
Published in: Proceedings of the 10th annual INCOSE conference, July 2000, Minneapolis, USA

Enabling Changes in Systems throughout the Entire
Life-Cycle – Key to Success ?

Armin P. Schulz, Ernst Fricke, Eduard Igenbergs

Division of Astronautics
Technical University of Munich

Boltzmannstrasse 15, 85748 Munich
Germany

A.Schulz@lrt.mw.tum.de, http:\\www.lrt.mw.tum.de

ABSTRACT

In the past decades the world has been changing in
almost every aspect. Systems development is facing
rapidly changing and increasingly global environments
in markets, competition, technology, regulatory and
societal systems. Systems to be delivered must be
designed not only to meet customer or market needs,
but increasingly to meet requirements and constraints of
systems sharing its operational context and throughout
their entire lifecycle. The design of a system must
provide for a continuous evolution of its architecture
either by upgrading a system already in service or
releasing a new version.

Based on these key challenges imosed on
development systems, this paper will evolve the idea of
incorporating changeability into a systems architecture.
Flexibility, agility, robustness, and adaptability as four
key aspects of changeability will be defined and
described. Design principles to enable flexibility,
agility, robustness, and adaptability within integrated
systems are proposed and described. A measurement of
a degree of implementation of certain aspects of
changeability as well as cost associated with it are
addressed with metrics. A basic process outlining and
guiding an application of the framework described
concludes this paper. Examples from varying industries
will illustrate the applicability and implementation of
selected principles.

Thus this paper spans a view from why, when
and where, what, and how changeability has to be
incorporated into a systems architecture.

INTRODUCTION

During the past decades several global factors
tremendously shifted our world to a more complex one
in almost every aspect. Based on Wenzel et al. (1997)
and Schulz & Fricke (1999), three aspects are major
drivers of development systems within the future:

��Dynamic Marketplace

��Technological Evolution

��Variety of Environments

Dynamic Marketplace. A high number of new
markets is emerging rapidly , while existing markets are
changing. Staying ahead of competition requires high
responsiveness in terms of supporting late design
decisions of a system architecture to narrow down the
time gap between design freeze and system delivery.
The ability to address evolving customer and market
needs by implementing late changes into a system
architecture will affect a systems success throughout its
entire lifecycle. That is architectures must not only
incorporate the ability to be changed easily and rapidly
within late design phases but also when already being in
service. Additionally, an increasing trend towards
individualization requests for an individualization of
mass products. Therefore the degree of variety
supported by standard product platforms and their
derivatives becomes crucial for commercial success.

Automotive industry provides an example, where
luxury car manufacturers statistically produce no car
twice due to a high number of variants imposed by a
wide range of equipment selected by the individual
customer.

Technological Evolution. The fast evolution of all
our systems (Ring & Fricke, 1998) driven by a half life
of technologies significantly shorter than system life
cycles1 or even system development cycle times leads to
further problems for system architectures. Functions of
systems are evolving rapidly within a system life cycle,
in terms of number and performance of available
functions. Or as Iansiti (1998) puts it '... many business
environments no longer have a stable technology base,
instead it is novel, changing rapidly and unpredictable
...'. Therefore, steady insertion of new technologies is
necessary to keep a system competitive. Processes,
organizational structures, tools or methods also have to

1 The gap between technology half-life and system lifecycle is
in particular driven by an increasing percentage of system
functionality being based on electronic and software

be adapted accordingly.
For example the wireless application protocol

(WAP) has been recently introduced into the mobile
telecommunication market to offer mobile internet
access. Older cell phones do not support this protocol,
but by installing a software update, short message
service (SMS) may be used to achieve mobile internet
access.

Var iety of Environments. The composition of
those systems increasingly relies on components based
on rather diverse technologies and origin (i.e.
mechanical and electrical hardware, embedded
software, etc.). An integration of all those systems
results in more complexity and integrity in all systems.
Additionally, those complex systems are embedded into
a higher system, that is they are part of a system of
systems (e.g. a single satellite within a communication
constellation, a car within cooperative traffic
management, a cellular phone in varying national
networks). As pointed out before also these system are
subject to a dynamic marketplace and an increasing
technological evolution. Since the dynamics of our
economy is increasingly ruled by the logic of networks
(Kelly, 1998) the elements of the overall system are
highly interrelated and affect each other.

