illustrate how 
nonconventional modeling problems—specifically counterterrorism and military recruiting—can be 
addressed within such frameworks. HASMAT is intended to be representative of efforts under way to 
develop frameworks in this area. We close with a description of generic DIME/PMESII analysis 
capabilities that also need to be part of such frameworks. 

Human and System Modeling and Analysis Toolkit 

The Human and System Modeling and Analysis Toolkit is designed to support predictive analysis 
of behavioral and organizational dynamics by integrating existing and mature technologies. The 
HASMAT functional system architecture is shown in Figure 8-6.  HASMAT is used by a modeler to 
create a model representing human behavior at multiple levels, from societal behavior down to individual 
cognitive decision-making behavior.  To create these models, the modeler can use a variety of modeling 
methods (e.g., social network modeling, Bayesian belief networks, rule-based systems, fuzzy logic, case-
based reasoning).  The modeler can also use a number of different methods for model integration, 
defining ontologies, data schemas, and mappings between individual modeling components or between a 
model and an external environment (e.g., a decision aid, a simulation, a real-world data source).  A 
modeler also has access to tools for model management, including version control methods for existing or 
newly created models, and libraries of models and model templates that can be adapted to a particular 
domain or situation.  All of these capabilities are accessed via the modeler interfaces, which provide 
graphical user interfaces to specific toolkit features.  All of these components are integrated into a 
software system architecture designed to support reconfigurability, integration, and incorporation of new 
capabilities. 

Figure 8-7 provides an overview design vision for the PMESII model analysis tools designed in 
the HASMAT environment. In the upper left of the graphic is shown a simple selection tool for the 
analyst to select from among the range of available models defining the PMESII environment for 
execution and analysis. The selection of a specific model results in the input fields for that model being 
captured from the selected model (via its XML schema-based I-O specification) and populating the 
tabular input sets shown on the left. On the right side of the figure is displayed the outputs of the model’s 
execution, in this case, showing the national and regional SRO model outputs. This could be generalized 
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as other potential representative structures, including a map-based overview of the model-generated 
results. As the user selects specific outputs in the callout datasets, the overview map shows the 
comparison of that value set across the modeled regions through fill color. As the user drags the timeline 
back and forth, the output data sets will display the values as described for that point in time.  Finally, in 
the lower right, the analyst is also provided with graphical displays of selected model outputs in time-
series data plots, a feature that allows for easier access to trend data throughout a model run for more 
detailed analysis. As the user manipulates the timeline, these data plots shift a marker to identify the value 
at the selected time. 

Modeling Terrorist Network Evolution 

Figure 8-8 illustrates the software integration strategy that was used to generate a HASMAT-
based modeling framework of terrorist organization activity (Harper et al., 2007). The model constructed 
within the integrated HASMAT framework consists of a social network representation of an organization 
or loosely connected set of groups or individuals of interest to the counterterrorism analyst. Each node 
within the social network can represent an individual (e.g., a key leader in the community of interest that 
has been the target of specific intelligence-gathering activities), a group (e.g., a set of individuals 
representing a cohesive entity in the community of interest), or an event. The links within the social 
network represent relationships between nodes in the modeled community, in which these relationships 
are defined at the outset by known intelligence (e.g., individual X is a known leader of group Y). This 
social network representation enables the analyst to build up the network over time based on intelligence 
products. 

In typical social network analysis applications, this static representation would be used and 
analyzed to infer structural elements or features of the organization that, for example, might be exploited 
by counterterrorism specialists to capture further intelligence or to infiltrate a known group of interest. In 
HASMAT, however, this social network topology provides only the first step of the modeling capability. 
In HASMAT, each node of the social network is then populated by a “behavioral agent” representing the 
dynamic behavior of the modeled individual or group. These agents can be configured by the analyst 
based on gathered intelligence information. Thus, these agents are not static representations of individual 
or group “profiles,” although they do contain representations of such information. Instead, they provide 
dynamic simulations of behavioral responses of the modeled individuals or groups within the social 
network to events and actions that are “injected” into these models based on evolving simulations of the 
social network dynamics. For example, an agent representing a given individual can “react” to incoming 
information (e.g., the invasion of Iraq by U.S. forces, the introduction of a new leader into a group of 
interest) and generate new events that propagate out to the social network (e.g., the establishment of new 
or strengthening/weakening of existing relationships within the network). The result is an emergent, 
evolving representation of the organizational dynamics of the modeled community, driven by modeled 
reactive behaviors of individuals and groups.  

Finally, at the bottom of Figure 8-8, we show the supporting modeling technologies that are 
assembled by the model developer (the analyst, a third-party social scientist, etc.) to provide the detailed 
representations of modeled individual and group behaviors. These detailed components capture and 
generate the simulated responses of a modeled individual or group based on injected or simulated stimuli. 
These simulated responses are then pushed back up to the social network representation as “change 
events” within the social network itself. Such change events include the generation of new links (i.e., 
relationships), the deletion of existing links, the adjustment of profile characteristics of the modeled node 
(e.g., an increase or decrease in an individual’s radicalism), and the adjustment of a link attribute (e.g., 
strength or nature of a relationship). 

This modeling framework was then used to model the well-documented terrorist activity leading 
up to the 2004 Madrid train bombings (Harper et al., 2007; Sageman, 2004, 2006), including 
organizational relationships among individuals associated with the attacks and their evolution over time 
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(Telvick, 2007). Many interesting dynamics were seen in the data and modeled in the HASMAT 
environment. One goal of the effort was to model the outcomes that a group can take—it can talk or boast 
about operations, or it can actually take action.  There are many factors that contribute to the final shift to 
action, including how much they have boasted of action so far, the easy access to weapons, the required 
skills, an external missive or deadline, and past criminal history—a predisposition to act.  This and 
several other model outcomes were compared with the available data to assess model fidelity to the real 
world, to support rapid spirals of hypothesizing, developing, and validating, in an effort to understand the 
underlying dynamics of the terrorist network’s behavior in terms of fundamental behavioral “primitives” 
(Harper et al. 2007). Without the rapid development environment afforded by HASMAT (and similar 
IDEs now beginning to be used in the community), these rapid spirals and exploration of possibilities 
would not be possible. 

Modeling Iraqi Recruiting Activity 

A similar software integration strategy was applied to generate a HASMAT-based modeling 
framework of Iraqi recruiting and training activity (Bachman and Harper, 2007). The SRO model 
(Robbins et al., 2005) was constructed within the integrated HASMAT framework, consisting of a 
systems dynamics model representation of key PMESII components of Iraq, including demographics, 
coalition and insurgent activities, critical infrastructure, etc. This allowed for full communication between 
two heterogeneous modeling environments and the development of specialized models that were best 
served by the systems dynamics paradigm  (e.g., SRO model), or by a suite of computational intelligence 
components (e.g., agents that incorporate fuzzy logic, belief networks, expert systems).  

A major objective of the development effort, besides developing a framework for integrating 
heterogeneous modeling paradigms, was to provide the analyst with an aggregated, accessible view of 
model results that could be used to support decision making by a commander or other decision maker. 
Such a tool would allow the commander’s staff to easily generate model inputs (representing DIME 
actions that could be taken), and monitor model responses over time in a presentation framework that 
would be more intuitive than the PMESII IDE itself. For example, in the context of the recruiting and 
training SRO model, the analyst might specify a specific allocation of troops to support recruiting and 
training of specific capabilities in a given region of Iraq. The models would then be executed against this 
input set, and the analyst could monitor the overall effects on high-level PMESII variables 
(unemployment, economic stability, crime rates, etc.) in an intuitive graphical interface. This would 
insulate the analyst from the detailed outputs and implementation details that would be of interest to the 
model developer, while providing the analyst with intuitive and targeted real-time decision support 
leveraging the models constructed using the HASMAT framework. 

Advanced Analysis Capabilities  

Making predictions using DIME/PMESII models requires two types of what-if analysis, depicted 
in Figure 8-5 earlier in this chapter. The first type, causal reasoning, enables analysis from causes to 
effects. This allows the user to consider the effects of potential DIME actions on the PMESII models 
under consideration. The second type, diagnostic reasoning, enables reasoning from effects to causes. 
This allows the user to specify the desired (or actual) PMESII effects and determine the DIME actions 
that are most likely to achieve this result while minimizing undesirable second- or third-order effects. 
Supporting these two types of reasoning using PMESII models requires specific statistical sampling and 
analysis techniques. 

Causal Reasoning 

In this type of analysis, the user specifies a set of DIME actions and the analysis indicates how 
these actions would influence the given PMESII models. Due to the nonlinearity of the systems being 
modeled and the incompleteness of information about system state, it is unreasonable to expect that 
PMESII models will provide high-fidelity predictive capabilities. Instead, the predictive value of the 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 

8-14 

models lies in their ability to generate the distribution of plausible outcomes across multiple courses of 
action. One approach to this is to use Monte Carlo sampling, which refers to a family of algorithms that 
approximate a function f by calculating f(x), for a randomly chosen x, over many iterations. Sampling is a 
useful approximation technique in cases in which the function to be computed is difficult or impossible to 
calculate exactly. For complex nonlinear models such as PMESII models, randomized sampling provides 
an effective approach to approximating model outputs because it is independent of the underlying 
formalisms being used by the model. 

Sampling can be used to analyze any model that incorporates both (1) a representation of the 
cause-effect relationships between model elements and (2) a specification of the relative likelihoods of 
inputs or initial states of model elements for which such conditions are not explicitly specified by the user. 
The first condition requires only that the model being sampled have some predictive capability. For 
example, hidden Markov models, belief networks, neural networks, and rule bases all meet this criteria; a 
purely analytical tool such as a topic tree or a concept map does not. The second condition requires that 
the model specify a distribution of initial conditions for model elements, including the likelihood that 
various actions (either blue or red) will be observed. This allows the sampling algorithm to select random 
inputs according to a plausible distribution. 

Given that the DIME/PMESII models in the system meet these two criteria, a user would perform 
a causal analysis using the analysis sampling tool in the following manner: 

1. Specify conditions. The user first specifies the set of assumptions to be evaluated by the 
analysis; this includes not only the DIME actions of interest but also assumptions about 
the state of hidden variables in the models. The user also specifies the number of 
iterations to be performed by the sampling algorithm. 

2. Select data collection parameters. The user then selects the elements in the models for 
which state data will be collected. 

3. Begin the simulation. The IDE samples the PMESII models repeatedly. At each iteration, 
the state of variables not explicitly set in step 1 are randomized to a permissible state 
given information about the relative likelihood of the initial states of the variable. The 
effects of the model inputs are propagated through the model, and the framework collects 
system state data for the variables selected by the user in step 2.  

4. View collected data. The user then views the data collected in step 3, viewing the relative 
frequencies of various outcomes. 

The envisioned IDE would allow the model analyst to specify initial conditions for input 
variables and view the resulting simulation data in a graphical format for analysis. By performing this 
type of simulation-based analysis for multiple DIME actions, the user would be able to determine which 
actions result in a greater likelihood of achieving the desired effects as well as which actions result in a 
greater likelihood of causing undesired effects.  

Means-Ends and Sensitivity Analysis 

The second type of reasoning of interest to a DIME/PMESII modeler is means-ends analysis: for 
a given effect or system state, what are the actions that can be taken to achieve the desired state? This 
type of analysis is very difficult to do using heterogeneous models and is an area in need of further work. 
Outlined here are some potential approaches to supporting this type of analysis. 

One approach would be to perform a forward-chaining analysis for each set of actions under 
consideration; the set of actions most likely to achieve the desired result could be selected empirically 
based on the results of each analysis. Such an approach is clumsy and inefficient, however, since the 
forward-chaining reasoning process is itself computationally expensive. Also, performing a brute force 
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means-ends analysis in this fashion, with the large number of action sets that are likely to be possible, 
would quickly become prohibitively complex and computationally expensive. 

One solution is to reduce the search space of possible actions or input states using a technique 
known as sensitivity analysis. Sensitivity analysis computes, typically using black box sampling 
techniques, how variability in the output of a model depends on variation in its inputs. Because it uses 
sampling, sensitivity analysis can also be applied to any type of model formalism: only the inputs and 
outputs are observed. In the case of reasoning using DIME/PMESII models, we can use sensitivity 
analysis to determine which actions or input variables are most relevant in determining the outcome or 
effect in which we are interested. Once we have identified a subset of relevant actions, we can then 
perform brute force means-ends analysis in the manner described above to determine the optimal 
combination of those actions. 

To illustrate this process further, consider the following example. Suppose a group of modelers 
have developed a network of DIME/PMESII models specifying the interrelationships between the 
economic and political elements of a particular country. A user of the envisioned framework wishes to 
use the aggregated model to gain insight into the types of actions that can be taken to boost public 
confidence in the existing government. Because of the complexity of the model and the number of 
possible inputs and actions, the user performs a sensitivity analysis and determines that the factors most 
critical in determining public confidence are the supply of electricity, the visibility of police in the 
community, and the price of gasoline. Having identified this subset of factors, the user performs a brute-
force means-ends analysis and determines that public confidence can be maximized by increasing 
electricity supply by 20 percent, maintaining the current high level of police forces, and reducing taxes on 
gasoline by 3 percent. 

Because sensitivity analysis determines the variability of model output according to its inputs, it 
can provide results of interest other than just the relevance of an input. For example, the rate of change of 
model output as a result of input may be of even greater significance for a model user in selecting an 
optimal course of action. For example, if the model indicates a strong nonlinearity or “tipping point” in 
the output variable under consideration, this would indicate the importance of gathering additional 
information to determine how close to this tipping point the system being modeled actually is. Or the 
model may indicate that the results of an action on an output variable may be highly variable, with a large 
standard deviation; this would indicate a higher risk associated with the action, especially in cases in 
which the impact of the actions being taken are difficult to control. 

In summary, a variety of frameworks and toolkits are in development, although the choices for 
IOS models are much more limited than for cognitive models of individuals, for which there are a number 
of well-known, tested, alternative architectures in widespread use. It is a recommendation of the report 
(see Chapter 11) that diverse frameworks for IOS models be supported and further developed—it is too 
early to tell which approaches will be most useful for different purposes. 

VERIFICATION, VALIDATION, AND ACCREDITATION 

In this section we describe some of the significant issues involved in the verification, validation, 
and accreditation of IOS models:  the ways in which they differ from physics-based models, the special 
challenges of forecasting human behavior, given the huge number of variables that can combine to 
determine it, and other thorny issues.  We introduce the term “action model” and argue that military 
requirements for IOS models often require models for action as well as for understanding and exploration, 
and that the validation of such models cannot be done without a clear specification of the purpose for 
which the model is being developed. We also discuss the ways in which the military approaches VVandA 
and provide some examples of VVandA issues specific to various model types discussed in previous 
chapters.  Finally, we make recommendations for dealing with IOS VVandA challenges.   
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General Issues:  Validation for Use  

“All models are wrong, but some are useful.”  G.E.P Box (1979) 

Verification and validation are challenging issues for social science modeling and simulation.  As 
generally understood, verification is the “process of determining that a model implementation accurately 
represents the developer’s conceptual description and specifications.”  Validation is the “process of 
determining the degree to which a model is an accurate representation of the real world from the 
perspective of the intended uses of the model” (ITT Research Institute, 2001, p. 10).  Stated more 
intuitively (ITT Research Institute, 2001, p. 10), verification asks “Did I build it right?”  Validation asks 
“Did I build the right thing?”   

In building it right, there are two elements: the degree of real-world representation and the 
intended uses of the model.  They are related but are not the same thing.  A realistic representation may 
not meet the intended use.  It is a frequent error to put primary emphasis on a realistic representation, 
assuming it will meet the purpose.  The result is an unending quest for realism without considering the 
intended use or purpose of the model.  When one begins with the intended use or purpose, then the degree 
of real-world representation follows.  Depending on the type of understanding that is needed or the action 
that might be taken, we can determine the degree of realism required.  Here we develop an action 
approach to validation that begins with the model purpose—to take action.   

Verification and validation are necessary to support the goal of building and applying purposeful 
models and model simulations for understanding and exploration as well as for real-world actions.  
Research program managers frequently see VandV as a drain on resources.  In contrast, practitioners or 
model users typically view the VandV process as a worthy investment of time and effort, since it can 
prevent the costly consequences of using incorrect models and simulations.  If the intended use is not 
fully considered, then the model is not as useful as it might be.  When the intended purpose is to take 
action—to do something—not just to understand or describe the world, the degree of realism needed is 
determined by the actions that can be taken in the situation.   

This section stresses validation issues. Validation can be approached in two different ways within 
the larger VandV process.  The first way is to begin with verification, proceed to validation, and then to 
the intended purpose.  This ordering of concerns may result in a model that is verified and validated yet 
fails to be useful for its intended purpose.  The second and recommended way is to begin with the 
intended purpose, proceed with verification, and then to validation in relation to intended purpose (Burton 
and Obel, 1995; U.S. Department of Defense, 1995).   

First and foremost, without a prior specification of intended purpose, there are no clear-cut a 
priori criteria for deciding which features of a phenomenon to stress in its modeled representation.  Indeed, 
multiple models that represent different aspects of a given phenomenon might be desirable and even 
necessary to achieve different purposes.  For example, given a potentially unstable situation, a model 
constructed to describe the situation will in general differ substantially from a model constructed to guide 
the selection of an intervention action to stabilize the situation.  That is, a model for understanding may 
not be a good model for action. 

Moreover, each model purpose entails its own unique model validation requirements.  In 
particular, the model purpose determines the appropriate trade-off between predictive accuracy, the 
appropriate formulation of dynamic processes, and the appropriate treatment of idiosyncratic and 
stochastic elements of real-world processes. 

For example, models are frequently criticized for lack of realism, that is, not describing the world 
as it is observed or leaving out some aspect—but realism to what purpose?  The continued addition of 
realistic features makes the implications of a model more difficult to understand, requiring increasingly 
sophisticated statistical and analytical techniques.  Eventually, the continued addition of realism will 
result in a model’s exhibiting such complexity that it has all of the interpretation problems of the real 
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world itself, problems that presumably motivated the modeling effort in the first place.  Extreme realism 
might also require an impractical amount of data to build the model or to specify parameter values and 
run the model.  Consequently, if a simple model serves the intended purpose, then it should be preferred.  
Action models require some degree of realism for action, but realism is not a good test for action models.  
For action models, the purpose is to support decisions to take action—particularly when there is 
considerable uncertainty about the world. 

As stressed by Marks (2006), the assertion that a model is validated when it is determined to be 
useful for its intended purpose is vacuous until “purpose” is defined.  The purpose of a model could be to 
explain an observed phenomenon, to forecast a range of future phenomena that might occur without an 
intervention, or to guide the taking of actions in some specific problem context. For example, purposes 
might include behavioral description, behavioral explanation, behavioral prediction, exploration, 
normative advice and implications, training, and decision making (Burton and Obel, 1995).  A different 
model would typically be required to meet each of these different purposes.  

The first type of model purpose—explanation—requires what might be termed an understanding 
approach to validation.  The latter type of model purpose—guidance for action—requires what might be 
termed an action approach to validation.  Both purposes typically involve forecasting. The next section 
briefly reviews the understanding and exploration approach, commonly adopted in academic research.  
Following that, the next section elaborates the action approach, in which the purpose is to take action or 
intervene.   

Validation for Understanding and Exploration 

Consider first the case in which validation is undertaken for the purpose of explanation or 
understanding of the system that is modeled in order to gain new insights. Intervention is not the purpose 
here.  Ideally, an explanation of a phenomenon would entail a complete understanding of both the 
necessary and sufficient conditions for its occurrence.  In practice, compromise is essential.  Any model 
will fall short of a complete understanding.  There is no limit to further refinement for a more complete 
understanding.     

As stressed by Haefner (2005), one possibility is that a model of a given phenomenon is 
incomplete in the sense that it is not capable of explaining all aspects of the phenomenon deemed to be 
important for an intended purpose.   At the other end of the spectrum, multiple distinct models could offer 
different competing explanations for a given phenomenon, none of which could reliably be eliminated on 
the basis of currently available empirical evidence (observational equivalence).    

An intermediate possibility stressed by Epstein (2006) is that a model has been constructed that is 
capable of reliably generating a particular phenomenon of interest (generative sufficiency).  Such a model 
offers one candidate explanation for the phenomenon.  Intensive experimentation could then be used to 
judge the robustness of the generative explanation to perturbations in the model specifications (Judd, 
2006).  If this process could somehow identify the entire class of models capable of generating the 
phenomenon, then the ideal but elusive goal of necessary and sufficient explanation would be achieved. 

Consider next the case in which the purpose of validation is forecasting to identify a range of 
possible outcomes and estimate the likelihood of each.  As Marks (2006) notes, this is a simpler purpose 
than explanation, in that only sufficient conditions for the occurrence of a phenomenon are sought.  That 
is, one wants a model capable of generating reliable forecasts of outcomes (or outcome distributions) 
under various possible circumstances in some specified problem domain of interest.  Whether this model 
is capable of elucidating all possible circumstances under which these outcomes would occur is not an 
issue of concern.    

However, what is of concern for forecasting is whether a model is inaccurate.  Does the model 
predict outcomes with misleading likelihoods?  In particular, does the model predict outcomes that could 
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never actually be observed?  Prediction is a very important element of the action approach, as we explain 
below.   

An important use of models is for exploration and the generation of nonobvious insights into 
complex phenomena that could not have been obtained without the model. A classic example is 
Schelling’s (1971) tipping point model, which showed that neighborhood segregation could occur even if 
most people are racially tolerant.   In these cases, the focus is not so much on the “accuracy” of the model, 
but on “unexpected” results. However, these models are also driven by their purpose—to provide new and 
important insights, where “new” and “important” are in the eye of the beholder—and their validity cannot 
be assessed without a deep understanding of that purpose. 