Thus each system is affected by changes and the
evolution of its embedding system and/or the systems
within its operational context. Hence system
architectures also need to incorporate the ability to
adopt towards changes within its environment.

Key Challenges. Eventually these three drivers of
future system development lead to two key challenges
which have to be met within the design of system
architectures.
(1) system architectures have to incorporate the ability

to be changed easily and rapidly
(2) system architectures have to incorporate the ability

to be insensitive or adaptable towards changing
environments
It is moreover necessary to reduce the time gap

between freezing properties, functions, features and
architectures of a product and the product market
delivery to a absolute minimum. In a study on Toyota's
development system Ward et al. (1995) come to the
conclusion that delaying design decisions is a major
success factor for Toyota's superior performance in
development time and quality. Ward and his co-authors
call that the 'Second Toyota Paradox'. However, this
approach being recognized within Toyota's
development is more related to the implementation of
the system architecture design process, incorporating
the principles introduced and will be elaborated in
future work.

ARCHITECTING FOR SYSTEM
EVOLUTION ?

Evolve Idea. The current practice is to prevent and
front-load changes, being based on the experience that
late changes – and therefore any evolution – of systems
are very costly. This is described by the ‘Rule of Ten’
stating that with each subsequent program phase the
implementation of a change becomes ten times more
costly and therefore recommends to prevent or front-
load changes (e.g. Boehm, 1981, Clark & Fujimoto,
1991). But in today’s fast moving business
environments this is simply not enough, as preventing
change and evolution is a serious obstacle to
technological evolution and endangers competitive
advantage due to technological leadership. With regard
to front-loading Wheelwright & Clark (1992) point out
that even the best forecasters and most clever
downstream engineers will encounter unexpected
changes in design.

Hence, companies have to deliver systems
incorporating an architecture which supports changes
throughout its entire life-cycle. Being part of higher
systems (system of systems), as well as being part of a
human response system (markets, customers and their
needs), the ability to adapt towards changing
environments is a further requirement. This is supported
by different other authors (e.g. Adaptive Systems Group
1998, Dove 1999, Iansiti, 1998, Kelly, 1998, Open
Systems Joint Task Force, 1998). In particular Kelly
(1998) pointed out that instability and imbalance are the
norm in today’s economy and therefore systems
optimized to a single design point will not last very
long. But not only delivered systems have to have those
abilities. Companies itself need to incorporate these
abilities within their entire development system (i.e.
development processes, test and verification,
manufacturing, etc.).

There is a set of distinguishing characteristics, for
which type of system architectures an incorporation of
changeability should be considered or should not be
considered. Steiner (1998) introduced a set of
distinguishing features for enduring architectures, which
is in the context of system evolution comparable to the
approach the authors have taken. Basically
incorporating changeability within a system architecture
is required for systems, which

��are subject to a dynamic (that is rapidly and
strongly changing) marketplace with varying
customer base and strong competition

��have a long lifecycle compared to cycle times of
technologies driving major quality attributes (i.e
functionality, performance, reliability, etc.)

��are highly interrelated with other systems sharing
their operational context

Published in: Proceedings of the 10th annual INCOSE conference, July 2000, Minneapolis, USA

��require high deployment and maintenance cost

SOLUTION APPROACH

Four Aspects of Changeability. As an answer to the
challenges imposed on today's development system the
approach 'Design for Changeability', which has been
first proposed by Fricke (1999) is introduced. Basically
four aspects of changeability are distinguished:

��Flexibility
��Agility
��Robustness
��Adaptability

These four aspects describe a systems ability to cope
with changes within itself or its environment (Schulz &
Fricke, 1999). A set of varying design principles is used
to enable each aspect of changeability within
architecture design. While some principles only support
a single aspect, other principles support several aspects.
A different mix of practices supports the
implementation of the principles and is partially domain
specific. Finally, a set of metrics is needed to evaluate
and control the design of a system architecture
regarding changeability.

Flexibility and Agility. Flexibility represents the
property of a system to be changed easily, that is low
effort and without undesired effects. Agility represents
the property of a system to implement necessary
changes rapidly. Flexibility is a prerequisite to achieve
agility, i.e., agility is an evolutionary level of flexibility
(Figure 2).