Validation for Action 

There are many aspects of an action model.  An action model needs to relate actions of interest to 
outcomes of interest.  The model does not necessarily need to reveal deep understanding.  However, an 
action model must be timely and accurate relative to its purpose. For example a model that predicts a 
hurricane’s landfall is useful only if it provides predictions that are timely enough to allow for evacuation 
in advance of landfall and accurate enough to be taken seriously by those who need to evacuate.  An 
action model is context specific in terms of available resources that help define what is feasible at this 
time and this place.  In the illustration to follow, these issues are fundamental.   

Validation for action begins with the purpose of the model.  Prediction without and with 
intervention is an important element of an action model.  Consider, now, an action model whose intended 
use is to provide guidance for the taking of actions in an uncertain environment.  The validation process 
for an action model is necessarily different, but it does incorporate aspects from the validation processes 
described in the previous section for explanatory and exploratory models.  In particular, prediction is 
important to action. 

Specifically, the validation process for an action model must include a careful consideration of 
the modeled action choices, including no intervention.  For example, have these action choices been 
specified in a suitably realistic or feasible way?  And have enough action choices been included in the 
action domains of decision makers to permit them to display a realistic degree of flexibility in the face of 
changing and possibly unanticipated conditions?   Appropriate modeling of action choices will not 
eliminate the uncertainty inherent in a situation,  but it should help to clarify the possible action 
alternatives and hence provide useful guidance regarding the best action to take.  

We start by considering the validation of a simple forecasting model with no action domain. This 
model is then generalized to an action model, and the implications for validation are considered.   

A Simple Forecasting Model with No Action Domain 

The simplest situation is one of pure prediction in which there is no action to be taken.  As an 
illustration, consider a corn farmer who lives in an area where it might rain or not and who wishes to 
predict the weather.  This weather prediction problem for this corn farmer prediction model can be parsed 
into a number of distinct modeling issues.   

First, what exact form could a weather prediction take?  For example, the farmer could focus 
solely on rain, or he could also take sunlight into account.  If the focus is solely on rain, the farmer could 
consider a simple probability distribution consisting of probability assessments for rain or no rain, or he 
could consider a more sophisticated probability distribution consisting of probabilities spanning the range 
of possibilities from no rain to a great deal of rain.  The farmer might also choose to collapse this 
probability distribution into a simple prediction (forecast) concerning whether it will rain or not.   

Alternatively, it could be that the farmer ultimately cares only about his corn yield, and he cares 
about the weather only to the extent that that he believes the weather affects his corn yield.  The farmer 
might express this belief by postulating an if-then relationship between weather and corn yield of the form 
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“if A, then B.”  The contingency condition A might be either “rain” or “no rain” and the result B might 
then be a specific conditional probability distribution Prob(b|A) for the corn yield b conditional on the 
realization of A.  For example, it could be that the contingency condition “rain” is postulated to result in a 
two-thirds chance of a high yield and a one-third chance of a low yield, whereas the contingency 
condition “no rain” is postulated to result in a 50-50 chance of a high or low yield.   

If-then relationships permit the formation of compound predictions.  For example, continuing 
with the above illustration, constructing a corn yield prediction requires the farmer to assess and 
compound the uncertainty arising from two distinct types of events:  the weather A, and the corn yield b 
conditional on the weather A.  By the Bayes rule, the joint probability Prob(A∩b) that a specific weather 
event A and a corn yield b both occur is given by Prob(A)Prob(b|A).  Each probability assessment—
Prob(A) and Prob(b|A)—requires its own form of validation.   

Second, what exact form should a weather prediction take, given the purpose that drives the corn 
prediction model?  If the farmer wants only a rain forecast, then a simple assessment of the probability of 
rain versus no rain might suffice.  If the farmer wants a more sophisticated understanding of the weather, 
he might assess a finer range of probabilities spanning a range of rainfall amounts.  If he is interested in 
constructing a compound prediction of corn yield, then the fineness of his weather probability 
assessments will presumably depend on the postulated impact of different weather events A on corn yield 
b; there is no need to separately assess the probability of no rain and very light rain if both events are 
postulated to have the same effect on yield.  Moreover, in addition to forming probability assessments 
Prob(A) for weather events A, he will need to assess the conditional probability Prob(b|A) of each 
possible corn yield b conditional on each possible weather event A.    

Third, if an outcome is inherently uncertain, then point predictions regarding this outcome cannot 
be made with certainty.  In the simple prediction model at hand, there is no way to eliminate the inherent 
uncertainty about the weather, nor should there be.  A model cannot eliminate the inherent unknown of 
whether it will rain or not.  A model describes what a modeler thinks he knows, but it also highlights what 
he does not know.  A farmer might be able to say with confidence that the probability of rain is 0.3.  Or, 
more generally, he might be able to provide a complete description of all possible rain events A in terms 
of probability assessments P(A) or by means of a nested sequence of confidence intervals.  But he cannot 
say for sure whether it will rain or not.   

To be valid for situations with inherent uncertainties, a model should reflect honestly what is 
knowable and capture well what is known.  It is misleading at best, and quite possibly damaging, to use 
point estimates as if it is known with certainty what will happen.  It is inappropriate to build more into a 
model than is knowable for the situation.   

The corn farmer prediction model at hand is a pure prediction model; the farmer is not faced with 
the need to choose an action.  The following section considers the implications for validation when this 
simple model is generalized to include action choices for the farmer. 

A Simple Illustrative Action Model 

Consider, now, a corn farmer action model that represents a simple extension of the previous corn 
farmer prediction model.  The corn farmer now has the option of adding fertilizer to his field or not.  
Consequently, the farmer's action domain consists of two possible action choices: add fertilizer to the 
field or do not add fertilizer to the field. (This action validation model is based on a decision theory model, 
similar to those discussed in Chapter 5.) 

Some structural aspects of the farmer's problem are assumed to remain the same: the probability 
that it will rain or not (which assumes the weather is independent of the farmer's action choice) and the 
possible corn yields realized under rain or no rain in the absence of fertilization.  However, the impacts of 
fertilization on corn yield, for example, bushels per acre, when it rains and when it does not rain must 
now also be considered.  Specifically, as depicted in Table 8-4, the farmer needs to specify what the corn 
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yield would be under rain and no rain should he choose to add fertilizer to his field or not.   This results in 
four distinct “compound” contingency conditions (combined weather and action states) that could impact 
corn yield. 

As Table 8-4 shows, the corn farmer action model has the same general framing as the corn 
farmer prediction model, except that the if-then relationships must now be generalized to indicate what 
will happen for various actions or interventions inserted into the natural order of things. 

An important point to stress is that the validation of an action model does not necessarily require 
the model to generate highly accurate predictions.  For example, for the problem at hand, the corn farmer 
might be able to deduce that the addition of fertilizer to his field will profitably increase his corn yield 
whether or not it rains, because of a government support program that reimburses farmers for all of their 
fertilizer costs—that is, fertilizer is free.  In this case the farmer's best (most profitable) action choice is 
clear; he should choose to fertilize his field.  He does not need to predict with high accuracy the 
probability of rain, the probable effects of rain on his resulting corn yield, or the price of corn in order to 
take the best action.  

In short, the validation process for action models is sharply distinct from the validation processes 
for explanatory, purely predictive, and exploratory models.  The primary focus is on taking the best action 
rather than on the realism of the model or the ability of the model to generate accurate predictions. On one 
hand, a purely predictive model might not say much about which action to take—a rain forecast by itself 
does not tell us whether to fertilize or not.  On the other hand, good understanding and predictive power 
could be essential requirements for achieving a useful action model.  A good understanding of weather 
and how weather affects crop yield under different fertilization conditions could be essential for deciding 
whether to fertilize or not. 

We now illustrate a more involved situation, in which the validity of an action model depends 
critically on the model's descriptive and predictive accuracy.   

A More Complicated Action Model 

Consider a more complicated action model involving the following hypothetical decision:  Should 
a military force enter a potentially hostile village in order to establish a relationship with the local militia 
leaders, and if so, which entry mode should be chosen?  The outcome resulting from each possible choice 
of a village entry mode depends on the degree of hostility of the mayor and the presence (or not) of a 
local resistance group.  The purpose or goal is simply to occupy important terrain and minimize 
casualties—those of both the military force and the villagers.  

This village deployment action model could be entirely framed in terms of if-then relationships 
connecting compound contingency conditions to ultimate outcomes, in which each compound 
contingency condition involves a village entry choice together with a mayor hostility level and the 
presence or absence of a local resistance group.  To focus attention on action choice, however, it is useful 
to separate out the entry choice from the latter two nonaction contingency condition aspects.  In particular, 
it is useful to think of these nonaction contingency condition aspects as constituting a scenario 
conditioning the choice of an action.  The contingency table for this model is depicted in Table 8-5. Note 
that only three of the four possible scenarios are depicted for ease of exposition. 

Validation of this village deployment action model involves three critical considerations. First, 
how appropriate is the action domain listed down the left-hand side in the table for the problem at hand?  
The action domain is the set of possible actions that can reasonably be taken in this situation.  There are 
two possible kinds of errors here.  The action domain might be poorly specified.  For example, are the 
village entry choices in the table truly relevant and feasible given the available resources, the situation 
constraints, and the time available to take action?  Alternatively, the action domain might be incompletely 
specified.  For example, the village entry choices in the table are classified only by degree of armament, 
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ignoring possibly critical timing issues (e.g., enter at dawn versus enter at night).  In addition, other ways 
to enter the village (e.g., with an initial leaflet drop or bombardment) might be feasible. 

Second, are the scenarios listed along the top in Table 8-5 appropriately specified for the situation 
at hand?  The scenarios are the set of possible conditions that might arise that we do not control or 
determine.  In particular, are the contingency condition aspects that form the basis for these scenarios both 
reasonably accurate and reasonably complete?  For example, it might be the case that the initial attitude of 
the mayor and the existence (or not) of a resistance cell are not the only important aspects to consider for 
the characterization of the initial conditions. Another attribute of equal or greater importance might be 
whether the civilians (i.e., the inhabitants of the village) are religious or not.   

Even assuming the initial attitude of  the mayor and the existence (or not) of the resistance cell 
are correctly identified as the two most important aspects to consider in conjunction with village entry 
mode, only three of the four possible combinations of these two aspects are analyzed for the village in the 
table.  A fourth possible combination—a nonhostile mayor together with the existence of a resistance 
cell—is not considered.  By excluding this fourth combination, the modeler is effectively concluding 
either that it is impossible or that it is so improbable that it is not worthwhile to consider.  

Third, are the if-then relationships mapping the contingency conditions (scenario-action pairs) 
into possible outcomes appropriately specified and explained?  The cells in Table 8-4 and Table 8-5 
contain the outcomes for the scenario-action pairs.  In the corn farmer action model, it is assumed that 
fertilizer (or not) and rain (or not) are the only two unknown conditions of importance and that corn yield 
is the only important outcome variable.  For the village deployment action model, however, the if-then 
relationships mapping the contingency conditions into possible outcomes are inherently much more 
complicated.   

Specifically, as seen in Table 8-5, the village deployment action model is assumed to have three 
important aspects making up each contingency condition: the village entry mode, the village mayor’s 
initial hostility level, and the existence (or not) of a local resistance cell.  Given any particular 
combination of the latter two aspects, the military chooses a village entry mode.  Given any particular 
combination of these three aspects, there is then a response by the mayor and a response by the resistance 
cell (if present).  The overall combination of all of these events then determines an ultimate effect on 
civilians and the mission of entering the village.  Also, the if-then relationships connecting contingency 
conditions to possible outcomes in Table 8-5 might not be appropriately specified.  For example, it is 
assumed that a definite outcome results under each possible contingency condition when, in fact, a great 
deal of residual outcome uncertainty might remain (e.g., the level of civilian losses might still be 
uncertain).  Moreover, these outcomes might be incompletely specified (e.g., the casualty rate among 
soldiers is currently ignored in some cells. 

A Template for Validating Action Models  

As developed above, the validation of an action model should begin with the purpose of action—
not the model itself.  One cannot assess the validity of an action model without first knowing its purpose.  
Next, the validation of an action model will typically be demanding, involving specification of an action 
domain, scenarios, and if-then relationships.  The best approach to follow for carrying out this validation 
will depend on the purpose of the model.    

In brief, validation should establish the purpose of the model, list the possible actions or 
interventions for the purpose, specify the scenarios that depict the uncertainties or unknowns that are 
inherent and cannot be eliminated, and develop the if-then relations between the possible actions and the 
possible uncertainties—that is, predict the outcomes, which might be multidimensional and uncertain as 
well. 

The validation of an action model is a challenge that does not lend itself to a well-specified set of 
detailed procedures; the action model gives a template for which the details must be filled in.   
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Nevertheless, the examples presented in the previous sections suggest a reasonable order of concerns, 
which is summarized below.   

Before an action model can be validated, the purpose must be specified.  One cannot proceed with 
the validation without this specification. In the corn farmer example, the purpose of the farmer is to make 
a high profit.  In the military force example, the purpose of the military force is to occupy the village with 
a minimum of casualties. 

First, is the action domain appropriately specified for the situation with regard to an operational 
specification of each action and the completeness of the possible actions?  For the farmer example, is to 
fertilize or not an appropriately complete specification of the farmer’s possible actions?  For the military 
force example, are the four ways to enter the village an appropriately complete specification of the force's 
possible actions?   

Second, are the considered scenarios appropriately specified?  Are rain and no rain the 
appropriate scenarios for the farmer?  Are the mayor’s and resistance cell's actions appropriate?  Does the 
range of considered scenarios cover the range of situations in which actions might actually have to be 
taken?   

Third, is each if-then relationship connecting a contingency condition to a possible range of 
outcomes specified with an appropriate level of realism and prediction?  For the farmer, the corn yield is 
important, as is the price.  For the military force, the mayor’s reaction and then the resulting effect on the 
occupation and casualties are important.     

The specifications of these three key model features (action domain, scenarios, and if-then 
relationships) are interdependent, and all three aspects need to be carefully considered for the overall 
validation of the model.  Each presents a different problem for the modeler. The specification of an 
appropriate action domain requires a deep understanding of what actions are feasible and reasonable for a 
situation.  The specification of appropriate scenarios requires a deep understanding of what is likely to be 
known and not known (and what is knowable) about a situation at hand.  The specification of appropriate 
if-then relationships requires a deep understanding of the causal structure connecting contingent 
conditions (scenario-action pairs) to potential outcomes. 

The specification and validation of if-then relationships is particularly difficult for systems 
involving multiple interacting human beings with capabilities for learning and social communication.  
The largest source of uncertainty in social systems is behavioral uncertainty, that is, uncertainty regarding 
what other people will do.  It is for this reason that the “then” parts of the if-then relationships postulated 
for social systems will generally have to be in the form of multidimensional subjective probability 
assessments giving likelihoods for a range of possible outcomes.  These probability assessments will 
inherently be subjective judgments based on an understanding of individual and group behavior gleaned 
from observations, surveys, human subject experiments, and biological and physical considerations.     

There are a number of common errors that are to be avoided.  It is a frequent error to develop a 
simple predictive model that assumes no action or intervention and that does not explicitly specify the 
scenarios.  The possible mistakes are: first, the model might be used for action or intervention without 
consideration of the critical outcomes; second, the model does not specify the scenarios, and it is easy to 
assume inappropriately that the model applies to all scenarios.  Without a specification of the actions and 
the scenarios, a model is quite limited.   

The uncertainty inherent in most action models involving individuals and organizations makes 
validation difficult.  Inability to conduct repeated experiments is a key issue. We can observe rainfall and 
corn yield over many years. Consequently, statistical averages might be both available and useful for a 
corn farmer contemplating these types of events.  However, the general lack of repeated experience for 
those contemplating the entry of a village might make it impossible to use simple descriptive statistics 
based on averaging.  At best, there will be a range of possible outcomes with subjective estimates about 
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what will occur. Because the largest source of uncertainty in social systems is behavioral uncertainty, the 
if-then relationships postulated for social systems will typically have to be stochastic, giving a range of 
possible outcomes for each contingency condition together with a probability assessment for each 
outcome.8   

Military Approaches to Verification, Validation, and Accreditation 

The Defense Modeling and Simulation Office (DMSO) has devoted considerable effort to the 
development of definitions, processes, and tools for verification and validation of models and simulations; 
formal definitions of terms and concepts are given in DoD Directive 5000.59-M, Glossary of Modeling 
and Simulation Terms.  Additional information and a larger glossary can be found at the website devoted 
to VandV and accreditation, the DoD VVandA Recommended Practices Guide (http://vva.dmso.mil/). 

A simplified sketch of how VVandA is interrelated to the overall process of MandS development 
is given in Figure 8-9.9 Ideally, the MandS process begins with the development of a conceptual model, 
proceeds to the design and implementation of a simulation of that model, and ends with testing and 
evaluation, allowing for “spirals” of iterative design-development-testing over time. In parallel, the 
VVandA process begins with validation of the conceptual design, verification that the design and its 
implementation properly instantiate the conceptual model, and validation of the test results. In effect, the 
validation tasks focus on ensuring that the model adequately represents that portion of the real world 
being modeled, and the verification tasks focus on ensuring that the simulation adequately implements the 
model. Accreditation is shown as the last step in the process, the point at which the accrediting agency 
(the owner of the simulation) places its stamp of approval on the validation results.  

The traditional focus for DMSO MandS development has been the physical battlespace 
environment (terrain, ocean, atmosphere, etc.), with an emphasis on conventional warfare.  Simulation 
and VVandA of the entities that populate the environment has typically been left to the separate services 
or “accrediting” agencies: the Air Force has been responsible for development and VVandA of F-16E 
aircraft, the Army for Bradley Fighting Vehicles, etc. 

It is also fair to note that the great preponderance of MandS entity development has been devoted 
to “platform” entities, not the human decision makers who “drive” those entities, either at a one-on-one 
level (e.g., the pilot of an F-16E) or at a higher command and control level (e.g., the Joint Force Air 
Component Commander, JFACC). As a result, corresponding VVandA efforts have been equally 
unbalanced, with the majority of the effort devoted to the VVandA of systems for which there is a strong 
conceptual model (e.g., a behavioral law for platform kinematics, such as “distance equals speed 
multiplied by time”) and a well-understood protocol for validating that model against the real-world 
behavior of the entity being modeled (e.g., measuring time, speed, and distance of the moving platform in 
the field). VVandA of IOS models is particularly problematic, because of both the lack of clear and 
generally accepted conceptual models and the difficulty of conducting “clean” human-in-the-loop 
experiments, unconfounded by large individual differences across individuals, inadequate experimental 
controls over variables that subtly influence human behaviors, learning and adaptation over repeated 
experimental trials by individual experimental subjects, etc. 

These shortcomings were identified in an earlier NRC study, which noted as its primary 
conclusion that the MandS community should adopt a general framework for developing and accrediting 
models over three time horizons {National Research Council, 1998 #260}: 

                                                 

8For a more detailed discussion of model validation for social systems, see Carley (1996) [ref. needed.], Fagiolo et al. 
(2006), and the extensive resources available at http://www.econ.iastate.edu/tesfatsi/empvalid.htm. 

9The figure shows the process for new MandS development; the process for VVandA of existing MandS systems is 
considerably more complicated (http://vva.dmso.mil/Role/VVAgentLegacy/default.htm). 
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• Short term  

o Collect and disseminate human performance data 

o Support incremental improvement for selected models 

o Create accreditation procedures for human behavior modeling 

• Mid term  

o Extend task analysis efforts—for example, STRICOM’s Common Model of the 
Mission Space (CMMS) 

o Support sustained human behavior modeling development in focused domains (e.g., 
AFRL’s AMBR Air Traffic Control Testbed) 

• Long term  

o Support theory development and basic research 

At the time that the earlier report was written, the focus of most DoD MandS was on conventional 
platform-dominated nonurban warfare. The report was similarly focused.  It is now clear that considerably 
more emphasis has to be given to the development of models that span the space from the individual 
decision maker, to small groups, to urban populations, and even to entire national and transnational 
populations.  As noted in Chapter 5, we need to account not only for “nominal” human behaviors, but also 
for those colored by individual differences (e.g., personality traits) and ethnic/religious/cultural influences. 
And, since no individual operates in a vacuum, we also need to account for the influences of the 
organizational structures and social networks mediating human intercourse. 

This is a tall order for the MandS community, but efforts have started. Since the 1998 NRC study, 
the Air Force has initiated a number of programs: 

• Air Force Research Laboratory/Human Effectiveness Directorate workshops on Adversarial 
Modeling (2002), Cognitive Engineering (2002), Cognitive Modeling, Science, and 
Engineering (2003), and Representing Personality and Culture (2003).  

• The Aeronautical Systems Center Engineering Directorate’s SAMPLE program to develop 
agent-based pilot models to populate the SIMAF engagement simulation. 

• The AFRL/HE Agent-Based Modeling and Behavior Representation (AMBR) Program, 
directed at developing intelligent agents to mimic human behaviors. 

• A nascent effort in modeling human behavior by the Behavioral Research Branch of the 
National Air and Space Information Center. 

The other services have likewise started comparable efforts in this area, most notably the Office 
of Naval Research’s Affordable Human Behavior Modeling Program, having the following major goals 
(see http://www.onr.navy.mil/sci_tech/34/342/training_afford.asp): 

• Reducing the time-consuming knowledge engineering needed to define the fundamental 
behaviors to be modeled for a particular operator in a given military role.  

• Reducing the MandS construction effort (model concept design and simulation development) 
required to develop simulations of the desired human behaviors. 

• Identifying processes to ensure reusability of models and model components. 

• Developing improved VandV techniques for the developed models. 

This is one of the few programs that directly addresses VandV issues. 
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Another major finding of the NRC report on human behavior modeling (National Research 
Council, 1998) was that substantial effort needs to be invested in the development and VVandA of larger 
scale models that go beyond the representation of individual humans, to begin to address collections of 
individuals, from small teams, to groups, crowds, urban populations, and even nation-states. This was 
echoed by the DMSO-sponsored conference on organizational simulation held in 2003 (Rouse and Boff, 
2005), which attempted to address qualitative and quantitative changes in the fundamental MandS issues 
associated in dealing with larger groups of individuals. Although a number of novel and disparate 
approaches were proposed and described, only a very small fraction of the proceedings directly addressed 
critical VVandA issues for this class of behavioral models, such as: 

• What constitutes behavior prediction/forecasting for multiple interacting simulated human 
entities? Should we relax our need for prediction accuracy and instead be satisfied with 
robustness in anticipating the range of future possibilities?  

• How does one go about validating a conceptual model when the model is still being 
formulated? Are there different levels of validation that apply? 

• How does one verify the resulting model simulation, when so many of the interesting 
qualities of behavior reflect idiosyncratic and stochastic activities that change over time due 
to learning by the individual and socialization by the group? 

• Who should be the accrediting agency? 

There are, however, a number of ongoing efforts aimed at advancing the application of large-
scale organizational modeling to DoD questions of interest, most notably the Joint Forces Command’s 
Urban Resolve Program, which focuses on urban operations and how MandS can be used to explore and 
define urban operations war-fighting capabilities for the future joint force commander. The first phase 
focuses on intelligence, surveillance, and reconnaissance operations in the urban environment, using a 
high-entity count simulation of Jakarta built on top of JWARS, which, in turn, is built on top of the 
existing OneSAF simulation framework (see Chapter 2). Although the development plan for JWARS 
originally included a detailed VVandA plan for conventional warfare scenarios,10 it is unclear whether 
VandV efforts for Urban Resolve went any further than the “looks ok” test. This is not atypical of large-
scale simulations in general. 

Finally, we note that AFRL’s Human Effectiveness Directorate has begun the process of 
attempting to formalize the VVandA process for individual human performance models, cognitive models, 
and group representations developed or “owned” by the directorate, via the publication of the AFRL/HE 
Instruction 16-03 (Brinkley, 2003). We believe this is a good start in this particularly difficult area. 

Validation Issues Specific to Individual Modeling Approaches 

In this section we review the validation challenges and approaches that are specific to various 
modeling approaches used for IOS models. 

Validation of Conceptual Models 

Verbal conceptual models are sometimes specific enough that they can be tested and plausibly 
falsified, using empirical field studies or controlled experiments.  For example, Fiske and colleagues have 

                                                 

10This information is based on the program overview at  

http://www.msiac.dmso.mil/spug_documents/JWARS _Overview_Brief.ppt 
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used social cognition experiments to demonstrate that people organize acquaintances in memory 
according to the dominant model that organizes the relationship, in studies of subjects from Bengali, 
Chinese, Korean, Vai (Liberia and Sierra Leone) and U.S. cultures (Fiske, 1992), and that for many 
subjects this classification accounts for more variance in recall and substitution errors than personal 
attributes, such as gender, race, and age. 

In contrast to such well-developed conceptual frameworks, broad metaphors (brains as 
information-processing devices, organizations as cultures) are not really subject to verification or 
falsification.  Whether or not they are used in a particular domain is likely to depend largely on face 
validity and established precedent.  In evaluating the usefulness of a broad conceptual model, the 
yardstick is often not how well supported the model is, but how much interesting research it inspires.  
Even when a verbal model seems, in principle, to be subject to falsification, the underspecification of 
relations and processes often means that a rather broad array of different outcomes can be presented as 
consistent with the theory.  As Harris (1976) noted in his paper entitled “The Uncertain Connection 
Between Verbal Theories and Research Hypotheses in Social Psychology,” theoretical terms often are not 
defined, boundary conditions are unspecified and, under various plausible interpretations of assumptions 
or conditions, several well-known theories include internal contradictions and inconsistencies (cited in 
Davis, 2000). 

Validation of Cultural Models 

Cultural inventory models rely on ethnographic observation and are therefore both time-
consuming to develop and highly subjective.  Having multiple independent observers helps ameliorate the 
subjectivity problem, but it is expensive. 

Dominant trait models, such as the Hofstede dimensional models, can involve two sets of data.  
The first set is used to derive the dimensions.  These can be validated by a number of different statistical 
methods, such as factor analysis.  Once these are fixed, another set of data is obtained to score each new 
culture on the dimensions.  These data have to be obtained from willing natives of the culture, and the 
data have to be updated over time because cultures change. 

Validation of Cognitive Models 

While there is increasing emphasis on validation of cognitive architectures, validation remains 
one of the most challenging aspects of cognitive architecture research and development.   “[Human 
behavioral representation] validation is a difficult and costly process [and] most in the community would 
probably agree that validation is rarely, if ever done” (Campbell and Bolton, 2005, p. 365).  Campbell 
goes on to point out that there is no general agreement on exactly what constitutes an appropriate 
validation of a cognitive architecture. Since cognitive architectures are developed for a wide variety of 
reasons, there is a correspondingly wide set of validation (and evaluation) objectives and metrics and 
associated methods.   Lack of established benchmark problems and criteria exacerbates this problem.   

Validation of Cognitive-Affective Architectures 

In spite of the challenges associated with validation of emotion models and cognitive-affective 
architectures, progress is being made in the area. A promising trend in emotion modeling is the increasing 
emphasis on including evaluation and validation studies in publications. As is the case with cognitive 
architectures, no existing emotion models or cognitive-affective architectures have been validated across 
multiple contexts and a broad range of metrics.  However, some important evaluation and validation 
approaches and studies exist and are discussed in detail in Chapter 5.  Cognitive-affective architecture 
validation has not yet reached the stage of systematic comparisons that is beginning to be used for their 
cognitive counterparts.  However, given the recent emphasis on validation in the computational emotion 
research community, such studies are likely to be taking place in the near future. 
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Validation of Agent-Based Models 

Agent-based models (ABMs) are computational frameworks that permit the theoretical 
exploration of complex processes through controlled replicable experiments (see Chapter 6).  In principle, 
these experiments could be run entirely with artificially generated initial conditions, parameter values, 
and functional forms.  Nevertheless, their ultimate usefulness depends on the extent to which they prove 
capable of shedding light on real-world systems, that is, their ability to enhance understanding and guide 
decisions and actions. 

When validation of ABM frameworks is attempted, the validation is generally restricted to small 
areas of performance.  A typical approach to validation is to run an experiment using an ABM framework, 
collect data from this experiment, statistically analyze the results to generate the response surface, and 
then contrast the response surface with real data.  It is easy, even with only a few variables, to generate 
such a quantity of data from an ABM framework that there are no existing data with which to compare 
them, no existing statistical package can handle them, and most desktops cannot store them.  Therefore, 
typically only small portions of the overall response surface can be estimated at once.  The size of the 
analyzed response surface is thus often dictated by the user's interests and the critical policy or decision-
making questions at issue (i.e., the action domain and the scenarios relevant to that domain, as discussed 
above). 

ABM researchers have recently begun to explore promising new approaches to validation.  For 
example, a number of them are now advocating iterative participatory modeling (IPM) as an effective 
way to incrementally achieve validation of the structural, institutional, and behavioral aspects of the 
complex systems they study. For an introductory exposition of IPM, see Barreteau (2003). The essential 
idea is to have multidisciplinary researchers join with stakeholders in a repeated looping through a four-
stage modeling process:  (1) field study and data analysis, (2) scenario discussion and role-playing games, 
(3) agent-based model development and implementation, and (4) intensive computational experiments. 

The new aspect of IPM relative to more traditional participatory modeling approaches is the 
emphasis on modeling as an open-ended collaborative learning process.  The modeling objective is to 
help stakeholders manage complex problems over time through a continuous learning process rather than 
to attempt the delivery of a definitive problem solution. 

In addition, ABM researchers are also beginning to explore the potential benefits of conducting 
parallel experiments with real and computational agents for achieving improved validation of their 
behavioral assumptions.11  A critical concern is how to attain sufficiently parallel experimental designs so 
that information drawn from one design can usefully inform the other. 

Recommendations for Developing and Validating IOS Models  

We have argued that IOS models should be validated beginning with the purpose and then 
considering the action set, scenarios, and if-then relations in the specific situation.  The committee makes 
a number of suggestions for modeling and simulations that will facilitate the validation of a specific 
model.   

 Check with Multiple Experts 

 Four different experts should examine an IOS model: the users of the model, the scenario experts, 
the if-then or domain experts, and the modelers themselves.  Modelers cannot examine a model by 
themselves; they tend to focus on the verification with less emphasis on the purpose of the model.  For an 
action model, the user is very important to check the relevance and feasibility of the action set.  The 

                                                 

11See http://www.econ.iastate.edu/tesfatsi/aexper.htm for annotated pointers to ABM research on parallel experiments with real 
and computational agents; see also the survey by Duffy (2006). 
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scenario expert should examine the uncertainties and unknowns.  Domain experts are particularly 
knowledgeable about the if-then relationships.  However, their knowledge is not necessarily framed in 
this manner, so some adjustment may be required.  For example, domain experts know about “what is” 
and “what has been” but may be less certain about “what might be” outcomes.  However, they are likely 
to point out errors in the models for what might be and limits of what is known.  Each expert can 
contribute to the validation of an action model.  It is unlikely that any single expert can ensure a valid 
action model alone.  The structure and content of the model provide a template for a procedure by which 
multiple experts can validate different aspects of an integrated action model. 

Keep the Model as Simple as Possible for Its Purpose 

An IOS model does not have to be complex.  Parsimonious models are preferred. The corn farmer 
action model is simple and does not capture the complexity of weather forecasting or the chemistry of 
fertilizers.  But it is understandable and permits the farmer to make a decision and take action.  Action 
models that are intuitively understandable to decision makers (transparent) are preferred.  An action 
model that is disconnected from a decision maker's intuition and from concepts he or she is familiar with 
does not permit interplay between the decision maker and the model.  In short, complicated, nonintuitive 
action models require decision makers to accept the implications of the models on blind faith.   Action 
models should aid decision makers, not replace them. 

Examine “What Might Be” as Well as “What Is” 

  “What is” should mimic the real world within limits. “What is” models are a basis for “what 
might be.”  A model that has little or no correspondence with the real world is not likely to be relevant for 
what might happen.  What might be is very important for action models—particularly in new situations 
(Burton, 2003).  Many of the relevant action-scenario combinations have not been observed in the past.  
So the model must be relevant for action beyond what is or what has been to new situations.  For example, 
it would be desirable if the illustrative village deployment action model could be used reliably in other 
similar situations, say for the withdrawal from a village as well as entry.  But it is not likely that the 
model could be used to help plan an action to disarm a resistance cell.  Presumably this would require a 
more detailed model of the functioning of the cell.  Whether it would be desirable to develop one model 
to handle both entry and cell disarmament or two separate models would presumably depend on 
economies of scope—Is there anything to be gained by considering both issues jointly?—and on 
computational implementation costs.  IOS models should be developed and examined beyond what is to 
what might be.  At the same time, it is important to examine the limits of the model and not use in it in 
situations in which it might be inappropriate.  As suggested above, simplicity is desirable, but it must be 
balanced so that the action model is useful for its purpose. 

IOS models are likely to forecast a range of possible outcomes, some more likely than others, and 
to incorporate many factors that are highly uncertain and, indeed, unknowable at the time the model is 
developed.  How then can such models be validated? Popper, Lempert, and Bankes (2005) argue that 
models used to explore policy alternatives for an uncertain future should not be expected to yield 
predictions that can be tested but rather should be used to explore and compare possible outcomes under a 
variety of possibilities in order to select strategies that are robust—yielding the best overall results across 
a variety of possible futures. 

Postevent outcomes can also be used be used to evaluate models, although models are not 
necessarily incorrect if the actual outcome that occurred was not the one forecast to be most likely. 
Unlikely events do occur, and many IOS applications do not permit the replication that would generate a 
distribution of actual outcomes. A very useful approach would be to develop multiple models that take 
different perspectives and use different theories and data, merge their predictions to create zones of 
likelihood, and compare their forecasts with the actual outcomes (see Docking below). As with other 
validation approaches, the value of the model’s results depends on its intended use, so the degree to which 
forecasts need to correspond to reality will depend on the model’s purpose. 
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Use Model Touching for Validation 

Model touching is comparison or juxtaposition of models.  There are many ways to bring models 
together.  Here is a list: 

• Bring experts (as described above) together to develop and examine the model. 

• Compare the action model with qualitative studies for the situation or domain. 

• Check with other studies that might be empirically based on data from the field or from 
experiments. 

• Compare with computational models that are based on field data. 

Docking.  Docking is the bringing together of two models—a metaphor borrowed from space 
exploration.  More precisely, docking is an evaluation of the extent to which two or more different models 
of the same action situation can be cross-calibrated so that they yield the same outcome (or outcome 
probability distribution) given the same contingency condition (Axtell, Axelrod, Epstien, and Cohen, 
1996).  Docking goes beyond model touching to compare in more detail.  It can provide a better 
understanding of the true connections relating the three key elements of an action model: the actions, the 
scenarios, and the possible outcomes resulting under each contingency condition (scenario-action pair).  
Docking gives confirmation that we have a reasonable understanding of an action situation, and that our 
conclusions are being driven by the intrinsic nature of the action situation and not by idiosyncratic aspects 
of the model implementation. One possible approach is to compare how different models perform under 
the same benchmark action-scenario combination, which can provide insight into how different models 
define actions and how they structure if-then relationships.  That is, for an action model, take the same 
action possibilities and the same unknown scenarios, then develop two separate if-then relationship 
models.  Develop and compare the outcome tables for the two models.  Are the outcomes the same; if not, 
why?   One must go behind the model outcomes and examine the details of the models to understand their 
differences.  Individuals who are expert in the subject are critical in judging the models and their value.   
Docking should involve experts throughout the process, as discussed above.  Docking of multiple 
modeling approaches against common benchmark problems using a panel of expert judges has recently 
been used to provide considerable insight into individual cognitive performance models (Gluck and Pew, 
2005). 

At this time, there is a need to develop benchmark scenario-action situations that can be used to 
dock two or more models.  This effort will involve action, scenario, and if-then experts.  With these 
benchmarks, docking studies can add greatly to the development of action models. 

Given the current state of the art, the participation of experts in the docking process is essential. 
The next best step in validation is to support docking studies among experts who develop computation-
based models. Automated machine docking of two or more models is a very high-risk endeavor at present. 
At a later stage of understanding, we may be able to develop a computationally based approach to the 
docking of models.  But for now, experts and their judgment are mandatory. 

Triangulation. Triangulation goes beyond docking and involves examining the same action 
domain using an action model, an expert group using a qualitative approach, and reference to quantitative 
studies in the domain.  An action model validated using multiple approaches is more likely to help the 
decision maker take actions that meet the purpose.  However, a large number of triangulations are often 
possible.  We do not know a priori what the best triangulation is for a given situation, but it is quite likely 
that a good triangulation will be situation dependent.   

Exploratory Testing of Robustness. Miller (1998) proposes active nonlinear tests (ANTs) for 
complex models to validate the model’s structure and robustness.  In this approach, automatic nonlinear 
search algorithms probe for extreme outcomes that could occur within the set of reasonable model 
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perturbations.  This multivariate sensitivity technique can find places where a complex model “breaks,” 
that is, produces results that are outside a range of reasonable predictions. 

In summary, universal rules about what is the appropriate procedure for validating IOS models 
are not possible. However, we recommend the validation of models through a three-part triangulation 
process, based on the purpose of the model.  Validation should involve (1) participation by multiple 
experts who can provide different perspectives on the action domain, the scenarios, and the if-then rules 
incorporated in the model; (2) docking of similar computational models against one another; (3) 
comparison to qualitative and theoretical studies and previous quantitative results and exploratory testing 
for a range of outcomes.  A good heuristic would be to begin with the experts as discussed above and 
move as quickly as possible to docking studies and exploratory testing. 

DATA ISSUES AND CHALLENGES 

Data can be used in two different ways in modeling.  When models are developed inductively 
from data, the quality of the data is extremely important.  In that case the data are broader in scope and 
limited only in a very general manner.  For example, an anthropologist sees different things than an 
engineer in the same situation.  For existing models, the data are prescribed by the model, and the quality 
of data is extremely important.  Here again, the data yield values for the model parameters and make the 
model specific to a given situation and problem.  The data requirements are driven by different modeling 
needs.  For each situation, quality data are needed and are important to the usefulness of the model.   

This means that even the most promising, sophisticated, and elegant models may be severely 
limited or hampered by specific data needs and requirements.  Thus, data issues are an essential 
component for assessing the ultimate success for model development, validation, and their subsequent 
applications.  A number of potential data factors need to be considered in the course of conceptualizing 
and developing models.  These include but are not limited to the following.    

• Primary/secondary: Data may already exist (secondary) or may need to be collected 
(primary).  Obviously, models using secondary source data have some advantages because 
little or no data need to be collected.  However, models using such forms of data may be 
limited by the nature and quality of the data that exist.  This might mean the model will be 
constrained by the type of data available, and such constraints may limit the model’s ability 
to address important issues and problems. Models using primary sources of data have more 
flexibility, given that they can determine exactly what type of data needs to be collected.  
However, primary data collection involves its own set of limitations that are reflected in the 
factors described below.   

• Observable/nonobservable: Some data are directly observable, and this may facilitate ease of 
collection.  Phenomena that are not directly observable may require more extensive efforts to 
uncover the necessary information (e.g., face-to-face interviews).   

• Distant/close: Some forms of data can be collected at a distance.  This may involve the use of 
technology, such as cell phones or video links.  However, other types of data require actually 
being there on the ground, such as face-to-face contact or interviews with subjects, 
respondents, or informants. 

• Representative/nonrepresentative:  Often model assumptions require data to be collected or 
compiled in some specific manner. The best example of this is the explicit assumptions 
underlying classical parametric statistical models that require random samples from a 
population.  There are other models that simply require units of analysis to be representative 
of a given theoretically important category of some type, and it may be the case that any unit 
of analysis fitting the categorical criteria will suffice.  An important consideration is the 
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extent to which units of analysis used in the model need to be derived by either probabilistic 
or nonprobabilistic methods (see Johnson, 1990).  

• Passive/active:  This is related to some of the factors above in that some data can be collected 
casually or on the fly.  Such data may still require being there but may require only 
documenting or recording naturally occurring events, conversations, or interactions.  In 
contrast, more direct and active methods of data collection may be necessary and will involve, 
for example, actually interviewing individuals at events or interviewing them about given 
conversations or interactions, to name a few possibilities.    

• Tacit/explicit: Some forms of data require little interpretation or reading between the lines. 
Other types of data are implicit, and there is a need to make them more explicit.  This is 
particularly true for some forms of human knowledge that are often tacit and may require 
specific types of elicitation interviewing techniques to extract the requisite information to be 
used in the model (Johnson and Weller, 2002). 

There are certainly other important factors to be considered in terms of relating models to various 
data requirements.  However, the factors described above potentially reflect impediments to the utility and 
validity of any proposed model.  If, for example, models require data involving forms that are tacit, active, 
representative, close, nonobservable, and, of course, primary, then the data may be costly to obtain and 
may limit the models’ potential effectiveness given the data constraints.  But this does not address in any 
way issues of data quality concerning reliability and validity. We can consider the factors above to reflect 
elements of how hard data might be to collect or obtain.  Although some of these factors are related to 
issues of reliability and validity, they are not necessarily one and the same.  Often the data that are the 
most difficult to collect (i.e., on the ground face-to-face interviews) are the data that have the most 
reliability and validity, whereas data that are the easiest to obtain (i.e., secondary source data) may be the 
most problematic.   The extent to which one trusts the data will ultimately determine the extent to which 
one trusts model outcomes or predictions.      