Robustness and Adaptability Robustness
characterizes systems, which are not affected by
changing environments, that is robust systems deliver
their intended functionality under varying operating
conditions without being changed. Taguchi (1993) and
Clausing (1994) have performed extensive research in
the area of robustness within systems. Adaptability
characterizes a systems ability to adapt itself towards
changing environments to deliver its intended
functionality. Robustness is a prerequisite to achieve
adaptability, i.e. adaptability is an evolutionary level of
robustness (Figure 2).

Solution Framework. The Design Principles are
enablers for the realization of changeability. Among the
principles being identified as characterizing flexible,
agile, robust, and adaptive systems, a distinction is
made between Basic Principles, supporting all four
aspects of changeability, and Extending Principles,
supporting only selected aspects of changeability and
also having interrelations (Schulz & Fricke, 1999). The
matrix in Figure 2 indicates which principle is
contributing to what extent to each aspect of
changeability. Although examples presented in this

paper are mainly covering product systems, the authors
believe the proposed principles to be applicable to any
type of system (i.e. processes, organizations, etc.).
Whatever type of system is under analysis, the design of
its architecture is based on a system’s elements, their
attributes in terms of functions and properties, and their
(inter-) relations. The degree to which a single principle
is incorporated within a system architecture may be
measured using various types of metrics.

�
�
�
�
��
��
�
�
�
	

�
�
�
�
��
�

����	�����	���
���	
�������

������������
����

������	������������

��

��

��
��
��

�	
��
�

�
	�

��
��
��

�������
�	����	��	�

�����	
������������

Figure 1 The Four Aspects of
Changeability

The principles have been derived of various
research projects and a number of sources in literature
like Adaptive System Group (1999), Altshuller (1984),
Dove (1999), Fey (1998), Fricke (1999), Maier (1998),
Negele (1998), Open Systems Joint Task Force (1998),
Rechtin (1991), Rechtin and Maier (1997), Suh (1990).

THE BASIC PRINCIPLES

Ideality/Simplicity. This principle is derived from the
basic Pattern of Evolution in TRIZ2, that all system
evolve towards increasing ideality. Ideality in this
context is defined as the ratio of a systems sum of useful
functions against a systems sum of harmful or undesired
effects. Based on that principle an ideal system consists
of only useful functions, which may be interpreted as
establishing small, simple units/elements with a
minimized number of interfaces (loose coupling among
and strong cohesion within modules) within an
architecture. Moreover, an ideal system makes use of
already existing resources and applies principles of

2 comprehensive material on TRIZ and the patterns of
evolution is contained in Altshuller (1984), Fey (1998), and
Schulz and Clausing (1998)

design streamlining. A similar approach can be found in
Function Analysis (Akiyama, 1991), where the number
of secondary functions, i.e., functions only supporting
primary or main functions is to be minimized.

The principle of ideality/simplicity directly
correlates to the information axiom (second axiom) in
axiomatic design as introduced by Suh (1990). Suh
defines an ‘ information content’ incorporated within
each system architecture, which is basically
representing the degree of complexity needed to
describe the architecture. A system architecture with a
low information content is thus less complex, that is
‘simpler’ and therefore to prefer or to aim at. Suh also
provides an approach to measure the information
content and thus to evaluate alternative architectures.

Independence. This principle is derived from the
axiomatic approach to design as introduced by Suh
(1990). According to the first axiom in axiomatic design
each system function or functional requirement has to
be satisfied by an independent design parameter. A
design parameter is representing the physical
embodiment of a functions solution, that is i.e. a
physical principle, a parameter, a component, etc.
Independence of design parameters means, that
changing a design parameter does not affect any related
design parameters and thus not the proper operation of
related functions. Suh (1990) distinguishes three
degrees or levels of independence, which are defined as
coupled, decoupled, and uncoupled. The relation
between system functions and design parameter and
their degree or level of coupling is displayed using
design matrices. Capturing the properties of an
architecture with respect to independence in that type of

matrices is basis for evaluating alternative
architectures applying metrics.

Modular ity/Encapsulation. Building a
system architecture that clusters the system’s
functions into various modules while
minimizing the coupling among the modules
(loose coupling) and maximizing the
cohesion within the modules (strong
cohesion) yields great benefits. In general
two basic types of modularity may be
distinguished, vertical and horizontal
modularity. While horizontal modularity
represents the clustering of a systems
functions in different modules within a
common layer, vertical modularity
represents a layering of an architecture.
According to Tate (1999) three types of
modularity3 may be distinguished, which
basically correlate to the different type of
architecture under consideration within the
various phases of the design phase (e.g.
problem architecture, operational

architecture, functional architecture, physical
architecture, etc.).