In summary, even though quality data are extremely important, the operationalization of quality is 
different for the different demands of the model.  One implication is that we need better quality data.  
Another implication is that we need a better understanding of how we can model, describe, predict, and 
explain with less than quality data.  This further suggests that a better notion is needed of what is meant 
by quality data for the various models and needs. 
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TABLE 8-1 Gaps and Incompatibilities Between IOS Models 

Type Definition 

Interface Mismatch between the data types of different models or outputs of one 
model and inputs of another, e.g., real number vs. Boolean 

Ontological Different relationship structures, naming schemes, etc., in ontologies for 
different models 

Formalism Different logic and inferencing mechanisms and procedures for different 
models 

Subdomain gaps Differing domains and dynamics between PMESII model dimensions, 
e.g., economic vs. social 
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TABLE 8-2 Mappings Between Modeling Formalisms 

 Bayesian 
Probability 

Dempster-
Shafer Fuzzy Logic Possibilistic 

Theory 
Certainty 

Factor 
Symbolic 

Dictionary 

Bayesian 
Probability X Generalization 

Membership 
degree 

interpretation 
of 

probabilities 

Transformations 
based on 

consistency 
principles 

Mapping from 
probabilities 
to certainty 

factors 

Probability-
to-symbolic 

mapping 

Dempster-
Shafer 

Bayesian 
approximation 
(transferable 
belief model) 

X Via Bayesian 
approximation 

Via Bayesian 
approximation 

Via Bayesian 
approximation 

Belief 
value-to-
symbolic 
mapping 

Fuzzy 
Logic 

Normalization 
of membership 

degrees 

Via 
normalization X 

Possibility 
measure 

interpretation of 
membership 

degrees 

Mapping from 
membership 

degree to 
certainty 
factors 

Membership 
degree-to-
symbolic 
mapping 

Possibilistic 
Theory 

Transformations 
based on 

consistency 
principles 

Belief 
interpretation 
of possibility 

measures 

Membership 
degree 

interpretation 
of possibility 

measures 

X 

Mapping from 
possibility 

measures to 
certainty 
factors 

Possibility 
measure-to-

symbolic 
mapping 

Certainty 
Factor Normalization Via 

normalization 
Via 

normalization 
Via 

normalization X 

Certainty 
factor-to-
symbolic 
mapping 

Symbolic 
Dictionary 

Symbolic-to-
probability 
mapping 

Symbolic-to-
belief value 

mapping 

Symbolic-to-
membership 

degree 
mapping 

Symbolic-to-
possibility 
measure 
mapping 

Symbolic-to-
certainty 

factor 
mapping 

x 
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TABLE 8-3 Selected Cognitive Architectures and Their Development Environments 

Model Development 
Environment 

Comment 

ACT-R 6.0 No formalized development 
environment, since model 
developers work directly 
with the different ACT-R 
frameworks: LISP ACT-R, 
Python ACT-R, and jACT-
R 

• LISP ACT-R is the “baseline” version and requires a 
knowledge of LISP programming 

• Python ACT-R makes ACT-R available to a wider audience 
(i.e., non-LISP programmers) 

• jACT-R is a Java version 

• All have associated programming IDEs but require 
programming skills—and theoretical knowledge of the 
underlying cognitive architecture constructs—significantly 
beyond drag and drop model-building activity 

COGNET iGEN • Workbench-based development environment with a 
collection of high-level agent-building tools 

• GUI for defining program logic and knowledge, without 
programming  

• Application program interface (API) for integration of iGEN 
cognitive agents within existing applications using standard 
languages/protocols 

EPIC  • IDEs associated with original LISP version of EPIC and with 
current C++ version 

D-OMAR OmarL, OmarJ • OmarL is a LISP-based environment for knowledge 
representation and the definition of agents and their 
behaviors. The languages are extensions of the Common 
LISP Object System (CLOS) 

• OmarJ is a Java-based agent development environment that 
provides tools for creating and managing systems of agents 
operating in a distributed computing environment. OmarJ 
provides most of the features of OmarL with an improved 
external communication layer that uses Jini for internode 
communication and the ability to break out of simulation 
mode and run agents in a non-time-controlled environment 

SAMPLE AgentWorks™ AgentWorks™ consists of: 

• Perceptual, cognitive, and communications modules 
including neural networks, fuzzy logic, Bayesian belief 
networks, expert systems, and argumentation engines 

• Advanced processing capabilities supporting planning, 
learning, and distributed applications 

• Enhanced usability components for  construction, validation, 
and visualization of agent processes 

Soar SDB • Soar Debugger (SDB) is an XDB-like debugger for the Soar 
programming language, including functionality, such as deep 
structure inspection, watches, and breakpoints and a 
graphical interface to common Soar commands. 
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TABLE 8-4  Contingency Table for the Corn Farmer Action Model 

Action Outcome 

 Rain No rain 

Add fertilizer What will be the yield with 
rain and fertilizer 

What will be the yield with 
no rain and with fertilizer 

Do not add fertilizer What will be the yield with 
rain and no fertilizer 

What will be the yield with 
no rain and no fertilizer 
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TABLE 8-5  Contingency Table for Village Deployment Action Model 

 

Action  

Outcome When the 
Mayor Is Hostile and 
There Is a Resistance 
Cell 

Outcome When the 
Mayor Is Hostile and 
There Is No Resistance 
Cell 

Outcome When the 
Mayor Is Not Hostile and 
There Is No Resistance 
Cell 

Do not enter  [None] [None] [None] 

Enter with firepower 
evident; return defensive 
fire only after receiving 
sporadic gunfire from 
snipers 

The mayor does nothing to 
stop active resistance; fire 
is returned; it is likely that 
a few civilians are killed; 
one or two soldiers are 
wounded 

The mayor will organize a 
demonstration; a few 
civilians are roughed up; 
no casualties 

The mayor attempts to 
negotiate while the 
citizens resist passively; a 
few civilians are detained; 
no casualties 

Enter with firepower 
evident 

The above with a lower 
probability of killing 
villagers 

Do not know Same as above 

Enter with small group to 
negotiate 

The mayor negotiates and 
there is a high probability 
that the small group will 
be held captive; no 
casualties; no terrain 
occupied 

The mayor negotiates in 
the town square and finally 
lets the small group go; no 
casualties; no terrain 
occupied 

The mayor negotiates for 
food and medical supplies; 
no casualties; no terrain 
occupied 

Enter with food and 
medical supplies 

The mayor forbids the  
distribution of the food 
and medicine and the cell 
initiates an exchange of 
fire; no casualties; terrain 
occupied 

The mayor forbids the 
distribution of the food 
and medicine and demands 
that the troops leave the 
area; no casualties 

The mayor is welcoming 
and negotiates for more 
food and medicine; no 
casualties; terrain occupied 
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Interface
Incompatibility

Ontological 
Incompatibility

Formalism 
Incompatibility

Subdomain
Gaps

Model A

About object of 
type X

Model B

Input Output Input Output

Bel(X) p(X)

Economy Social  

FIGURE 8-1 Illustration of gaps and incompatibilities between IOS models. 
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Industrial 
Water Plant

Oil 
Field

Power 
Generators

Oil 
Refinery

Refined Fuel
Drinking 
Water

Industrial 
WaterPower Crude

Refined 
Fuel

High Voltage Power

Power

Fragment of behavioral 
Information Model in town 

with Terrorist Stronghold

PowerPower Drinking
Water

Drinking
Water

Refined
Fuel

Refined
Fuel

Level of Anger
Among Population

Level of Anger
Among Population

High
Medium

Low

Attr

Aggressive

Attr

Use of Threatening 
Phrases

Calling for 
Jihad

Inviting Suicide 
Bombers

Imminent Attack
Attr Attr

Quick to Anger

Attr

Leader XTerrorist Group A Leads

Power 
Substation

Fragment of Social 
Model in town aligned 

with the USA

Causes

Angers

Refined Fuel

Fragment of 
Infrastructure 

Model

Loss

Concept Graph 
Model

Influence Diagram 
Model

SRO Model

Diplomatic

Attr

Observable intelligence

Sufficient
Food Supply
Sufficient

Food Supply

 

FIGURE 8-2 Interoperability of three different PMESII models. 
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Model A

About object of 
type X

Model B

Input Output Input Output

1 1

2 2

... ...

m n

X Y
X Y

X Y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⇒
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1
( ,..., , )

kj i iY f X X C=

Develop an interface for encoding 
commonly used transformation functions
Ex: PROJECT(X3), X1*X2+X3, min(X1, 

X2), gen(X3), fuzz(X3)

Contextual 
Information

 

FIGURE 8-3 Resolving interface incompatibility. 
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FIGURE 8-4 OneSAF product line architecture framework.  

SOURCE: See http://www.peostri.army.mil /CTO/FILES/SmithR_GeneralFrameworkInterop.pdf, p. 12.   
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FIGURE 8-5 Predicting and analyzing PMESII effects of DIME actions.  

SOURCE: Adapted from Allen (2004).   
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FIGURE 8-6 HASMAT system architecture.  

SOURCE: Harper et al (2007). 
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FIGURE 8-7 An overview of the analyst’s interface in the HASMAT environment.  

SOURCE: Harper et al. (2007). 
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Each node of the 
social network is 
represented by an 
agent that reasons 
about the network 
data.

Each node of the 
social network is 
represented by an 
agent that reasons 
about the network 
data.

Each agent applies 
a collection of 
computational 
reasoning algorithms 
to process network 
events.

Each agent applies 
a collection of 
computational 
reasoning algorithms 
to process network 
events.

Agent components 
generate responses 
to network events 
captured as agent 
behaviors (e.g., 
seeking new 
relationships).

Agent components 
generate responses 
to network events 
captured as agent 
behaviors (e.g., 
seeking new 
relationships).

Agent behaviors are 
captured as change 
events in social 
network (e.g., 
generate new link, 
change attribute of 
node/link).

Agent behaviors are 
captured as change 
events in social 
network (e.g., 
generate new link, 
change attribute of 
node/link).

 

FIGURE 8-8 Overview of HASMAT software integration strategy.  

SOURCE: Harper et al. (2007). 
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Develop 
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Design
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FIGURE 8-9 Interaction between VandV and new development activities.  

SOURCE: Adapted from http://vva.dmso.mil [accessed Feb. 2008]. 
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9 
State of the Art with Respect to Military Needs 

In this section we review the state of the art in individual, organizational, and societal (IOS) 
modeling against the military modeling needs outlined in Chapter 2 and discuss the major shortfalls in 
meeting those needs. The five representative problems described in Chapter 2 are used as a structure to 
summarize the review. 

DISRUPT TERRORIST NETWORKS 

One potential use of cultural and organizational models is to fuse partial and uncertain 
information from multiple sources to develop a model of the network structure of a terrorist organization 
and to use that model to evaluate alternative strategies for disrupting that organization, for example, 
through disconnecting leaders or interrupting recruiting.  This goal can be supported by many of the 
modeling approaches described earlier, and each has its own limitations for attacking the problem.  Table 
9-1 summarizes the capabilities that would provide advantages for each modeling approach and the major 
limitations of the approach in addressing this problem.  

Network models provide a promising approach for this problem, but a general limitation across 
the network modeling approaches is the lack of data for model development. Lack of data is the primary 
challenge for using models to understand and disrupt terrorist networks.  The data availability problem is 
compounded by the classification levels for existing data, the control of those classified data by multiple 
organizations, and the inconsistencies in data structure and content.  For example, the same individual 
may be identified by different names in multiple databases.  The more specific the predictions that could 
be made by the model, the more data are required. A way to mitigate this problem (see Chapter 11) would 
be to make unclassified representative databases more widely available for model development and 
evaluation. 

There is an additional challenge in how to test and validate these models and how to clearly 
communicate the uncertainty surrounding model forecasts.  If models could be developed more quickly 
and easily and in closer collaboration with both subject matter experts and the ultimate users, they could 
be a more useful thinking tool for decision makers. 

FORECAST ADVERSARY RESPONSE TO COURSES OF ACTION 

Models could be used to forecast the responses of adversaries to friendly force actions over a 
range of responses, with estimates of the likelihood of each.  This is especially needed in urban operations 
and operations other than war in an asymmetric warfare environment in which conventional methods for 
predicting adversary behavior are often not relevant.  For example, what are the likely reactions of both 
noncombatants and local insurgents to friendly force movements, and can those reactions be affected by 
the diffusion of information or disinformation?  Table 9-2 summarizes the contributions that could be 
made by models and their major limitations. 

In the example of forecasting enemy response to a disinformation campaign about troop 
movements, network models are clearly applicable conceptually—the limitations are in the details that 
would make the model useful for a specific cultural context.  First, we lack theory regarding cultural 
differences in the believability of a message as a function of its source.  Multiagent models could predict 
information diffusion patterns, but they would require data on transmission links (media channels, literacy 
rates, etc.) that are specific to the location and culture being modeled as well as ways to predict the 
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believability of the message when received.  Finally, there are no well-defined outcome variables for 
assessing the validity of the model’s predictions.  Clearly the uses to which the model is to be put, 
including the details of the cultures and location of interest, must drive both its structure and content.  As 
in the previous example, the major recommended mitigation strategies (see Chapter 11) include the 
development and dissemination of detailed datasets and the development of a close collaborative 
relationship between model developers, subject matter experts, and model users. 

SOCIETAL FORECASTING 

There is an urgent need for models that can forecast attitudes and behaviors at a societal level as a 
function of alternative courses of action that include not only military actions but also economic policies, 
diplomatic efforts, and information campaigns (DIME).  For example, models are needed that can 
forecast the stability of civilian governments and the incidence of violence as a function of these DIME 
factors.  Table 9-3 summarizes the possible contributions and limitations of models for this goal. 

Agent-based models on a large scale appear very promising for modeling societal behaviors and 
forecasting responses to diverse DIME courses of action (COAs).  However, there are a number of 
limitations that currently constrain what can be done with these models.  First, such models are time-
consuming to build and often require data collection on a massive level.  Second, computational power 
limits the cognitive complexity that can be built into individual agents if tens of thousands of agents are to 
be included in the model.  Third, predicting the response to integrated DIME COAs requires 
multidisciplinary expertise in military planning, economics, and political science.  The need to integrate 
models across disciplines is the primary challenge faced in this problem area. Theories and models in 
these diverse disciplines are not currently integrated, and experts in these areas often have little 
opportunity or incentive to collaborate.  Hybrid federated models that combine different models at 
different levels of detail for different factors offer considerable promise for tackling large-scale societal 
prediction, but these models are more an idea than a reality at present and will require the 
multidisciplinary development of architectures and standards for federation. To mitigate these limitations, 
Chapter 11 recommends an extensive multidisciplinary research program focused around common 
challenge problems and datasets.  Finally, as with other models, the predictions of these models will have 
a high degree of uncertainty. Model development must include collaboration between end users and 
diverse subject matter experts to ensure that the predictions provided are relevant and that their limitations 
are well understood. 

CROWD CONTROL TRAINING 

Virtual training environments offer an opportunity for troops involved in peacekeeping operations 
to learn best practices for crowd control.  Such training will require models of noncombatants that 
respond to trainee actions in a way that is realistic and appropriate for a specific location and cultural 
environment.  Table 9-4 summarizes the state of the art in this area. 

The development of models for crowd control training is perhaps the most advanced of the five 
representative problems considered.  This can be done now.  The only major issue is whether the models 
can produce behavior that is close enough to that of a real crowd in a specific environment to provide 
useful training.  The extent to which cultural factors create differences in crowd behavior in different 
locations deserves further study, but crowd behavior models can be implemented in virtual environments, 
such as MMOGs, and their behavior can be reviewed by subject matter experts in a specific culture to 
ensure that they are not behaving in unrealistic ways that would result in negative training. 

ORGANIZATIONAL DESIGN: FORCE COMPOSITION AND  
COMMAND AND CONTROL ARCHITECTURE 

Because of the rapid changes in mission requirements, the military services are moving toward 
modular expeditionary forces that are readily reconfigurable for different types of missions.  Making the 
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best use of these modular forces requires not only a recommended force composition (systems, equipment, 
units, and personnel) but also a command and control (C2) architecture that is most effective for the force 
as constituted. The best force composition and C2 architecture for a conventional military operation may 
be quite different from that for a peacekeeping or disaster relief mission.  Table 9-5 summarizes how 
organizational models could help in this process. 

Models have proven to be a useful tool for understanding, designing, and testing organizations.  
Although people rarely think about “designing” organizations in a systematic way, the military faces the 
need to do just that as it develops new flexible, adaptive structures for rapidly changing missions.  One 
example of an attempt at systematic organizational design based on modeling is the recent effort at the 
National Aeronautic and Space Administration (Carroll, Gormley, Bilardo, Burton, and Woodman, 2006), 
using an agent-based model and a heuristic rule-based model.  Modeling and simulation can be used to 
develop and adapt force composition for changing missions and to suggest the best C2 structure for 
accomplishing the mission.  The best C2 architecture is especially challenging for coalition operations, in 
which different types of forces may be involved, and for peacekeeping and disaster relief operations, 
which require close coordination with nongovernment organizations.  The major limitation for this work 
is the need for detailed information on the tasks to be accomplished in the mission and the resources 
required to accomplish those tasks. The recommended mitigation strategy (see Chapter 11) is the 
development of common challenge problems and datasets and the use of collaborative workshops to 
ensure that that operational users and modelers have a shared understanding of what can be done through 
modeling. 
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TABLE 9-1 Modeling Approaches and Limitations for Disrupting Terrorist Networks 

 

Problem 1:  Disrupt a terrorist network. 

How can we fuse uncertain and partial information from multiple sources to identify the dynamic network 
structure of a terrorist organization? How can we then best disrupt this network? 

Advantages of Approach Major Limitations 

Conceptual models indicate how removal of a 
leader will affect the network. 

Need ethnographic data on terrorists to see if 
models apply in the specific culture. 

Cognitive/affective models could predict reactions 
of members of network if leader is removed. 

Extensive time and effort are required to develop 
specific models from open sources. 

Organizational models of existing network could 
predict impact of changes in network on 
performance. 

Data are not available.  Existing data are in 
multiple databases controlled by different 
organizations, with inconsistent structures and 
contents. 

Link analysis could identify network. SNA models 
can predict how changes in leadership will affect 
network structure and change power and centrality. 

Link data are difficult to acquire. 

Dynamic network analysis models could predict 
who the emergent leader will be if current leader is 
removed. 

Requires resource and activity data, which are very 
difficult to acquire. 

System dynamics models could predict whether 
change in leadership might lead to an increase in 
violence in the community. 

High-level model would not predict for individuals. 

Model could be tested in massively multiplayer 
online games. 

Behaviors in the MMOG might not resemble those 
in the real world. 

All approaches could make recommendations for 
action. 

No facility for rapid development of models or 
provision of easy-to-understand guidance to war-
fighters. 
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TABLE 9-2 Modeling Approaches and Limitations for Forecasting Enemy Response to Disinformation 

 

Problem 2:  Forecast adversary response to blue actions. 

Predict the likely response of noncombatants and local insurgents to friendly force movements, basing, 
logistics, and courses of action. Can disinformation be used to partially protect our intentions?  What is 
the most effective point of insertion of the disinformation? 

Advantages of Approach Major Limitations 

Persuasion theory suggests the need to disconnect 
message from the source. Research exists on 
direction of change in message with diffusion. 

No models for how individuals are likely to 
transform/distort messages as a result of cultural 
and cognitive factors. 

There are no individual models to predict 
interpretation or believability of messages, 
especially taking cultural factors into account. 

Use multiagent model of networks to decide where 
to drop information into rumor mill (e.g., viral 
marketing). 

Multiagent models would require models of culture 
and technology to estimate speed of transition. 
Need to link multiple types of models together. 

Use model to maximize predicted diffusion of 
information. 

Straightforward conceptually but there is a lack of 
empirical country-specific data. 
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TABLE 9-3 Modeling Approaches and Limitations for Societal Forecasting 

 

Problem 3:  Societal prediction. 

Forecast the effects of alternative diplomatic, information, military, and economic (DIME) courses of 
action on the attitudes and behaviors of residents in areas of interest. 

Advantages of Approach Major Limitations 

Systems dynamics models can predict the effects of 
changes in DIME factors on outcome variables of 
interest, such as level of violence. 

Sufficient theory is lacking to identify the key 
variables to be included in the model and to specify 
the connecting links between actions and outcomes. 

Agent-based models that capture resource use and 
economic interactions as well as social links can 
predict the effects of economic factors within a 
social and cultural context.   

ABMs need both theory and data to make useful 
predictions.  Large-scale societal ABMs are time-
consuming and costly to develop. 

ABMs can include tens of thousands of agents to 
capture complex interactions at the societal level. 

Agents must be cognitively simplistic to make 
large-scale ABM models computationally feasible. 

Historical data can be used to develop ABMs that 
predict societal effects.  

Prediction of the future, not the past, will involve 
inherent uncertainty. 

Federated models could integrate multiple types of 
models at different levels of detail to capture 
diverse DIME factors. 

There is a lack of infrastructure, architectures, and 
standards for federated models. DIME factors are 
studied by different disciplines and few integrated 
models exist that attempt to combine them.  There 
is little theory or data on how DIME factors 
interact. 

MMOGs can provide an environment for data 
collection on a large scale to support model 
development and testing. 

The environment created by the MMOG may not 
reproduce the key elements of a real-world society.  
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TABLE 9-4 Modeling Approaches and Limitations for Crowd Control Training 

 

Problem 4:  Crowd control training. 

Use models of crowd behavior to create a virtual training environment in which soldiers can learn to take 
the appropriate action. 

Advantages of Approach Major Limitations 

Cultural models can provide theory on how crowd 
members in a specific culture are likely to react to 
different actions. 

Theory linking attitudes and behaviors may not be 
specific enough for the environment for which 
training is needed. 

Cognitive and affective models can represent 
individual reactions to soldier behavior. 

Individuals may react differently as part of a crowd 
than they would alone.  The effects of cultural 
context on behavior are not fully understood. 

Agent-based models can capture the interactions 
among crowd members that cause them to act 
collectively in ways in which they might not have 
acted individually. 

Cultural variability in crowd dynamics is not 
completely understood. 

MMOGs can provide an interactive environment 
for quickly testing model behavior as well as an 
environment for the training. 

Model behavior should be reviewed by subject 
matter experts for believability. 
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TABLE 9-5 Modeling Approaches and Limitations for Organizational Design 

 

Problem 5:  Organizational design: Force composition and command and control architecture. 

Use organizational models to develop optimal force composition packages and C2 architectures for 
different mission types. 

Advantages of Approach Major Limitations 

Use organizational models to develop the force 
composition, structure, and processes that are 
predicted to best meet mission requirements.  
Simulate organizational performance for different 
structures in different mission scenarios. 

Requires detailed data on the tasks to be performed 
in the mission and the resources available. 

Use simulation and agent-based models to identify 
the points in the mission and the organization at 
which the most intensive cooperation will be 
required, the points of maximum workload, and the 
potential information bottlenecks. 

Requires detailed data on task information and 
workload requirements. 

Use MMOGs as a testbed for organizational 
structures. 

May be difficult to replicate realistic mission tasks 
and conditions. 

 

 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

 
 
 
 

Part III 
 

Addressing Unmet Modeling Needs 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

 

Prepublication Copy 

10-1 

10 
Pitfalls, Lessons Learned, and Future Needs 

Chapters 3 though 7 summarized the state of the extensive work under way to develop a variety 
of individual, organizational, and societal (IOS) human behavioral models and how that work both 
contributes and falls short in solving representative military problems.  In this chapter we take a step back 
from this detail and summarize the findings of the committee in the form of lessons learned and future 
needs if IOS models are to live up to their potential for delivering useful results. 

Given that most IOS models are in early phases of development, a clear set of best practices has 
not yet emerged.  We can, however, identify some lessons to be learned from the initial approaches that 
have been taken and some of the pitfalls that have occurred on the road toward developing effective IOS 
models.  Awareness of these pitfalls should help those developing models to avoid wasting valuable time 
and effort relearning the same lessons.  Avoiding these pitfalls will therefore improve the probability of 
success for new initiatives. 

When particular programs or efforts are mentioned as examples, this is not meant to suggest that 
those involved made choices that were known to be wrong at the time; in fact, many of the authors of this 
report have fallen into one or more of these pitfalls in our own modeling efforts.  Hindsight often brings 
clarity, revealing that choices that seemed reasonable at the time have had undesirable results.  Our goal is 
to support the field in gaining maximum benefit from the “tuition paid” thus far in intellectual effort, hard 
work, and taxpayer money.  For each pitfall we summarize the lessons learned, and on the basis of those 
lessons we identify the key needs to be met in order to move forward.  Chapter 11 then presents our 
recommended plan to meet those needs. 

PITFALLS IN MATCHING THE MODEL TO THE REAL WORLD 

The following problems are created either by inattention to the real world being modeled or by 
unrealistic expectations about how much of the world can be modeled and how close a match between 
model and world is feasible.   

Model-Problem Mismatch  

Modelers should choose variables based on what theory and experience suggest will be most 
useful in characterizing the problem of interest.  Poor characterization of the specific domain of problems 
to be addressed, failure to attend appropriately to the dictates of the problem domain, or failure to consult 
theory to assess which IOS variables are most likely to matter can lead to serious model-problem 
mismatches.  Practical considerations of availability, for example, can lead modelers to select “off the 
rack” components just because they are available, even if they are inappropriate to the problem at hand.   

For example, using the Hofstede dimensions (see cultural models in Chapter 3) as generic 
representations of culture is inappropriate unless there are good theoretical reasons to believe that the 
specific dimensions chosen are relevant for behaviors that are important to the application.  When 
modeling adversarial reasoning, specific cultural variations in inference and dialectical reasoning may 
well be informative, while Hofstede dimensions such as masculinity-femininity are generally irrelevant.   

Another source of poor choices is the pull of familiarity.  Those versed in game theory are often 
attracted to representations of culture as a distribution of strategies for playing stylized games, such as the 
prisoner’s dilemma (see Game Theory in Chapter 5).  For some applications, such as predicting the 
adversarial responses of enemy organizations to courses of action (COAs), game theory approaches to 
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culture may be a good match.  For other applications, such as predicting broader societal reactions, game 
theory approaches to cultures can lead to such problems as characterizing cultures as necessarily moving 
toward or existing in an equilibrium state or assuming that conflict involves two parties.  In reality, 
cultures are rarely in equilibrium; changes in technology, resources, and migration all impact culture; and 
the implications of conflict for a particular society rarely involve just two parties.  This particular model-
problem mismatch has resulted in misleading policy advice and a tendency to overlook major shifts in 
culture, resulting in policy makers and commanders being surprised by emergent factors in the situations 
they face (see also Illusions of Permanence, below).   

Another example of this pitfall comes from network research.  Over the years, network 
researchers have used the same network properties (e.g., betweenness, centrality) as independent variables 
in a wide variety of different contexts (see Network Models in Chapter 6).  Yet there is little reason to 
believe that these properties are relevant for all applications for which network analysis may be 
informative.  Even when correlations are found, it is difficult to design effective interventions and 
changes to a system because the variables are not necessarily explanatory.  The key network properties 
relevant to prediction and control of any particular problem domain should generally be derived from the 
problem itself (Borgatti and Everett, 2006).  

Lessons Learned and Future Needs:  The modeler should tie model choices to the application, 
which assumes that the application domain and the class of problems to be addressed are clearly specified.  
Subject matter experts in the application domain should lead or be represented on modeling teams, or at 
the very least they should be extensively consulted regarding the appropriate choice of variables and 
assumptions for a particular problem domain. 

In general, a tighter connection is needed between model developers and the operational 
personnel who will use the models being developed.  Shared understanding between developers and users 
should result in a clear specification of model purpose.  Better communication—including sharing of both 
theory and data—is also needed across the many disciplines that may contribute to model specification.  
Based on the purpose of the model and the application domain, more collaborative cross-disciplinary 
efforts in an integrated community of interest are needed to ensure that model developers do not simply 
rely on the set of variables with which they are most familiar. 

All-Purpose Models That Ultimately Serve No Purpose 

Universal scope or “Swiss army knife” models attempt to solve, via large-scale software 
development, an entire set of wide-ranging concerns.  In most cases, attempting to build universal scope 
models for the Department of Defense (DoD) has led to failure, to the loss of years of modeling and 
simulation effort, and to the expenditure of large amounts of money.  The classic universal scope model, 
JSIMS (2 to 5 million lines of code and 6 years to develop), had the following scope {Bennington 1995 
#1330 /ft “, p. 805}: 

The mission of JSIMS is to develop a Joint Simulation System that will provide readily available, 
operationally valid synthetic environments for use by the CINCs, their components, other joint 
organizations and the Services.  JSIMS has five major objectives: integrate the range of missions 
of the Armed Forces within a common modeling and simulation (MandS) framework that 
includes live, virtual, and constructive MandS capabilities: provide a training environment which 
will also accommodate space, transportation and intelligence requirements: establish a common 
simulation support structure which enables harmonious sharing of simulation resources, processes, 
and results among users; enable simulation users to readily create or access a simulation 
environment which supports their requirements: and enable joint simulation users to interact 
freely with elements of their command structure, supporting/supported organizations and other 
simulation centers or users.  While the initial focus of JSIMS is joint planning and training 
activities, as the system matures, JSIMS will be available to the DoD community at large for the 
analysis of doctrine, organization, system and material alternatives. 
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With such a large and broad scope, the likelihood for successful implementation was, in 
retrospect, near zero.  JSIMS ran from December 1995 to December 2002, at a development cost of $1.8 
billion.  In the end, DoD decided to fall back to smaller scale models and attempt to make those models 
interoperable (Office of the Secretary of Defense, 2004). 

Interoperability concerns in DoD also fell prey to the universal scope model syndrome with the 
high-level architecture (U.S. Department of Defense, 1996).  In 1996, DoD decided that a big bang, Swiss 
army knife solution to the interoperability of models and simulations was the way forward for defense 
models and simulations.  Instead of building an architecture that was dynamically extensible and 
semantically interoperable,1 DoD built a monolithic, black box piece of software that required everything 
to be defined ahead of time statically.   

The consequence is that, to make modeling and simulation (MandS) systems interoperable, the 
source codes of the systems must be modified and their definition files updated.  For any subsequent 
MandS system to be integrated, the source code for all systems must be modified along with their 
definitional files. 

In retrospect, it is temptingly easy to build static interoperability solutions if most of the 
information transferred is physics-based.  As one moves into the realm of modeling human and 
organizational behavior and begins to include cultural, network, emotional, cognitive, and psychological 
models, one needs to build models as encapsulated smaller model components that can be dynamically 
linked together rather than trying to create one large source code component (Pratt and Henninger, 2002). 

Lessons Learned and Future Needs: Monolithic, static approaches are inappropriate to IOS 
modeling.  Flexible, adaptable components and semantically interoperable models will potentially do 
much to avoid this pitfall.  In order for this to happen, advances are needed in federated model standards 
and architectures in order to allow different types of IOS models, at different levels of detail, to 
interoperate in meaningful ways. 

VERIFICATION, VALIDATION, AND ACCREDITATION  

The DoD MandS community has always lived with the specter of verification, validation and 
accreditation (VVandA).  We say specter because sometimes VVandA of a model is used to shut down 
further discussion and consideration of it, particularly if it has not yet gone through a VVandA process.  
VVandA is an important issue in IOS modeling, as in other types of modeling (see (Burton, 2003) and 
Chapter 8 for an extended discussion of VVandA issues).  With respect to the modeling of human and 
organizational behavior, however, rigorous VVandA (as it has been defined for validation of models of 
physical systems) is difficult if not impossible to fully achieve.   

VVandA for a model means the developers have verified that the model implements processes as 
intended, they have validated the model against empirical data, and they have accredited the model for 
use for particular circumstances, usually for a particular service requirement.  Early MandS efforts usually 
modeled physical properties exclusively, so verification consisted of being able to look at the source code 
and say, “yes, the source appears to implement the mathematics of the physical model.” For IOS models, 
there is no easy path to verification.  One can look at the source code but cannot say “yes, the source 
appears to implement the mathematics of the human or organizational model” because the techniques 
typically used for such models are code-based and not closed-form mathematics.   

                                                 

1Dynamically extensible means that the structure of the model allows new components to be added without rewriting 
the source code.  Semantically interoperable means that the language of the two models permits them to be put together in a 
meaningful and theoretically consistent way.   
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Historically models of physical phenomena have been validated by comparing the results of 
running the models with observations from the real world.  If one builds a model of a tank being hit by a 
particular weapon, one can go out into the field and shoot that particular weapon at a tank and say “yes, 
the model is close to the results of the real world” and stamp the model as validated.  For IOS models, it 
is typically not possible to validate the model against the real world in this way.  For example, suppose 
one builds a network model of insurgency formation.  One cannot then take real-world inputs into such a 
model so as to predict precisely what will happen next, as in the film “Minority Report.”  At best, it is 
possible to run the model against historical data and see how well the model accounts for the observed 
events.  Perhaps, at the end of such a validation, it will be possible to state that the model provides a 
possibility space or set of potential outcomes that are useful to consider in the analysis of the next course 
of action.  Valid IOS models do not predict exactly what will happen in the future (see also Illusions of 
Permanence below) but rather provide a set of potential outcomes to consider.  So when writing up the 
model usage document for such a model, it is feasible to state something like “this model is useful for 
analyzing situations that have the following characteristics and will provide outputs that allow you to 
consider the set of things that may happen within the following limits.” Of course, this assumes valid 
inputs: data that are reasonably accurate, acceptably complete, and that match the requirements of the 
model (see Chapter 8 for a more detailed discussion of data issues). 

Accreditation is the final step in the VVandA process.  Basically accreditation means that a 
sponsoring organization is willing to bless the model for a particular use, which generally occurs after 
someone has verified the model to an acceptable degree and some validation has been performed.  Model 
accreditation is usually specific to a service office or the Office of the Secretary of Defense, and 
accreditation means that the office has determined that the model is sufficiently robust for some 
operational deployment.  Many physics-based models have been accredited but, as far as the committee 
knows, no models of human and organizational behavior have been accredited.  Such models are perhaps 
too new to have yet made it through the accreditation paperwork process.  However, we think that 
accreditation decisions for IOS models should be based on a better understanding and explication of the 
limitations and usages for such models, as well as a set of VVandA requirements that are appropriately 
tailored to the special nature of such models.   

Lessons Learned and Future Needs: Failure to appreciate the extent to which IOS models differ 
from physical models has led to inappropriate expectations regarding VVandA for IOS models.  Rather 
than trying to apply an inappropriate VVandA process, a IOS model needs to be deployed with a strong 
set of guidelines that describe the limitations of the model and that remind users that the purpose of the 
model is not definite point predictions but rather indications regarding what possible outcomes will likely 
result from any particular course of action.   

Better standards are needed for IOS models, including appropriate VVandA guidelines.  This 
report recommends an action validation approach (see Chapter 8) that requires a clear specification of the 
purpose of the model and validates the usefulness of the answers provided by the model against that 
purpose.  We also recommend triangulation, in which models are reviewed by multiple types of experts, 
compared with qualitative and theoretical studies as well as quantitative results, and similar models are 
compared with each other (docking).  Appropriate IOS model validation approaches need to be further 
developed and promulgated among model developers, users, and funding agencies through a widespread 
multidisciplinary community of interest. 

PROBLEMS IN DESIGNING THE INTERNAL STRUCTURE OF A MODEL 

The following tactical design pitfalls are sometimes generated by unwarranted assumptions about 
the nature of the social, organizational, cultural, and individual behavior domain and sometimes by a 
failure to deliberately and thoughtfully match the scope of the model to the scope of the phenomena to be 
modeled.  These pitfalls reveal the challenge of making wise choices of simplifying assumptions about 
the highly complex domain of IOS structure and behavior.   
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Pitfall of Unvalidated Universal Laws 

Modelers who are accustomed to dealing with physical objects that behave according to well-
known physical laws are especially prone to this pitfall.  Comparable universal laws of human behavior 
and social structures have yet to be discovered, codified, and supported by empirical data.  Even should 
they be discovered, it is unlikely that they could be represented as closed-form equations.  Furthermore, 
human behavior involves freedom of choice, and the results of the model themselves, if widely publicized, 
might affect those very behaviors that they were intended to forecast.  Modelers fall into this pit when 
they model particular structures or processes in fixed form because they mistakenly believe that these 
structures are universal.  As an example, some modelers have subscribed to the notion that all evolved 
networks are scale-free (i.e., they have a degree distribution that is well described by a power law).  
However, because the behavioral capabilities of nodes in a network make a demonstrable difference 
(people networks are different from gene networks), the data do not support the assumption of abstract 
commonalities across all networks.  While the assumption of a scale-free network may well be warranted 
for particular types of networks and nodes, building this assumption in as a fixed feature of the model will 
limit its application in ways that may not be recognized by end users.  Instead, the network structure 
should be treated as a model parameter. 

Lessons Learned and Future Needs:  Beware of assumptions that any particular structure or 
process is universal in any IOS domain.  Consult with subject matter experts to be sure empirical data 
provide very strong support for any such claims before relying on them in designing a model.  Set up the 
model so that users are explicitly reminded that they are making an assumption when they select a 
particular structure or process to represent a domain.  A better integrated multidisciplinary community of 
interest in IOS modeling, with greater availability of empirical data and more extensive docking of 
alternative models around common applications, could protect against the unthinking and mistaken 
assumption that universal laws from other domains apply to IOS models. 

One-Dimensional Models 

Modelers should beware of inappropriately limiting themselves to a single independent variable 
and using it to account for an array of different processes and outcomes.  For example, there is a tendency 
in network research to focus exclusively on structure as represented by a few network variables, while 
completely ignoring other information that is available about the nodes, the processes that are going on, 
and other contextual factors.  Such models ignore possible influences, for example, the possibility that the 
behavior of the nodes not only is influenced by the network structure, but also can alter that structure.  
Modelers may encounter this pitfall when operating under the sway of a strong structuralist position that 
views (network) structure as far more important than other variables, like culture or psychology.  As a 
result, we often see standalone network models that do not incorporate cognitive, cultural, or other 
processes.  Another example of a heavily structuralist approach that ignores process would be a model 
that uses Hofstede’s Big Five personality structure (see Cultural Models in Chapter 3) as the sole 
predictor for a broad array of cognitive and behavioral outputs. 

We think the relative importance of structure should instead be treated as an empirical question, 
which can of course be investigated only in models that include more than one input variable. 

In any modeling enterprise, simplifying assumptions are necessary, and parsimony is an 
important scientific principle.  However, the emphasis should be on parsimony for a purpose—for 
example, to conduct a focused investigation of whether a particular input variable is plausibly related to 
an array of different outputs.  The decision to exclude other candidate input variables should be based on 
careful deliberation rather than on unexamined assumptions.   

Lessons Learned and Future Needs: Focus is good; myopia is unwise.  Better methods are needed 
to decide which variables are relevant for inclusion in a model.  The specification of the variables to be 
included in a model should be based on a clear specification of the purpose of the model and, depending 
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on that purpose, should take into consideration the judgment of multiple subject matter experts, theories 
drawn from multiple disciplines, empirical data if they exist, and prior work on similar problems.  
Comparative studies are needed that address the same problem from multiple perspectives to determine 
which set of variables offers the most useful results. 

Kitchen Sink Models  

IOS modelers who appreciate the complex nature of human and organizational behavior and who 
wish to avoid the pitfall just described may back themselves into a different pit by adding variables to a 
model in a hodgepodge fashion.  Modelers may be especially vulnerable to this pitfall if they are 
operating outside their area of expertise (for example, people with no training in anthropology or cultural 
psychology attempting to model culture), or not relying on strong theory for guidance.  Modelers who are 
not well versed in a field will have little basis for choosing appropriate variables and will be especially 
vulnerable to suggestions to add this or that variable to increase realism. Sometimes the addition of 
variables is motivated by a desire to improve prediction by adding features and variables so that model 
output more closely matches a particular set of cases for which the modeler has data.  This is actually 
postdiction (see Dibble, 2006, and Gauch, 2003, on postdictive versus predictive accuracy).  The kitchen 
sink tactic is based on a misconception about the relation between model features and variables and about 
the model’s ultimate usefulness for providing information about behavior in cases beyond those used for 
testing. 

Agent-based models of human and organizational dynamics are often suggested as an effective 
way to approach the IOS domain.  However, the costs of developing, verifying, calibrating, and running 
complicated agent-based models can be extraordinarily high in relation to our ability to trust what we 
learn from them.  Such a model may have so many degrees of freedom that it often overfits to sample 
outcomes at the expense of providing an accurate characterization of the full population of potential 
outcomes that are important for effective insights and decisions.  Predictive models are useful to the 
extent that they provide trustworthy insights and guidance about a particular population of potential 
outcomes.   

A related pitfall is pouring energy into model development, with endless tuning and adjustments, 
and never using the model in a rigorous fashion to generate insights, answers, or predictions about the 
probability of different plausible outcomes.  What matters most is what new information can be learned 
from the model and to what degree and under what conditions what is learned can be trusted.  In 
computational laboratories, research, developing, testing, refining, and calibrating a useful and 
trustworthy model should represent a modest fraction of the time, effort, and expense of putting the model 
through its paces to answer the important questions that motivated its development.  Answers and insights 
are the ultimate goal, not the model itself. 

Lessons Learned and Future Needs:  Models can become unwieldy when weighed down by a 
proliferation of features and variables.  Strong theory and a clear specification of purpose should guide 
subject matter experts in the choice of features and variables to be included and excluded, based on the 
specific questions and problems to be addressed.  Model development should not become an end in itself.  
As with the extreme parsimony pitfall of one-dimensional models, better methods, including comparative 
studies of alternative models for a common problem, are needed to determine which variables should be 
included in a model to generate the most useful results. 

PITFALLS IN DEALING WITH UNCERTAINTY AND ADAPTATION 

The problems in this section are based on unrealistic expectations of how much uncertainty 
reduction is plausible in modeling human and organizational behavior, as well as on poor choices in 
handling the changing nature of human structures and processes. 
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Unrealistic Expectations  

A validated model of weapons delivery could be reasonably expected to predict the exact location 
where a bomb will fall when dropped from a specific height and location from an aircraft traveling at a 
specified speed and heading, with specified wind conditions, along with a trustworthy estimate of error in 
prediction based on likely measurement errors.  Plugging in the numbers for the specified variables will 
supply the user with the desired prediction.  It is, however, unrealistic to expect comparable model 
outputs when the outcome to be predicted is behavior by a human, an organization, a nation-state, or other 
social entity.  We illustrate this problem using the behavior of an individual person, but the caveat also 
applies to predicting the actions of particular governments or other specific organizations.   

Models that purport to specify the exact actions of any given individual human being after 
plugging in a list of values (for example, nationality, group membership, gender—for a nation, this might 
be values on a look-up table of cultural traits, estimated military strength, and known alliances) are 
misleading and seriously incomplete.   

Unrealistic expectations are often based on a misconception about what sort of prediction a 
human behavior model can actually produce.  In most situations of interest, there is a range of plausible 
behaviors, and within the same situation, different people will behave differently, and the same person 
may also behave differently at different times.  Rather than generating a single definitive prediction of 
behavior, a good human behavior model will instead identify the space of possible outcomes, give 
probability assessments for these behaviors, and specify some of the factors that could alter these 
probability assessments.   

 This pitfall does not necessarily apply to targeted profiling of a particular identified individual, 
when highly specific idiographic information about a particular individual and a specified context for 
behavior is available.  The data demands of such models are typically very high, however, and it remains 
plausible that even a very carefully profiled individual will do something completely unexpected.  Hence, 
even for such profiles, predictions that are couched in terms of probabilities are more complete.  For 
example, “John Doe is likely to do X, with probability estimate of 60 percent, but may do Y or Z instead 
(model estimate of 10 percent each) or take some other action not covered by the model (20 percent)” is a 
more informative and less misleading guide to planning and action than a point prediction: “John Doe 
will do X.” 

Unrealistic expectations can lead developers to reject a model as useless if postdictive accuracy is 
not very high.  Yet any model that aids in decision making and understanding and that measurably 
reduces uncertainty can have practical value.  The primary contributions of some models are to suggest 
the space of possible outcomes, reduce the likelihood of surprise, and support systematic analysis.  
Bronowski (1953) discusses criteria for determining the usefulness of what one might learn.  Users do 
need to know that they can trust what they are learning from the model, but it may be possible to support 
and test such trust without necessarily expecting the model to replicate observed outcomes in the real 
world, especially when modeling phenomena that are rare, infrequent, or otherwise nearly impossible to 
observe and compare with the model. For example, Cronbach and Glaser (1965) produced results that 
were useful for personnel selection and placement because they represented an improvement over the 
systems that were then in place. It was not the validity coefficient of the results that mattered, but the 
meaningful gain in prediction that they represented. 

Lessons Learned and Future Needs:  When actions must be taken in social situations, IOS models 
can potentially be used to highlight the range of possible outcomes associated with each considered 
course of action, together with probability assessments clarifying the likelihood of these possible 
outcomes.  Point predictions are generally misleading and incomplete.  The value of IOS models should 
be measured in terms of the reduction of uncertainty they achieve.  Better methods are needed to define 
the inherent uncertainty in model results and communicate that uncertainty more clearly to users. 
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Illusions of Permanence 

All models include variables, adjustable parameters, and constants.  Even when a goal of 
modeling is to guide the choice of intervention intended to change structure and behavior (for example, to 
change organizational structure or culture), which implies that the target of intervention is mutable, the 
feature to be modified is sometimes modeled as fixed.  This strategy appears in models of culture (with 
culture treated as a static set of attributes) and in many social network models (with the network treated as 
fixed).  This misleading approach encourages users of the model to overlook how the modeled structure 
may be changing in ways that dramatically alter the impact of an intervention and also forecloses the 
modeling of how a system or structure adapts and adjusts after an intervention.   

For example, using a model of terrorist networks to guide decision making about which members 
of a network to target for removal can mislead users if the network is modeled as a fixed structure from 
which nodes will be deleted, rather than as a dynamic network with a trajectory of change that will be 
altered by the deletion of a node, in ways that could either weaken or strengthen the effectiveness of the 
network.  Models used to characterize adversary choices (e.g., game theory models) should explicitly 
allow the strategy of the adversary to change in response to (or in anticipation of) one's own strategy 
choices.   