Modular architectures support reuse of elements,
modules or even entire sections of an architecture with a
certain scope of functionality and defined interfaces.
Ease of exchanging and adapting modules or layers is
facilitated incorporating self-sufficient, distinct, and not
intimately integrated units. An implementation of
platform concepts is possible as well as the use as a
reference architecture for system evolution. Robustness
is greatly enhanced since the impact of changes or
noises is limited or isolated within the modules or
layers.

SELECTED EXTENDING PRINCIPLES
Integrability. This principle is key to achieving

flexibility and adaptability. Integrability is characterized
by compatibility and inter-operability applying generic,
open, or common/consistent interfaces. Compatibility
and inter-operability are necessary in a rapidly changing
environment built of multiple interrelated systems.
These abilities are even enhanced by implementing only
mature and robust functions delivering a constant
range/degree of functionality and thus ensuring stable
interfaces independent of the environment. Concerning
the principle of intgrability there is a strong correlation
to the work being pursued in the area of open systems
which is mainly driven by the DoD and related

3 Tate (1999) distinguishes between resource (ease of
manufacturing), interfacial (independence of system
modules), and operational (range of operational variety)
modularity

P
rin

ci
pl

es

Aspects of DFC

Modularity/Encapsulation

Independence

Integrability

Autonomy

Redundancy

Ideality/Simplicity

Reliability

Scalability

Decentralization

Non-Hierarchical Integration

Anticipation

Incorporation of Agents

F
le

xi
bi

lit
y

A
gi

lit
y

R
ob

us
tn

es
s

A
da

pt
ab

ili
ty

:= strong support

:= intermediate support

:= light support

:= useful interrelation

:= harmful interrelation

B
as

ic
E

xt
en

d
in

g

Figure 2. The Aspect-Principle-Correlation Matrix (Schulz

& Fricke, 1999)

Published in: Proceedings of the 10th annual INCOSE conference, July 2000, Minneapolis, USA

industries (Open Systems Joint Task Force, 1998). The
principle of integrability is in particular critical for
architectures in the context of system of systems, that is
architectures having strong interrelations with systems
sharing its operational context. This perspective is also
supported by Maier (1998).

������ ������������

�����	�����
������

��������������������������������
���

��������������������������
���

������������������

�����	�����
������

Figure 2. Principle of Integrability

As an example for integrability web-clients may be
mentioned. These clients serve as a generic interface for
information retrieval independent from the hardware
platform they are running on. To cope with the
dramatically increasing number of Electronic Control
Units (ECUs) automotive industry introduced bus
communication among the ECUs to provide common
interfaces for at least groups of ECUs. A new ECU
could be added with regard to the already existing
interface. This is also an example for scalability.

Decentralization. This principle is key to agility
and adaptability. Based on loose coupling and strong
cohesion a decentralized distribution of control (see
autonomy), information, resources, attributes, and
properties within the system architecture strengthens the
capability of the system to rapidly adapt itself towards
its environment and to respond autonomously to
changing requirements. Thus necessary decisions are
made at the point of ‘best knowledge and information’ ,
while all knowledge and information has to remain
accessible throughout the entire system for decisions on
system level. This also enables the allocation of
attributes or properties to the most appropriate location
within the system.

A critical aspect within distributed control is to
ensure consistency of objects/units throughout the entire
system, that is this principle may have a harmful

interaction with the principle of integrability.

����������������������
���

�����������������������
���

Figure 3. Principle of Decentralization
Within modern fly-by-wire flight control systems

elevators, rudders, or spoilers are no longer steered by
force of the pilot but by actuators located directly at the
elevator, rudder, or spoiler and acting on stimulation by
electric signals.

������������������������������ !��"�������
�����������������������������

�����������!������������������������������������
������������#�����������������������������������

Figure 4. Principle of Scalability

Scalability/Self-Similar ity. This principle is a key
to flexibility, agility and adaptability. Based on
elements independent from scale (fractals), architectures
may be scaled upwards or downward. Basically there
are two different ways of approaching scalability. First
several identical elements of the architecture may be
linked together to provide scaled performance or
functionality. Second a single element of the

architecture may be scaled by up-/downsizing its
characteristic parameters. As a basis the system
architecture has to provide the necessary capability for
an unrestricted increase or decrease of total unit
population within the system.