 Lessons Learned and Future Needs: When feasible, treat IOS structures as variables or as 
parameters that can be adjusted, rather than as hard-coded fixed attributes that can be altered only by 
rewriting the source code.  Parameters and assumptions will change as a situation evolves, including 
adversary knowledge of the assumptions.  Better methods are needed to build variability over time into 
models and to communicate the model results (with their accompanying uncertainty) to users. 

PROBLEMS IN COMBINING COMPONENTS AND FEDERATING MODELS 

The last three pitfalls we discuss arise from the way in which linkages within and across levels of 
analysis change the nature of system operation.  They arise when creating multilevel models and when 
linking together more specialized models of behavior into a federation of models.   

Moving from Individual to Collective Action  

Social entities such as groups, organizations, and societies are made up of social beings.  Yet 
many individual-based models do not include social capacities.  Merely assembling such agents together 
into a group model will not enable the understanding of teams, the prediction of collective actions, or 
coordinated group decisions.  To model the most rudimentary forms of social behavior, agents need the 
means to track the behavior of other agents and rules for adjusting their own attitudes or behavior 
accordingly.  Depending on the application, the rules can be quite simple.  Traffic models, for example, 
can model the interactive behavior of a collection of agents effectively by assuming that each agent acts 
to pursue an individual goal (getting to a destination in a reasonable time without colliding with others) 
and chooses among possible actions based on the presence, position, and density of other agents, who are 
also trying to get to their preferred destinations.   

Collective action, however, such as group decision making, requires further rule structures that 
specify how agents communicate and coordinate their preferences (see Voting and Social Decision 
Models in Chapter 6).  Models that represent changes in attitude or behavior based on social influence 
need to incorporate rules for how social influence operates.  

In deciding what social capacities need to be explicitly modeled, relevant theory should be 
consulted.  In modeling crowds, for example, social science theories (see Conceptual Models in Chapter 3) 
suggest that changes in behavior are driven either by a weakening of normative regulation or by emergent 
norms that become salient to crowd members.  While flocking models of crowds that treat human beings 
as analogous to birds and fish may well be useful in capturing some aspects of crowd behavior 
(particularly a crowd in flight), such models are unlikely to be adequate to inform interventions designed 
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to strengthen social structures that help prevent a crowd from becoming a mob.  Moreover, a flock of 
birds is not the same as one big bird; crowds of people do not necessarily behave like one big person. 
Models of large organizations should draw on the extensive existing theory and research on how 
organizational levels are defined and how they relate to each other (Klein and Kozlowski, 2000). 

Lessons Learned and Future Needs:  For social dynamics to operate in multiagent systems, social 
capacities of agents, such as communication, must be explicitly modeled.  For collective action, collective 
structures such as rules, norms, and social decision schemes are needed.  More work is needed to 
determine the level of detail at which individuals and groups need to be modeled in order to provide 
useful results.  Comparative studies are needed that examine the contribution of models at different levels 
of granularity to a common challenge problem, and better methods are needed to link models of 
individuals to models of larger groups and organizations. 

Using Collective Attributes to Predict Individual Action  

Just as modeling problems arise in moving from the individual to the collective, inferences made 
in the opposite direction also pose special problems.  Incorporating cultural information in models of 
human behavior is a positive step toward explicitly modeling the heterogeneity of people.  Modelers need 
to keep in mind that modeling people from the same culture as homogeneous is also a simplifying 
assumption.  First, the boundaries of nation-states are not necessarily the appropriate cultural boundary.  
In relatively homogeneous nations, such as Japan, the nation-state boundary may well be a good choice.  
For multiethnic countries, such as Iraq and Afghanistan, tribal boundaries based on ethnic identities, such 
as Kurd or Pashtun, may be more appropriate.  Second, people in the same group also exhibit 
considerable variability.  The extent to which shared culture results in more or less homogeneous 
behavior depends strongly on the situation and the type of behavior involved.  Third, people have multiple 
social identities and belong to multiple groups of different sizes, all of which have cultural norms and 
practices that shape behavior.  Membership in a group such as the military, for example, may influence 
individual behavior more powerfully than membership in a national and ethnic group, so that soldiers in 
two countries may behave more similarly in a large variety of domains than soldiers in either country 
compared with civilians belonging to the same nation and ethnic group.  Finally, one must also be aware 
that characteristics of a higher level of unit of analysis (macro indices) may not be characteristic of 
behavior at a lower level of analysis (individuals at the micro level).  For example, members of a rioting 
crowd may smash windows, set vehicles alight, and violently attack innocent bystanders even if hardly 
any of the individuals involved would behave that way on their own.   

Lessons Learned and Future Needs:  Be aware of the limits and boundary conditions that apply in 
predicting individual behavior from information about groups, organizations, and cultures.  Behaviors 
vary in how strongly they are regulated by cultural norms; people belong to multiple groups, all of which 
have cultural features; and the unit boundary used for modeling may not be the most appropriate one (see 
Cultural Modeling in Chapter 3).  Better methods are needed to represent variable and shifting cultural 
identities, and comparative studies are needed to assess the benefits of modeling cultural affinities 
dynamically in providing useful results for a representative challenge problem. 

Assemblage of Parts 

Recognizing the problems inherent in universal scope models (see above), many in the modeling 
community have embraced the goal of linking together component models (which may focus, for example, 
on a specific aspect of human affect or on culture) to create a more comprehensive IOS model.  The logic 
is for subject matter experts to build the parts separately and eventually snap the component models 
together to yield the complex behavior of the whole.   

The need for creating such federated models is a fundamental challenge.  It is not possible to 
build a large universal model without a federation of models.  So the challenge is to develop systematic 
ways to federate models so that the federated result is valid for its own purpose.   
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Good federated models require (1) an understanding of the purpose of the federated model, which 
might require a deep understanding of the problem domain; (2) a good understanding of the individual 
federated components; and (3) assessment of the validity and limitations of the relationships between the 
individual federated components and the resulting federated model.   

In creating such federated models, modelers need to be aware that straightforward snap-together 
assembly will yield sensible results only when assumptions of additivity and functional independence are 
tenable, and they often are not.  Complex system analysis has shown repeatedly that the connections 
among the federated components are themselves components to be modeled.  The nature of these 
connections is part of the structure that yields the behavior of the whole.  Moreover, the internal structures 
of the federated components might themselves need to change dramatically when an additional 
component is connected into the federated model.   

An example from cognitive modeling will help illustrate the problem.  In the early days of 
cognitive science, many believed that it would be possible to simply piece together separate models of 
reasoning, auditory processing, visual processing, memory, etc., to build a reasonable model of the human.  
However, it became clear that due to complex interactions, a more holistic approach was needed.  
Separate models could be connected together as components of a federated model only if the connections 
themselves were included as part of the federated model and if the internal structures of the components 
were adapted to the presence of these connections.   

The same is true for complex social modeling.  Along with models of individuals, the nature of 
links among the actors and the connections of individuals with larger level units, such as groups and 
organizations, need to be modeled to yield adequate models of both individual behavior in social context 
and the behavior of social entities, such as groups and nation-states.   

As the complexity of model and federations of models grows, it may create the need for 
“wrappers” that help human beings understand the implications and dynamics of the models.  New 
analytic components, perspectives and tools will be needed to support understanding and use.  The 
complex interactions that are typical of social science models, as discussed above, will make this a 
challenging area for research. 

Federation also has implications for the VVandA process (see Chapter 8).  A federated model 
formed by combining two models that have previously been individually validated should not be 
automatically viewed as validated; the federated model must be validated on its own (Burton, 2003).   

Lessons Learned and Future Needs: When linking component models, appropriate theory needs 
to guide the modeling of the linkages as a new component in the resulting federation of models.  Systems 
of systems theory (see Systems Analysis in Chapter 4) can help guide the process of federation, and 
standards are needed for validating the federation itself.  Standards, guidelines, methods, and architectures 
are needed to improve the state of the art in model federation, addressing semantic interoperability issues 
that go beyond simple syntactic interoperability.  Issues to be addressed include the compatibility of 
definitions and levels of abstraction, time scale resolution, and treatment of uncertainty in the models to 
be federated. 

SUMMARY OF FUTURE NEEDS 

Social, cultural, and organizational modeling is a complex, emerging science with roots in many 
different disciplines:  psychology, sociology, economics, anthropology, systems theory, and computer 
science, among others.  The advancement of a scientific field typically requires that researchers maintain 
awareness of each other’s work and build on each other’s results.  The multidisciplinary nature of IOS 
modeling, however, has created a fragmented field with researchers in different disciplines often unaware 
of each other’s relevant work and failing to make use of relevant existing theory and data.  In order for the 
field to advance, researchers need better frameworks and forums in which to compare, discuss, and 
evaluate their results.  The field currently features a multitude of complex models created using different 
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data and different theories to address different problems, making comparative analysis nearly impossible.  
Common datasets and challenge problems are needed in order to learn which modeling approaches and 
sets of variables are most useful for specific types of problems. 

It seems clear that no single model or approach will meet everyone’s needs.  There is no single 
right model and probably will never be.  The committee thinks that a federated modeling approach, in 
which different models at different levels are linked together and component submodels can be swapped 
in and out, are promising for attacking complex IOS modeling problems.  Considerable research needs to 
be done to make this federated vision a reality, however.  Standards, architectures, methods, and tools are 
needed to lower the barriers for developing, linking, and validating federated models. 

Different modeling purposes require different types of models.  In the committee’s judgment, the 
purpose of the model should drive the appropriate variables to be included in the model.  To do this 
successfully requires a clear specification of model purpose and criteria for usefulness for that purpose, 
which in turn requires that model developers work closely with the eventual users of the model. 

The committee also recommends validation for action, in which the purpose of the model drives 
its validation criteria.  IOS models cannot be validated “in general”—they must be validated for a specific 
use.  Research is needed with a cross-disciplinary community of interest to establish and promulgate 
accepted standards for validation of IOS models.  Triangulation methods that combine expert judgment, 
qualitative results and theoretical work, and quantitative results should be further refined and more widely 
used.  Common challenge problems and datasets are needed to facilitate docking of models for 
comparative purposes. 

Finally, models of human beings and their individual and collective behaviors must necessarily 
include a large amount of inherent uncertainty.  This uncertainty is not a flaw of the model and cannot be 
designed out of the model.  Human behavior is dynamic and adaptive over time, and it is impossible at the 
moment (and into the foreseeable future) to make exact predictions about that behavior.  What is needed 
are ways to estimate the probability of plausible outcomes and express those estimates in ways that are 
clear and meaningful to model users, who can then judge whether the results meet their needs. It is 
important also to avoid raising expectations about the capabilities of IOS models beyond what they can 
realistically deliver. 
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11 
Recommendations for Military-Sponsored Modeling Research 

This report has reviewed the state of the art in individual, organizational, and societal (IOS) 
modeling and the ability of current modeling approaches to meet military needs; assessed the common 
pitfalls and problems associated with this type of modeling; and pointed out areas in which additional 
work is needed.  This chapter summarizes the committee’s recommendations for advancing behavioral 
modeling capabilities to meet the military’s current and anticipated needs. 

There are many challenges in advancing the science of human behavioral modeling.  The theory 
on which to base the models is often fragmented and incomplete, failing to specify key links that are 
needed to answer the questions of interest.  Data for testing theories and models (or for deriving 
empirically based models) are also sparse and often lacking in detail for exactly those factors that are 
critical for the model.  Because of the scale of many behavioral models, it is rarely possible to generate 
useful data from controlled laboratory experimentation (as, for example, is often possible for models of 
individual cognition and behavior).  Furthermore, there are often no well-defined criteria for success in 
these modeling efforts and no widely accepted definitions and methods for validation of IOS models.  
Finally, the research and development efforts are being conducted in many different disciplines. Modelers 
currently use different types of data, at different levels of detail, to model different types of behavior in 
order to answer different kinds of questions.  Little effort is devoted at present to comparison or 
integration of models from different perspectives.   

How, then, can this fragmented field best advance?  Our recommendations focus on cross-
disciplinary information exchange and the comparison and integration of models, structured around well-
defined challenge problems and common datasets, with independent research thrusts recommended for 
those issues that are most critical. 

Recommendations fall into three broad categories: (1) large-scale, integrated cross-disciplinary 
research programs, focused around representative challenge problems and common datasets; (2) research 
in six independent areas that will advance the capabilities to address these integrated  problems; and (3) 
multidisciplinary conferences, workshops, and other information exchange forums, with attendees to 
include not only model developers but also government program managers and military decision makers. 

INTEGRATED CROSS-DISCIPLINARY RESEARCH PROGRAMS 

We suggest the funding of multiple large-scale, multiyear research programs that focus on 
comparing and, if appropriate, integrating models from different disciplines, different perspectives, and 
different levels of detail.  This funding would provide incentives for researchers in diverse disciplines to 
work together on military-relevant problems.  The goal would not be to pick the best model but rather to 
create a level playing field on which the capabilities of different approaches could be compared and the 
strengths of each assessed (see Gluck and Pew, 2005, for a description of a similar research program 
conducted for individual cognitive models).  The ultimate goal is to move IOS modeling science forward 
through the process of comparison, docking, and integration.   

It is essential for all participants in each program to focus on the same well-defined challenge 
problem instantiated in a common testbed and to use a common program dataset.  At the heart of each 
program would be a representative problem that is critical for military operations, defined in detail.  The 
five representative problems described in Chapter 2 provide a possible starting point for choosing the 
problems to be addressed. 
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The definition of challenge problems is a difficult but essential step for the recommended IOS 
modeling research program, and it should be first step in such a program.  Initial grants should fund 
challenge problem development, and continuation of the program should be contingent on success in 
defining these problems. Operational users must be involved in defining the challenge problems, and the 
criteria for modeling success should be clearly specified as part of problem  definition.  What type of 
model results—discovery, understanding, or forecasting—will be  relevant for the problems being defined?  
What actions may be taken based on the model results?  Criteria for model usefulness in the challenge 
problems should be clearly defined up front. 

The research teams for these efforts should be multidisciplinary, and the program team should 
also include military users with operational experience in the domain for which the models are to be 
developed.  These users will be ultimate judges of whether model results are useful (which we argue is 
the ultimate criterion for validation; see Chapter 8) and will provide advice on how the model results can 
best be presented for immediate comprehension and relevance.  The use of a common challenge problem 
and a common testbed will facilitate the docking of the different models for purposes of comparison. 

These integrated programs will encourage mutual education between modelers and operational 
users.  Researchers will learn about the military domain and about user expectations.  Users will learn 
about the scientific limitations to understanding of the basics of human behavior and what is feasible to 
represent in models (and implement in usable simulations) and will develop an understanding of the level 
of uncertainty associated with model forecasts or predictions.  Results should be presented at workshops 
for program participants and other interested parties and at public conferences, published in the open 
literature for the research community at large, and presented “up the chain” to the program managers who 
rely on these models for operational, training, and mission rehearsal uses. 

INDEPENDENT RESEARCH THRUSTS 

In support of the integrated programs we recommend, we have identified six independent areas in 
which research is needed.  Progress in each of these areas could increase the ability to develop the 
integrated modeling capabilities that are needed to address military problems.  In each area, we suggest 
the funding of multiple research teams approaching the work  from multiple perspectives, with periodic 
workshops for researchers to exchange results.  We also suggest that operational users as well as 
government program managers participate in these workshops to draw on their areas of expertise and to 
gain better insight as to model capabilities and limitations.  The funding structure of the programs should 
support and enable the participation of individual researchers or smaller laboratories in both academic 
institutions and industry and not be limited to large institutions, as is often the case in collaborative 
projects supported by the Department of Defense (DoD).   

Thrust 1:  Theory Development 

Models should be conceptually correct and grounded in the underlying fundamentals of what is 
known about individual human and group social behavior.  However, current theory in this area does not 
answer all of the questions needed to structure models that address relevant issues.  Basic research is 
needed for theory development, especially for the low-level social behaviors (e.g., choosing friends) that 
are the building blocks for larger scale social behavioral patterns (e.g., joining a terrorist group).  Since 
affective states and traits represent a key component of individual motivation and play a critical role in 
interpersonal behavior and group and organizational decision making, basic research in emotion and 
emotion-cognition interactions should be emphasized.  This theory development work must involve 
multiple disciplines and perspectives with periodic workshops to exchange results. 

Theory development challenge problems should be defined to guide the work, but these can be 
nonmilitary and need not involve the level of military detail necessary for the integrated problems 
discussed above.  A series of workshops should be conducted with researchers to identify key theory gaps.  
We recommend working backward from a set of operational problems (as defined for the integrated 
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programs) to identify areas in which lack of theory is impeding modeling progress.  These theory gaps 
can be used to define theory challenge problems. 

Academic institutions are key players for theory development, but they need information, 
incentives, and funding to address these theoretical issues.  There is a need to educate academic 
researchers in military domains, establish conferences and journals in which their results can be presented, 
provide postdoctoral support, and provide funding that allows researchers to spend time learning about 
military domains in depth. Funding for graduate students is a key part of this thrust as a cost-effective 
way to bring about shared understanding and progress. 

Thrust 2:  Uncertainty,Dynamic Adaptability, and Rational Behavior 

Models must deal with the inherent uncertainty (nondeterminism) and the dynamic adaptation 
(nonstationarity) that characterizes human behavior.  Models must also be capable of modeling both 
rational and nonrational behavior.  

 Basic research is needed in each of these areas.  Issues include: 

• How should models capture the “uncertainty-in-the-small” associated with individuals 
and small groups?  How can model structures and parameters capture this variability, and 
how much of this variability must be included for the purposes of the model? 

• How should models capture the “uncertainty-in-the-large” associated with populations 
and variations in population distributions?  For example, to what extent should models be 
based on mean values versus capturing effects from the tails of a distribution?  How 
much variability must be included for the purposes of the model? 

• How can models capture adaptation and learning over time and in response to actions by 
others?  For example, models of cultural groups often assume that cultural identity is 
static and unitary.  In fact, people have multiple overlapping identities and allegiances 
that vary in their influences over behavior.  How can these be captured in a model, and 
how can one estimate the effects of actions and events on the primacy of these multiple 
allegiances as they affect decisions and actions? 

• What are the factors that contribute to rational, adaptive behavior and what factors induce 
behavior that appears nonrational?  Historically, emotions and affective factors have 
often been adduced to explain irrationality, but recent research in psychology and 
neuroscience has demonstrated that emotions also play a critical role in rational, adaptive 
behavior. Likewise, behaviors viewed as purely cognitive—including habit, bounded 
rationality, the range of beliefs unfamiliar to the observer, and ignorance, as well as 
behaviors with strong cognitive and affective components, such as fanaticism—can lead 
to what appears to be irrational behavior.   Models of both rational and irrational behavior 
must therefore capture all the key factors—cognitive, affective, cultural and contextual—
that motivate and shape behavior of specific individuals in specific situations.  

Better techniques are needed for understanding the implications of diversity and variability for 
model-based sensitivity analysis.  Combinatorial explosion of possible combinations of parameters is a 
challenge, and better automated technology is needed to put the model through its paces to explore the 
parameter space effectively and produce robust results. 

Thrust 3:  Data Collection Methods  

The difficulty of obtaining data is an ongoing challenge for IOS modeling.  Research is needed to 
develop better data collection processes through field studies, experiments, and potentially by using 
massive multiplayer online games (MMOGs). 
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Although a variety of ethnographic data collection techniques are currently in use, they need to be 
better tailored to the needs of IOS models.  For field data collection, it is necessary to bring modelers and 
data collectors together to develop data ontologies, joint specifications, and data collection methodologies 
and tools that are specifically tuned to IOS models.  

MMOGs are an untapped resource for collecting social and behavioral data on a large scale.  We 
recommend the creation of an MMOG facility that could serve as a testbed for exploratory research and 
model testing and the funding of basic research to determine if MMOGs can be used to test, verify, and 
validate IOS models.  We recommend that funding be put into developing the science of MMOGs rather 
than in developing additional artificial worlds.  The research agenda for this facility should be developed 
through workshops that convene both IOS modeling scientists and game experts. Note that funding 
MMOGs is a risky endeavor, with no guarantee that games that are useful for research purposes will find 
the widespread interest necessary for extensive data generation, but we think that the potential benefits 
outweigh the risks. 

Given the critical role of emotions and affective personality factors in organizational decision 
making and behavior, it is also important to enhance the current methods for collecting affective data.  
Emotions and moods are notoriously difficult to assess accurately, particularly in naturalistic and field 
settings. Yet recent progress has been made in using multimodal approaches to affect assessment, 
including physiological monitoring and indirect assessment of these transient states via diagnostic tasks 
and performance tracking.  We recommend that funding be allocated to the continued refinement of these 
methods and to the development of standardized assessment instruments, particularly in naturalistic 
settings. 

 

Thrust 4:  Federated Models 

It is a fundamental conclusion of the committee that no single modeling approach can provide all 
the capabilities needed by DoD.  We recommend a federated approach in which modeling components are 
created to be interoperable across levels of aggregation and detail.  For example, a federated model might 
include a detailed representation of a few key individuals, linked to group-level models of different 
cultural groups and terrorist organizations, linked to geographic sector–level models of the level of unrest 
in a city.  This approach is flexible and extensible, allowing the addition or subtraction of models at 
different levels of detail as needed for the problem to be addressed. 

Combining model components to create federated models in the sense being recommended is not 
simply a matter of specifying and using interface-level syntactic compatibility protocols.  It requires deep 
semantic interoperability (i.e., theoretical consistency).  To create semantic interoperability, it is 
necessary to recognize that the links among components are themselves elements of the model.  
Components created at different levels of detail and for different purposes do not simply snap together to 
produce meaningful results. 

Assuming that the interface protocol issues will be solved by others (e.g., enterprise database 
developers), research is needed to answer the following questions: 

•  What is the best way to ensure that the models being federated embrace compatible 
assumptions regarding concept abstractions, entity resolution, time scale resolution 
(tempo), uncertainty, adaptability, docking standards, Input/Output semantics, etc.? 

• How should the components of the federated model be encapsulated, and which elements 
must be exposed to other components? 