Typical examples for scalability besides bus
communication in today’s cars’ on-board networks (see
integrability) are expandable launchers using additional
boosters for higher payload into orbit (e.g. Ariane 4,
Titan IV, etc.).

Non-Hierarchical Integration. This principle is
key to agility and adaptability. Non-hierarchical
integration is characterized by linking object/units
across the total system, that is with no respect to any
type of modularity or encapsulation. This ensures a
direct, flexible, and fast communication, negotiation, or
interaction among objects/units. It also covers the
evolution of new and the destruction of obsolete links
among objects/units, partially self-organized by
objects/units based on autonomy and incorporation of
agents.

����������������������������
������$�����������"�����������������������������

������ ������������������������
���
�������$��������������������������������

Figure 5. Principle of Non-Hierarchical
Integration

A critical aspect within non-hierarchical integration
is establishing links among objects/units within different
modules or layers of the system architecture, that is this
principle might have a harmful interaction with the
principle of modularity/ encapsulation.

Any type of cross-functional or integrated product
team represents a typical example for non-hierarchical
integration. Moreover the world wide web is another
example for rapidly changing but direct communication
based on standardized and common interfaces (i.e.

TCP/IP Protocol).

PRACTICES AND METRICS

Practices. The enabling principles introduced in the
paragraph above merely indicate which characteristics
system architectures should incorporate in order to be
changeable. But are these characteristics actually
implemented within the design of a certain architecture?
The need to answer this question lead to the definition
of a variety of practices supporting the implementation
of single principles. Due to the scope of this paper only
few simple examples shall outline the general idea.

a) Initial Design Structure Matrix

x x

x

x

x x

x

x x x

x x

x

x

F
un

ct
io

n
1

F
un

ct
io

n
2

F
un

ct
io

n
3

F
un

ct
io

n
4

F
un

ct
io

n
5

F
un

ct
io

n
6

F
un

ct
io

n
7

F
un

ct
io

n
8

F
un

ct
io

n
9

F
un

ct
io

n
10

Function 1

Function 2

Function 3

Function 4

Function 5

Function 6

Function 7

Function 8

Function 9

Function 10

b) Restructured Design Structure Matrix

x

x

F
un

ct
io

n
9

F
un

ct
io

n
3

F
un

ct
io

n
5

F
un

ct
io

n
10

Function 3

Function 5

Function 10

x

x

x

x

x

x

x

x x

x x x

F
un

ct
io

n
1

F
un

ct
io

n
2

F
un

ct
io

n
4

F
un

ct
io

n
7

F
un

ct
io

n
8

Function 1

Function 2

Function 6

Function 4

Function 7

Function 9

Function 8

F
un

ct
io

n
6

x

a) Initial Functional Model

Function 6

Function 9

Function 7

Function 8

Function 3

Function 10

Function 4

Function 5

Function 2

Function 1

b) Restructured System Architecture

Function 1 Function 2

Function 6Function 9

Module 1

Module 2

Module 3

Function 4 Function 7

Function 8

Function 3

Function 5

Function 10

Figure 6 Defining Modular ity using
the Design Structure Matr ix

Within the principle of modularity a well-known
practice can be introduced. A clustering of system
objects/units into modules is supported by the design
structure matrix, which has been first introduced by
Steward (1981) and is illustrated in Figure 6. Design
structure matrices capture the existence and type of
interrelations among a system’s elements. Various
algorithms depending on the objectives are applicable
to restructure these matrices in order to achieve a
modular/encapsulated architecture (Browning, 1998).
Based on the resulting clusters within the architecture
platform concepts are applicable to incorporate rather
static functions, that is functions not imposed to rapid
technological evolution and highly dependent on
specific market segments, into a common platform,

Published in: Proceedings of the 10th annual INCOSE conference, July 2000, Minneapolis, USA

serving as a basis for a flexible product family. Rather
dynamic functions, that is functions imposed to rapid
technological evolution and highly dependent on
specific market segments, will be incorporated into
derivatives of the platform.