• How should specific classes of models be linked (e.g., cognitive models to social network 
models)? 
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• How can developers ensure dynamic extensibility? 

These issues are not unique to IOS modeling. In addressing them, IOS modelers should maintain 
awareness of research and development in model federation in the larger modeling and simulation 
community. 

Thrust 5:  Validation and Usefulness 

Current verification, validation, and accreditation (VVandA) concepts and practices were 
developed for the physical sciences, and we argue that different approaches are needed for IOS models.  
Specifically, we recommend the use of a “validation for action” approach that assesses the usefulness of a 
model for the specific purposes for which it was developed.  Although promising work has been done in 
testing IOS models through triangulation among multiple types of expertise and multiple data sources, 
and some work has been done in docking different models for comparison, these approaches are not 
widespread.  We recommend organizing a national workshop to agree on appropriate processes for 
VVandA of IOS models and to outline a roadmap for developing improved VVandA processes and 
standards.  On the basis of the results of this workshop, we recommend that a DoD-wide authority 
develop and disseminate VVandA processes and standards for IOS models.  These standards should be 
developed de novo, not as an adjunct to conventional VVandA standards. 

Basing model validation on the usefulness of the model for specific problems requires that model 
purposes be clearly stated by model users and clearly understood by model developers.  This is an area in 
which mutual education is needed.  We suggest that, as part of developing a VVandA standard for IOS 
models, clear guidelines be developed for specifying model purpose. 

Thrust 6:  Tools and Infrastructure for Model Building 

It is important to reduce the barrier to entry for developing models, modeling tools, frameworks, 
and testbeds.  Scientists should be able to build and validate models without the large overhead currently 
associated with many DoD modeling and simulation investments.  It should be possible to tailor existing 
models easily for specific purposes. 

Sharing of IOS modeling knowledge across disciplines, as facilitated by the conferences and 
workshops recommended below, will support this goal.  Work is also needed to develop an infrastructure 
for IOS modelers, including a national network of possible collaborators, common databases for model 
development and testing, and frameworks and toolkits for rapid model development.  There is also a need 
for web-based repositories of information about existing models and, later, model components. 

To facilitate the development and use of shared ontologies and model components, funding must 
also be allocated to the refinement of existing markup and modeling languages, as well as the 
development of new languages for particular domains or tasks.  

The limited data that exist for IOS models are often not accessible to model developers.  We 
recommend the funding of national web-accessible data repositories that are open to researchers who seek 
to inform and test models.  For militarily relevant domains in which some data are classified, we 
recommend an investment in automated tools to sanitize potentially sensitive military data. 

Often, the IOS models themselves are not readily accessible or even known to researchers or 
practitioners. Researchers are often unaware of efforts under way in DoD that are not reported on in 
conventional conferences and journals, and military developers are likewise unaware of progress being 
made in the research community. Or if they are, the typical user can face great difficulty in assessing the 
applicability of one approach or model over another, given their particular problem at hand. The 
occasional studies that attempt to survey the community and categorize development efforts and 
associated models, such as this one (see, e.g., Table 2-1 and Table 8-3) and its predecessor study 
(National Research Council, 1998), take small steps in this direction, but they are not meant to be 
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exhaustive surveys, and are only snapshots in time, become stale rather quickly, and fail to offer easy 
electronic access directly to the rich and evolving world of IOS models and associated simulations. 

We therefore recommend the development and maintenance of an online web-based catalog of 
general approaches, models, simulations, and tools. The notion is to develop something along the lines of 
DMSO’s Modeling and Simulation Resource Repository (MSRR) at http://www.msrr.dmso.mil/, 
maintained by the Modeling and Simulation Information Analysis Center (MSIAC), or the clearinghouse 
at Carnegie Mellon’s CASOS site (see http://www.casos.cs.cmu.edu). But to be effective, the envisioned 
site needs careful consideration in terms of: 

• Organization: The model ontology and site structure needs to be carefully thought out, both from 
the researcher’s perspective (e.g., foundational concepts underlying the particular model in the 
repository) and from the user’s perspective (domain of application, limitations, simulation 
requirements, etc.). 

• Content: Considerations need to be given to what is maintained on the site, ranging from simple 
descriptive abstracts to full-fledged downloadable simulations and “read me first” instructions. 

• Currency: Once set up, the maintainers must devote effort to constantly updating the site, by 
tracking changes to existing models, adding new models that arise on the scene, and, certainly of 
equal importance, removing defunct models, or at least moving them to the archival section of the 
site to support historical surveys and the like.  Failure to maintain currency will be the death knell 
of the repository, as it is with most websites today. One approach that should be considered is a 
Wikipedia-based model. 

• Usability: The site design needs to ensure ease of use for all authorized visitors, including 
contributors, users, and occasional viewers.  Procedures need to be in place to vet content 
modifications or additions, to support ease of navigation and internally searching for what the 
user is seeking, and to keep the site fresh and attractive to the larger community. 

 
It is clear that this cannot be a one-time effort like DMSO’s MSRR, nor an unfunded academic effort like 
CMU’s CASOS site. It needs significant startup funding and continued support over its lifetime.  

MULTIDISCIPLINARY CONFERENCES AND WORKSHOPS 

A number of the issues and problems identified by the panel were the results of the failure of 
different disciplines to exchange information, or they resulted from misunderstandings among 
government funders of model development efforts, military users of models, and model developers.  
Because of the diversity of this group, there is no natural forum for them to exchange information, as 
there would be in conferences and journals for members of the same academic discipline or professional 
group.  We therefore recommend the organization of special-purpose workshops around the integrated 
research programs recommended above as well as workshops for the independent research thrusts 
described above. 

IOS modelers who are interested in working on military-relevant problems need to be educated 
on: 

• The nature of the military decisions for which models are relevant and of the operational 
situations in which the decisions must be made. 

• Desired model functionality. 

• The most useful form(s) for presenting model results. 

• The value of work performed by others outside their discipline. 

• Feasible and appropriate VVandA approaches for IOS models. 

Operational users and managers need to be educated on: 
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• The value of multidisciplinary approaches and the need for review of models from 
multiple perspectives. 

• The inherent uncertainty associated with IOS model predictions. 

• The value of models for sensitivity and trade-off analysis (versus the one right answer). 

• The design of virtual experiments to assess results over a range of conditions. 

• Reasonable definitions of validation for IOS models, feasible approaches for VVandA 
testing, and why these approaches differ from those used for physics-based models. 

The recommended workshops should involve model developers, operational military users of the 
models, and government personnel who make funding decisions regarding model development.  Issues to 
be discussed include methods for clearly specifying model purpose, criteria for judging the usefulness of 
models (i.e., what does it mean to validate a model), reasonable expectations for the certainty of model 
predictions, and methods for most clearly communicating model results. 

ROADMAP FOR RECOMMENDED RESEARCH 

The committee’s recommendations are based on the concept of use-driven research. As defined 
by Stokes (1997), use-driven research combines elements from both basic and applied research.  Like 
applied research, use-driven research seeks to solve a practical problem—in this case, the development of 
IOS models that can serve military purposes.  But, like basic research, it also asks “why” in a fundamental 
way—Why do some methods work and others not work? What are the principles that underlie success or 
failure? 

Figure 11-1 illustrates the major elements of a use-driven research program for IOS modeling.  
The process starts with challenge problem definition, which includes a clear specification of the use to 
which a model is to be put.  This specification should be based on the needs of the model users, expressed 
in terms that are meaningful to the IOS modeling community. The challenge problem definition step is 
critical, and the funding of the remainder of the program should be contingent on its success. The purpose 
of the model drives the theory to be applied, the data to be used, and the model development.  Model 
development is made easier by modeling tools and infrastructure and relies on federation standards to 
ensure the interoperability of model components.  Once the model is developed it is validated by asking 
the question: Is the model useful for its intended purpose?   

As shown in Figure 11-1, the problem specification and model development process is cyclical.  
Based on the answers to the question “Is the model useful?” new models may need to be developed, new 
theory and new data (and new types of data) may be needed, and new interoperability standards, tools, 
and infrastructure may be required. Depending on the results, the problem itself may need to be redefined, 
clarified, or expanded. 

Figure 11-1 lays out the areas in which research and development are needed for IOS modeling 
and shows how they are interdependent. Figure 11-2 organizes the suggested research areas into a 
roadmap that shows lines of activity and the interrelationships among them, repeating yearly in a cyclical 
fashion to advance the state of the art in meeting military IOS modeling needs. 

As in all use-driven research, the recommended activities start with a clear definition of the 
purposes to which IOS models are to be put. We recommend that the initial activity for the program (the 
first six months) be spent on developing a clear definition for selected representative challenge problems 
(the problems listed at the end of Chapter 2 can provide a starting point) in close collaboration with 
operational military users.  Concurrent with problem definition, the first six months should be spent in 
developing datasets for these challenge problems. The challenge problems will provide common themes 
that tie together the diverse research and model development efforts. 
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There is currently no single approach that is clearly dominant for IOS modeling.  Our 
recommendation is to select and fund a number of modeling teams that take different approaches for each 
challenge problem.  In addition to the modeling teams, we recommend a series of specialized research 
thrusts focused on theory development, data collection methods, federation standards, and the 
development of infrastructure and tools. These thrusts will be aware of the challenge problems and will 
use the problems to focus their research, but their charter is broader and covers the entire field of IOS 
modeling.   

The modeling teams and the research thrusts will come together in a conference at month 6, to 
learn about the challenge problems and the datasets associated with each problem.  Conferences that 
involve the entire program will be scheduled yearly, with workshops for the individual research thrusts at 
the intervening 6-month intervals. The yearly conferences will also provide the forum for the presentation 
of new challenge problems, based on the results obtained in the prior year. 

At the end of year 1, the models that have been developed for the challenge problems will be 
presented and discussed at a validation workshop, and docking and comparison activities will follow 
during the next 6 months, with results to be reported to the whole program at the yearly conference.  
These validation workshops should involve representative model users for each challenge problem. These 
users will assess the extent to which model results are useful for their intended purpose, as defined in the 
challenge problems. This process will repeat in subsequent years. As shown in Figure 11-1, the intention 
is that the results of the validation effort will inform all of the research thrusts as well as model 
development for the next cycle. 

Although not shown in the timeline, it is assumed that a concurrent effort will be focused on the 
development and maintenance of an online web-based catalog of general approaches, models, simulations, 
and tools, as described earlier. This will serve not only as a repository of current theories and models, but 
also as a common record of the results of the execution of the roadmap. 

The roadmap structure proposed in Figure 11-2 is intended to provide the field of IOS modeling 
with the common ground and forums for sharing information that will allow it to advance in a systematic 
way. Development and testing of models against a common set of challenge problems will avoid the 
current proliferation of specialized models for specialized purposes with no common framework for 
comparison and validation and therefore no foundation for scientific progress.  Figure 11-2 shows the 
research cycle repeating over a four-year period, but we recommend that the program continue well 
beyond four years, with each year assessing the progress that has been made and increasing the 
complexity of the challenge problems based on the increasing capability of the modeling technology.  
New participants should be added to the funded programs and conferences each year, as new approaches 
and tools are developed and tested. 
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FIGURE 11-1 Elements of use-driven research for IOS modeling. 
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FIGURE 11-2 Roadmap for an IOS modeling research program. (Note: Only the first four years are 
shown). 
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APPENDIX A 
 

Acronyms and Abbreviations 
 

 

Models, Modeling Tools, Frameworks 
 
AASPEM  Advanced Air-to-air System Performance Evaluation Model 

ACT-R  Adaptive Control of Thought –Rational, a cognitive architecture 

ADC   Air Defense Commander, a model of a combat team 

AMBR Agent-Based Modeling and Behavior Representation, a research program 

that compared cognitive models using a common testbed 

BioWar  A hybrid model incorporating social networks, disease, dispersion models 

BNet   family of Belief Network tools 

BRAHMS A multi-agent modeling and simulation environment that uses a small 

number of sophisticated agents 

C3GRID  Command, Control, and Communications (C3) on Grid model 

C3HPM  C3 Human Performance Model 

C3TRACE  C3 Techniques for the Reliable Assessment of Concept Execution 

CART/IMPRINT Combat Automations Requirements Testbed/Improved Performance 

Research Integration Tool 

CASTFOREM A traditional modeling and simulation tool 

CBS   A traditional modeling and simulation tool 

CCTT   A traditional modeling and simulation tool 

CHAOS  A conceptual prototype model 

CLARION  Connectionist Learning with Adaptive Rule Induction ON-line 

CLIPS   A tool for building expert systems 

CLOS   Common LISP Object System 

Cmap   Concept Map tools 

COGNET  Cognition as a Network of Tasks 

Construct  A multi-agent dynamic network model 

CORES  Complex Organizational Reasoning System 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 
 

A-2 

CSSTSS  A traditional modeling and simulation tool 

DDD Distributed Dynamic Decision-making, a simulation-based team-in-the- 

loop testbed 

DIAS   Dynamic Information Architecture System 

D-OMAR  Distributed OMAR (Operator Model Architecture) 

DyNet   A multi-agent model/framework 

EAAGLES  A traditional modeling and simulation tool 

EADSIM  A traditional modeling and simulation tool 

EAGLE  A traditional modeling and simulation tool 

EPIC   Executive Process Interactive Control 

FLAMES  Flexible Analysis Modeling and Exercise System 

GRADE  Graphical Agent Development Environment 

Graphviz  (App D)GTA-SA  Grand Theft Auto – San Andreas (a game) 

HLA   High Level Architecture 

HOS   Human Operator Simulator 

IBC   Integrated Battle Command 

ICET   Integrated Concept Evaluation Tool 

ICEWS  Integrated Crisis Early Warning System 

iGEN   The development environment associated with COGNET 

IMPRINT  Improved Performance Research Integration Tool 

IUSS/IWARS  Integrated Unit Simulation System/Infantry warrior Simulation 

Jack   An anthropometric model for system design 

JANUS  A traditional modeling and simulation tool 

JCATS   A traditional modeling and simulation tool 

JCM   A traditional modeling and simulation tool 

JSAF   A behavior model 

JSIMS   Joint Simulation Systems 

JWARS  A traditional modeling and simulation tool 

MAMID  Methodology for Analysis and Modeling of Individual Differences 

MASON  A multi –agent simulation environment 
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MATREX  Modeling Architecture for Technology Research and Experimentation 

MicroPsi An agent architecture that describes the interaction of emotion, motivation 

and cognition of situated agents 

MicroSAINT  Microprocessor-based Systems Analysis of Integrated Networks 

MIDAS  Man-machine Integration Design and Analysis System 

MINDS  Modeling Individual Differences and Stressors 

ModSAF  Modular Semi-Automated Forces 

MTWS  A traditional modeling and simulation tool 

NetLogo  A cross-platform multi-agent programmable modeling environment 

NetWatch  A multi-agent model/framework 

NM   A National Model, used in SROM (see below) 

OCC   An appraisal model 

OCCAM Organizational and Cultural Criteria for Adversary Modeling, a software- 

based decision-aid that incorporates organizational and cultural influences 

on individual and group behavior 

OMAR/D-OMAR Operator Model Architecture/Distributed OMAR 

OneSAF  One Semi-Automated Forces 

OOS   OneSaf Objective System 

ORA   Organizational Risk Analyzer 

OrgAhead An organizational learning model designed to test different forms of 

organizations under a common task representation 

OrgSim  A multi-agent model/framework 

OTB   OneSAF Testbed 

PCAS   Pre-Conflict Anticipation and Shaping 

PMFServe  Performance Moderator Function Server 

PRISM  (App D) 

Ptolemy  (App D) 

RAID   Real-time Adversarial Intelligence and Decision-making 

RDEBBSM  A crowd model based on diffusion kinetics 

REPAST  An agent simulation environment 
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SAMPLE  Situation Awareness Model for Person in the Loop Evaluation 

SEAS   Synthetic Environments for Analysis and Simulation 

SIAM   A collaborative decision-aiding tool 

Soar   An operator modeling production-rule system 

SPECTRUM  A sociocultural training system 

SROM   (or SRO Model) Stabilization and Reconstruction Operations Model 

STELLA  A simulation-based training environment for Information Operations 

SWARM  A multi-agent modeling tool 

TACBRAWLER A traditional modeling and simulation tool 

TACSIM  A traditional modeling and simulation tool 

VISEO   A model focusing on human visual performance 

VISTA   A multi-agent model/framework 

WARSIM2000 A traditional modeling and simulation tool 

XCON The eXpert CONfigurer program: an early expert system used to aid in 

configuration of VAX computer systems 

Xerion   neural network simulator (also known as the University of Toronto  
   simulator [UTS]) 

 

Other Abbreviations and Acronyms 
 
ABM   Agent-based modeling 

AFAMS  Air Force Agency for Modeling and Simulation 

AFOSR  Air Force Office of Scientific Research 

AFRL   Air Force Research Laboratory 

AI   Artificial Intelligence 

API   Application Programming Interface 

ARI   Army Research Institute for the Behavioral Sciences 

ARL   Army Research Laboratory 

BBN A company active in model development, (formerly Bolt, Beranek and 

Newman) 

BCT   Brigade Combat Team 
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BDA   Battle Damage Assessment 

BDI   Belief, Desire, Intention?   

BLOS   Beyond Line of Sight 

C2   Command and Control 

C3   Command, Control, and Communications 

C4ISR Command, Control, Communications, Computers, Intelligence, 

Surveillance and Reconnaissance 

CA   Civil Affairs 

CASOS Center for Computational Analysis of Social and Organizational Systems, 

located at Carnegie Mellon University   

CCM   Cultural Consensus Model 

CIC   Combat Information Center 

CL   Computational Laboratory 

CMO   Civil Military Operations 

CMYK  Cyan, Magenta, Yellow, Black, the four colors used in some color printing 

CNO   Computer Network Operations 

COA   Course of Action 

Cog-Aff  Cognitive-Affective (check) 

COGENT  Cognitive Objects within a Graphical EnviroNmentT 

CONNECT  A social network analysis tool for organizational modeling and simulation 

COP   Constraint Optimization Problem 

COTS   Commercial Off The Shelf 

CPE   Commander’s Predictive Environment  

CPM   Critical Path Method 

DARPA  Defense Advanced Research Projects Agency 

D-COG  Distributed Cognition (check) 

DFT   Decision Field Theory 

DIME   Diplomatic, Information, Military, and Economic 

DISCUSS  A process simulation model of jury decision making 

DMO/MR  Distributed Mission Operations/Mission Rehearsal 
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DMSO   Defense Modeling and Simulation Office 

DoD   Department of Defense 

DSM   Design Structure Matrix 

EBO/EBP  Effects-Based Operations/Effects Based Planning 

EM   A model of appraisal using OCC(see below) theory 

EMA   A computational appraisal model 

ERGM   Exponential Random Graph Models 

ES   Expert Systems 

EW   Electronic Warfare 

FCS   Future Combat System 

FHA   Federal Housing Administration (check) 

FOB   Forward Operating Base 

FPS   First Person Shooting (type of game) 

GIG   Global Information Grid 

GOTS   Government Off The Shelf 

GUI   Graphical User Interface 

HASMAT  Human and System Modeling and Analysis Toolkit  

HBR   Human Behavior Representation 

HIL   Human in the Loop 

ICCS   International Conference on Complex Systems 

IDE   Integrated Development Environment 

IED   Improvised Explosive Device 

INTEL   Intelligence 

INTERMEDIATE An anthropometry model 

IO    Influence operations 

IO    Information operations 

IOS   Individual, Organizational and Societal 

JDEP   Joint Distributed Engineering Plant 

JFCOM  Joint Forces Command 

JSF   Joint Strike Fighter 
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JUO   Joint Urban Operations 

LISP   A programming language often used for Artifcial Intelligence systems 

LOS   Line Of Sight (check) 

M&S   Modeling and Simulation 

MAD   Mutually Assured Destruction 

MAS   Multi Agent Systems 

MC2C   Multi-sensor Command and Control Constellation 

MCO   Major Combat Operations 

MI   Military Intelligence? 

MMOG  Massively Multiplayer Online Gaming 

MOOTW  Military Operations Other Than War 

MOUT   Military Operations on Urban Terrain 

MP   Military Police 

MSIAC  Modeling and Simulation Information Analysis Center 

MSRR   Modeling and Simulation Resource Repository (at DMSO) 

MUO   Major Urban Operations 

NGO   Non-Governmental Organization 

NLOS   Non-Line of Sight 

NMSO   Navy Modeling and Simulation Office 

NRC   National Research Council 

ONR   Office of Naval Research 

OPS   Operations 

OPSEC  Operations Security 

OR   Operations Research 

OSD   Office of the Secretary of Defense 

PAP   Password Authentication Protocol? 

PERT   Program Evaluation and Review Technique – a program management tool 

PMESII  Political, Military, Economic, Social, Information, and Infrastructure 

PSYOP  Psychological Operations  

QDR   Quadrennial Defense Review 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

Prepublication Copy 
 

A-8 

R&D   Research and Development 

R&S   ?(Used but not defined in App B) 

RBA   Revolution in Business Affairs 

RGB   Red, Green, Blue, a method of color printing 

RMA   Revolution in Military Affairs 

RPD   Recognition-primed Decision Making 

RPG   Rocket Propelled Grenade 

S&T   Science and Technology 

SAB   (US Air Force) Scientific Advisory Board, also USAF SAB 

SAFIA   An expert system used in Japan to control blast furnace operations 

SASO   Stability and Support Operations 

SCCS   Standard Cross-Cultural Survey 

SDB   ? 

SNA   Social Network Analysis 

SOA   ? 

SSC   (US Army) Soldier Systems Center 

STEAM A digital distribution, digital rights management, multiplayer and 

communications platform (check) 

UA   ? 

USECT  Understand, Shape, Engage, Consolidate, and Transition 

VV&A   Verification. Validation, and Accreditation 

WMD   Weapons of Mass Destruction 

XML   Extensible Markup Language 

XSLT XSL Transformations, a language for transforming XML documents into 

XHTML documents or to other XML documents 
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APPENDIX B 
Exemplary Scenarios and Vignettes to Illustrate Potential Model Uses 

To support the analysis effort and focus subsequent discussions of potential model utility, we 
present here a detailed scenario describing key operational aspects of a real-life scenario containing many 
of the Quadrennial Defense Review (QDR) (U.S. Department of Defense, 2006) and Joint Urban 
Operations (JUO) considerations posed earlier. Researchers and model developers might believe that 
there are any number of scenarios available on which one might build one’s analyses, but this is not the 
case. It is very difficult to find one that embraces all of the likely future combat conditions, since official 
publications [ref. needed.][page no. for quotes]  state that realistic scenarios must include 

• modernized industrial age forces with high-tech systems and more primitive paramilitary 
and insurgent forces; 

• complex terrain and urban environments; 

• failed states (the norm) with the internal society fractured and crime rampant; 

• international interest/involvement in the region with nongovernmental organizations 
(NGOs) or information operations (IOs) engaged; 

• national will at issue; 

• use of IOs including media-mediated psychological operations (PSYOPS) and computer 
network operations; 

• soft influences ongoing in parallel, including diplomatic, infrastructure, military, and 
economic (DIME) activities; 

• time criticality; and 

• potential for inclusion of diverse missions. 

GENERAL SETTING AND FRIENDLY FORCE ORGANIZATIONAL STRUCTURE 

The scenario elements included here are derivative of the one detailed in TRADOC PAM 525-3-
90 O&O 22 JUL 2002 (U.S. Army, 2002) and include all these aspects. For purposes of this study, three 
vignettes have been extracted and distilled. The three vignettes provide a construct for the purpose of 
addressing potential of behavioral models supporting a brigade combat team (BCT) as part of a joint 
campaign. As stated in the TRADOC pamphlet: “They are presented for illustrative purposes only and are 
cast incidentally in the trans-Caucasus region to account for the realistic, tough range of variables and 
conditions, as well as the difficulty of the tactical dilemmas presented” (U.S. Army, 2002, p. F-1.).   The 
pamphlet, in its seven sections, provides a very detailed mission operational setting in the trans-Caucasus 
region (see Figure A-1). It includes three relevant vignettes:  

1. tactical operations in entry operation (Entry),  
2. operational maneuver by air, combined arms operation for urban warfare (Transition), and   
3. secure portion of a major urban area (JUO). 

 
The design purpose of these vignettes is to develop requirements, seek new tactical concepts, and seek 
new organizational design principles. The pamphlet emphasizes joint operations, and it explicitly 
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describes new tactical principles based on development of the situation in and out of contact with the 
enemy. In addition, the trans-Caucasus region includes long-standing fault lines of bitter ethnic rivalry 
dating back millennia and thus supports strong components of scenario design for purposes of assessing 
particular behavioral model applications with religious, political, social, economic, and cultural impacts.   
 The nature of these “soft” regional factors emphasizes the need to appreciate and leverage 
political and informational domains to advantage.  

 The BCT will be the basic building block of future combat forces (U.S. Army, 2002).  It will have 
the capability to command and control up to six maneuver battalions, will be able to employ a range of 
supporting capabilities, and will be able to perform a variety of missions, including reinforcing fires, 
engineers, military police (MPs) air defense, PSYOPS, civil affairs, etc. The BCT will not be a fixed 
organization but “must be absolutely superior in complex situations where sophisticated political and 
informational skills are required in small unit leadership. Adversaries will leverage information, the 
media, and ethnic and religious fractures to maximum advantage” (U.S. Army, 2002, p. 21). 

The BCT must have the ability to see, understand and act first, then finish decisively. Mid-grade 
and junior leaders must effectively recognize and solve problems in complex situations with political and 
informational dimensions. In the past, uncertainty about enemy and friendly conditions on the battlefield 
often dictated cautious movements, expenditure of time and resources to develop the situation, followed 
by initiation of decisive action at times and places not necessarily of the commander’s choosing. The 
BCT will not be constrained in this way. Future commanders will develop the situation before making 
contact, maneuver to positions of advantage largely out of contact, and, when ready, initiate decisive 
action with initiative, speed, and agility. 

The supporting 81-person military intelligence (MI) unit, organized as illustrated in Figure A-2, is 
an important component of the BCT. It is the primary focal point for management and analysis of 
information pulled from the full spectrum of intelligence, surveillance, and reconnaissance (ISR) 
resources. The MI company provides all of the brigade’s timely, relevant, accurate, and synchronized 
intelligence, emitter mapping, electronic attack, targeting information, and battle damage assessment 
(BDA) support during the planning and execution of multiple, simultaneous decisive actions by means of 
information and intelligence collection, analysis, processing, integration, and dissemination. The purpose 
of this organization is analysis, fusion, and integration of ISR from external sources, organic UA R&S, 
combat battalion reconnaissance detachments, and troops in contact. 

 The MI unit has available to it ISR assets that are either organic (effectively owned and operated 
by the unit) or nonorganic (loaned to them for temporary use by sister or higher echelon units). The 
reliance on these two classes of assets changes over the course of an engagement, as illustrated in Figure 
A-3. 

THREE PHASES OF THE SCENARIO 

This scenario develops vignettes occurring during three phases of the scenario:   

1. Entry: Combat forces enter the area of operations, Azerbaijan, and establish forward 
operating base (FOB) Alpha. 

2. Transition: Combat forces depart FOB and maneuver to Baku. 

3. Major urban operations: Combat forces attack to seize Baku city center to facilitate its 
return to the host nation’s control. 

These vignettes are scaled back to depict only one BCT employed in combat operations. In this 
scenario, the BCT will conduct tactical operations in three distinct phases. 
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Entry operations: The BCT uses military and commercial strategic lift to arrive in FOB Alpha 
ready to fight, fully synchronized with other elements of the joint force. For example, the BCT will have 
access to networked fires or “NetFires”1 as soon as it touches down in the FOB.  

This is a fundamental change in current approaches to deploying forces to theaters of operation. 
The future intent is also for intelligence already available from national and theater assets, as well as 
information on friendly forces, weather, and geospatial products provided through the global information 
grid (GIG), routed through the combat information centers (CICs), to be pushed directly to the BCT, 
allowing the commanders to do planning and rehearsals en route. When the FOB is secure, the BCT will 
enter the transition phase, a movement to contact, prior to entering their objective area Baku. 

Transition operations: Until recently, the operational significance of transition operations was 
underestimated. This attitude has changed: “Transitions—going from offense to defense and back again, 
projecting power through airheads and beachheads, transitioning from peacekeeping to warfighting and 
back again—sap operational momentum. Mastering transitions is key to winning decisively. Forces that 
can do so provide strategic flexibility to the National Command Authorities, who need as many options as 
possible in a crisis” (U.S. Army white paper, Concepts for the Objective Force, [quoted in U.S. Army, 
2002, p. 61]). Operational transitions are required as the force shifts from deployment operations, to 
smaller scale contingencies (SSC), to major combat operations (MCO).  The transition from securing the 
FOB to the movement to contact at Baku will provide the enemy 304th Brigade with time and space to 
recover and attempt to exploit BCT vulnerabilities. 

The BCT will plan and rehearse carefully to eliminate these dangerous transition areas. Because 
of its ability to keep situational understanding during a tactical operation, the BCT can transition 
immediately and aggressively to movement to contact. The BCT will initiate a series of deliberate attacks 
against a moving enemy under hasty conditions.  Such an operation is graphically depicted in Figure A-4.  

The enemy 304th Brigade will marshal all the resources available in the locale and use every 
means possible to disrupt, attrite, and destroy elements of the BCT. Hasty and deliberate attacks 
resembling cold war maneuvers, crowds laced with suicide bombers, attacks by fire, mines, and 
improvised explosive devices (IEDs) will be used by the enemy at every possible opportunity.  

During this phase the BCT will use three primary tenets—speed, precision, and knowledge—to 
successfully complete the transition in preparation for major urban operations (MUO). 

Major urban operations: The brigade’s mission is to seize Baku city center in order to facilitate 
its return to host nation control. It will have made some preparation for MUO during the movement to 
contact and transition phases, but the less built-up areas encountered en route to Baku will bear very little 
resemblance to Baku itself.  

Baku is a third-world city of 2 million composed of massed and heavy-clad framed buildings, 
which are dispersed in circular street patterns. Currently, the enemy is occupying company strong point 
defenses within the city, and they have activated terrorist cells and other paramilitary units to control 
critical areas. The Baku city center with BCT objectives is shown in Figure A-5. 

 Insurgent clans and terrorists will move to reinforce elements of the enemy 304th Brigade.  The 
clans will “pile on” to join in the attrition of the BCT. In accordance with joint doctrine, “Close assault is 
a central aspect of urban engagements, both due to the nature of the terrain and enemy as well as the need 
to minimize collateral damage and preserve critical infrastructure. Small unit effectiveness and 

                                                 

1“NetFires will enable the dynamic application of lethal and nonlethal destructive and suppressive effects. It will be 
integrated fully from the theater level to the tactical platform level, allowing the commander to establish, alter and 
terminate linkages between sensors and line-of-sight (LOS), beyond-line-of-sight (BLOS), non-line-of-sight (NLOS) 
division/corps and joint systems to achieve a wide set of lethal and nonlethal effects” (Haithcock, 2006, p. 25). 
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empowered leadership are critical to the success of these operations. Close urban assault has a significant 
dismounted character, requiring a robust infantry capability to engage and sustain the urban fight . . . . 
These units will exploit handheld and unmanned ISR tools and the common operational picture (COP). 
Target acquisition and engagement is difficult in the close confines of the urban environment. Fleeting 
targets can be acquired and killed using the BCT ISR capabilities and advanced weapons systems . . . The 
BCT must be able to sustain operational momentum through multiple battles by cycling forces in and out 
of contact” (U.S. Army, 2002, pp. E-2 – E-3.). 
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FIGURE A-1 Trans-Caucasus region for TRADOC PAM 525-3-90 scenario.  

SOURCE:  (U.S. Army, 2002, p. F-1). 
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FIGURE A-2 Military intelligence unit organization.  

SOURCE: (U.S. Army, 2002, p. 32). 
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FIGURE A-3 Reliance on organic and nonorganic ISR assets over time.   

SOURCE: (U.S. Army, 2002, p. 89). 
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FIGURE A-4 BCT attack against a moving enemy.   

SOURCE: (U.S. Army, 2002, p. 63). 
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FIGURE A-5 Baku city center.  

SOURCE: (U.S. Army, 2002, p. F-19). 
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APPENDIX C 

 Candidate DIME/PMESII Modeling Paradigms 
A variety of modeling formalisms could be considered for DIME/PMESII modeling efforts. We 

review some of them here. 

Table C-1 compares selected modeling techniques by tabulating them against key characteristics 
which ultimately determine modeling utility. In the remainder of this appendix, we define the 
characteristics, and provide a very brief overview of each modeling formalism. 

Expressivity of a modeling paradigm refers to its ability to capture and express an analyst’s 
knowledge in terms of the constructs the paradigm offers. The expressivity of a concept graph is very 
high as it keeps the phrases used by the analysts intact in the model. In contrast, a neural network model is 
only able to keep the input-output relationships in the model. More expressive models are better able to 
capture the richness of PMESII domains and are typically easier to build, use, and understand by the 
modeler. 

The executable feature of a modeling technique refers to whether some useful information that is 
implicit in a model (e.g. degree of influence of one variable onto another) can be derived from the model 
via some kind of inferencing algorithm. A causal graph, for example, is an executable paradigm as it 
offers propagation algorithms, and so also is a trained neural network. In contrast, the concept-mapping 
model does not have such an algorithm. Non-executable modeling techniques are useful for visualizing 
complex models for human understanding and analysis; executable models are useful for providing 
automated analysis of the models. 

Reasoning of a modeling paradigm refers to the paradigm’s ability to detect the direction of 
influence (not just connection) of one variable to another. A belief network propagation algorithm, for 
example, incorporates both deductive and abductive reasoning, and thus is able to detect both forward and 
backward influences. On the other hand, the standard back propagation neural-network modeling 
paradigm is limited only to forward reasoning. Different modeling tasks require different kinds of 
reasoning. It is sometimes useful to be able to look at a state and reason about likely future outcomes 
(forward reasoning).  For instance, one might want to attempt to predict the likelihood of social unrest by 
evaluating the current social, political, and economic state of affairs.  Other times it is useful to look at 
externally available information and diagnose the likely underlying causes (backward reasoning).  For 
instance, one might want to reason from observed social unrest back to the likely underlying political, 
economic, and social causes in order to properly address the causes of the unrest. For these reasons, it is 
important to support both forms of reasoning with the modeling tools we provide. 

Adaptability of a modeling paradigm refers to automatic adjustments by models, which are 
necessary to take into account new observations. It is hard to adjust structures of graphical models as they 
are built in consultation with subject matter experts. But the strength of relationships among a set of 
variables within a model (e.g. probabilities in a belief network model or activation levels within a neural 
model) can be adjusted based on observations without changing their structure. Having models that can 
easily be adapted to represent new concepts and incorporate new data are generally preferable. 

Tools of a modeling paradigm refers to the currently available software tools implementing the 
paradigm, that is, whether such a tool is COTS, GOTS, open source, or freely available for 
research/commercial purposes.  

We now briefly describe the different modeling techniques shown in the table. 
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Concept Maps 

Concept maps are a result of research into human learning and knowledge construction (Novak, 
1998). In concept maps, the primary elements of knowledge are concepts, and relationships between 
concepts are propositions. Concept maps are a graphical two-dimensional display of concepts, connected 
by directed arcs encoding brief relationships (e.g. linking phrases) between pairs of concepts forming 
propositions. Each concept node is labeled with a noun, adjective or short phrase, and each edge is labeled 
with verbs or verb phrases describing the relation between the connected concepts. Concepts maps are 
highly effective in quickly capturing domain knowledge along DIME/PMESII dimensions. 

A popular tool for concept mapping is the CmapTools (Canas et al., 2004) package developed at 
the Institute for Human and Machine Cognition (IHMC) (see http://www.ihmc.us).  The package is freely 
available for both commercial and non-commercial use, and has many advantages over using sticky notes 
or a more general diagramming tool, e.g. it can record the entire mapmaking process. There are also 
COTS tools that can be used, such as Banxia’s Knowledge Explorer. 

Concept Graphs 

Concept graphs are a formal system of logic based on the existential graphs of C. S. Peirce and 
semantic networks. Concept graphs explicitly represent entities/concepts and relationships between 
entities as nodes in a directed graph. They are mathematically precise and computationally tractable 
structures, which have a graphic representation that is humanly readable. For this reason, concept graphs 
have been used in a variety of applications for computer linguistics, knowledge representation, 
information retrieval, and database design. Their ease of use and generality make them immediately 
useful for modeling a wade variety of domains, including PMESII domains. 

Figure D-1 is an example concept graph encoding a generic behavioral model of a terrorist leader.  

Social Networks  

 Social networks are similar to concept graphs, but they represent social structures.  The nodes of 
the social network typically represent individuals and the links between them represent social 
relationships. Social network analysis (SNA) provides tools for reasoning about social networks, their 
strengths and weaknesses, the structural roles played by particular individuals, and their dynamics over 
time. Because of the focus on the analysis of social structures, SNA is directly applicable to a range of 
PMESII modeling tasks. 

SNA tools can be extended in a number of directions. For example, one can build on traditional SNA 
functionality by providing additional representational and analytic power by having nodes representing 
not only individuals, but also arbitrary entities, especially including groups.  Links can be similarly 
extended to represent not only individual-to-individual relationships, but also individual-to-group 
relationships (e.g., member-of) and group-to-group relationships (e.g., rival-political-party). By providing 
built in Bayesian and rule-based reasoning capabilities, one could enable automated analysis of the graph.  
For instance, a Bayesian network might represent that members of a group might have a high probability 
of holding views that are promoted by that group, where the group, the individual, and the ideology are all 
represented in the network as nodes with appropriate links between them.  In this case, an enhanced SNA 
tool could automatically create a new believes link between the individual and the ideology and annotate 
it with a particular probability. 

Causal Graphs 

A causal graph (e.g., a belief network) (Jensen, 1996) is a graphical, probabilistic knowledge 
representation of a collection of variables describing some domain. The strength of causal graphs are their 
ability to represent both the causal structure of a domain and the probabilistic elements of those causal 
relationships (X causes Y with some probability), thus enabling the modeling of both qualitative and 
quantitative details of the model. In addition, the ability of causal graphs to handle both forward (causal) 
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reasoning and backward (diagnostic or abductive) reasoning, makes them especially well suited to 
domains with many sources of data, some of which are uncertain, unreliable, or potentially missing. Many 
PMESII modeling problems fall within such a scope. 

Influence diagrams are a specialization of causal networks, augmented with decision variables 
and utility functions to solve decision problems. Decision trees are specialized influence diagrams that 
help to choose between options by projecting likely outcomes as utilities. Such extensions to causal 
graphs make it possible to also reason about the costs and benefits of possible decisions.  This 
functionality can be used to both support intelligent decision making and to model likely decisions on the 
part of the entities being modeled. 

Bayesian reasoning tools, such as those provided by Microsoft (MSBN; see 
http://research.microsoft.com/research/dtg/#bayesian), Norsys (Netica; see 
http://www.norsys.com/index.html), and Charles River Analytics (BNet; see http://www.cra.com) can 
support construction and reasoning with causal graphs. There are also other existing COTS solutions to 
modeling influence diagrams and decision trees, such as C4.5 (see http://www.rulequest.com/Personal/). 

System Dynamics Models 

As described in Chapter 4, System Dynamics Models, such as the Stabilization and 
Reconstruction Operations Model (SROM) (Robbins et al., 2005) can be used to analyze the 
organizational hierarchy, dependencies, interdependencies, exogenous drivers, strengths, and weaknesses 
of a country’s PMESII systems to enable more efficient resource expenditure. SROM models PMESII 
systems at the national and regional levels, including the interactions between regions.  They also take 
into account: demographic data, insurgent and coalition military, critical infrastructure, law enforcement, 
indigenous security institutions, and public opinion. 

The SROM models developed by the AFRL/IF NO’EM group were built using the Ptolemy 
heterogeneous modeling software (see http://ptolemy.berkeley.edu), which is developed and supported by 
the Electrical Engineering and Computer Science department of the University of California, Berkeley. 
While developed primarily for modeling of real-time embedded systems, its heterogeneous processing 
model makes it an effective tool for integrating a variety of data processing algorithms. 

Neural Networks 

A neural network is a nonlinear information-processing paradigm that models complex systems 
with a large number of highly interconnected processing elements (aka neurons or nodes), arranged in 
multiple layers, working in unison to solve specific problems. Neural networks offer some of the most 
versatile ways of mapping or classifying a nonlinear process or relationship. Neural networks have been 
successfully used in diverse paradigms, such as recognition of speakers in communications, diagnosis of 
hepatitis, recovery of telecommunications from faulty software, interpretation of multi-meaning Chinese 
words, undersea mine detection, texture analysis, three-dimensional object recognition, hand-written word 
recognition, and facial recognition. Neural networks would be useful in building PMESII models for 
those domains that have highly complex non-linear relationships between input and output variables.  

 A large number of Neural Network construction kits and runtime engines exist, including the 
Xerion tool from the University of Toronto (see http://www.cs.toronto.edu/~xerion/) and the 
NeuroSolutions tools from NeuroSolutions (see http://www.nd.com/products/nsv3.htm).  

Situation Theory 

Situation theory models information processing and flow, i.e. how an agent extracts information 
from the world and how it is subsequently transferred between agents. Situation Theory provides a 
paradigm for describing the world, an ontology for representing it, and a suite of inferences for reasoning 
about it. Situation theory is unique in that it places situations alongside individuals, relations and locations 
as first-class members of its ontology. Situations provide partial descriptions of the world in terms of the 
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features individuated by some agent. They are defined in terms of the relationships they support, i.e. they 
represent relationships between relationships. Situations provide a powerful representation of complex 
events spread over both space and time and therefore, serve as a natural representation of a variety of 
PMESII models. Situation theory has been applied to a variety of fields including natural language 
understanding (Barwise and Perry, 1983), information visualization (Lewis, 1991), cooperative social 
interaction (Devlin and Rosenberg, 1991), and both Level 2 (Steinberg and Bowman, 2004) and Level 3 
(Steinberg, 2005) data fusion.  
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TABLE C-1 PMESII Modeling Paradigms and Their Characteristics 
              

Characteristics: 
 

Modeling 
Paradigms: 

Expressivity Executable Reasoning Adaptability Tools Exemplary 
Products 

Concept Map High No Forward 
Backward Medium 

Free 
(Research) 

 
 

COTS 

CmapTools 
(cmap.ihmc.us) 

 
Decision Explorer 
(www.banxia.com/d

emain.html) 

Concept Graph Medium 

No 
(Graphviz) 

 
Yes 

(OCCAM) 

Forward 
Backward Low 

Free 
(Limited) 

 
 
 

GOTS 

Graphviz 
(graphviz.org) 

 
OCCAM 

(http://www.cra.com
/contract-r-
d/cognitive-

systems-
occam.asp) 

Social Networks Medium Yes Forward 
Backward Medium GOTS 

OCCAM 
(cra.com/contract-r-

d/cognitive-
systems-

occam.asp) 

Causal Graph Medium Yes Forward 
Backward Medium 

COTS 
 
 

Free 
(Limited) 

BNet 
(cra.com/bnet) 

 
C4.5 

(http://www.ruleque
st.com/Personal/) 

System 
Dynamics Model Medium Yes Forward 

Backward Low Free 
(Research) 

Ptolemy 
(http://ptolemy.berk

eley.edu) 

Neural Network Low Yes Forward High 

COTS 
 
 

Free 
(Research) 

NeuroSolutions 
(www.neurosolution

s.com) 
 

Xerion 
(www.cs.toronto.ed

u/~xerion/) 

Situation Theory Medium Yes Forward Low In-House PRISM 
(www.cra.com) 
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FIGURE C-1 Concept graph model for terrorist leader behavior. 
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