Measurement. It is not necessarily useful to
implement changeability into a system architecture to its
full extent, that is implement all four aspects of
changeability throughout the entire system architecture.
Basically the architecting process should be guided by
the question: Where in the system architecture do I
need what type of and how much changeability?

�
�
�
�

��
����������	
�������

���������

�����������	
��

�������
���	
�������

Figure 7 Degree of Changeability vs.
Sources of Cost

Further, implementation of changeability might be
accompanied by a certain effort in terms of money or
time. The trade-off between the right price to pay or the
right amount of time to spend to the expected benefit is
a critical consideration. Therefore our current research
focuses on advancing our knowledge in two critical
areas:

First, the measurement of the degree to which
certain principles enabling changeability have to be
implemented within a system competing in a specific
business environment. This area is mainly guided by the
following questions:

��How much X (i.e. modularity) is incorporated?
��How much X (i.e. integrability) is required?
Second, the measurement of the impact an

implementation of certain principles within a system
architecture has. This area is guided by the following
questions:

��What is the cost for implementing it ?
��What is the benefit for implementing it ?
A typical relationship between the cost imposed on

a system architecture due to incorporating changeability
and due to changes expected within its lifecycle is
illustrated in Figure 7.

Cost of changeability within an architecture is

typically imposed by higher design or manufacturing
effort due to incorporating changeability, while cost of
changes are typically imposed by a higher effort to
change a system architecture at any time within its
lifecycle due to not incorporating changeability. Both
curves result in a distribution of the total cost of a
system architecture depending on its degree of
changeability. A certain range of changeability within
the architecture results in minimized total cost. This
window of opportunity is what should be aimed at
during the design of a specific system architecture.

CONCLUSIONS

Benefits. To stay ahead of competition in dynamic
environments it is inevitable to ensure sustaining
superior system capabilities, i.e., offering state of the art
systems throughout their entire lifecycle. Therefore,
systems and their architectures have to offer
changeability throughout their lifecycle not only within
themselves but also towards their environments. To
cope with these challenges a strategy ‘Design for
Changeability’ is proposed, incorporating the following
four attributes.

• Flexibility
• Agility
• Robustness
• Adaptability
System architectures characterized by these

attributes will yield great enhancements. Technology
insertion throughout the entire system life-cycle to
ensure superior system capabilities and customized
functionality is possible. Upgrade opportunities and the
ease of customization leads to high attractiveness to
customers or stakeholders. Rapid responsiveness to
emerging and changing markets is facilitated by
adapting the architectures accordingly based on
modular and platform concepts. Reduced life cycle cost
result from cross-platform integrability, reuse of units,
modules, or architectures, while the impact of changes
necessary to adapt the architecture throughout the entire
lifecycle is minimized.

Discussion and Outlook. Although a wide range
of benefits already has been achieved there are open
issues which have not been addressed yet. A consistent
framework building from strategies incorporating the
four attributes of ‘Design for Changeability’ , principles
characterizing the properties of architectures meeting
the four attributes, practices supporting the principle’s
implementation, and metrics measuring and controlling
the maturity of implementation has been proposed. The
principles introduced are not considered to be
comprehensive yet. Moreover case studies have to be
performed ensuring applicability of the framework and
its elements. The question what principles and practices

are to applied in which environment and context is still
to be answered. Interrelations, both useful and harmful,
among the strategies, principles, practices, and metrics
so far have only been identified on a very high level and
are a main subject to further research.

REFERENCES
Adaptive Systems Group, The Harlequin Group,

http://www.harlequin.com/products/asg, 1998
Akiyama, K.V., Function Analysis – Systematic

Improvement of Quality and Performance.
Productivity Press, Cambridge, 1991

Altshuller, G., Creativity as an Exact Science. Gordon
& Breach Science Publishers, New York, 1984

Boehm, B.W., Software Engineering Economics.
Prentice Hall, Englewood Cliffs, 1981

Browning, T.R., Modeling and Analyzing Cost,
Schedule and Performance in Complex System
Product Development, Ph.D Thesis, Massachusetts
Institute of Technology, 1998

Clark, K. and Fujimoto, T., Product Development
Performance. Strategy, Organization and
Management in the World Auto Industries,
Harvard Business School Press, Boston, 1991

Clausing, D., Total Quality Development, ASME
Press, New York, 1994

Dove, R.K., Design Principles for Highly Adaptable
Business Systems, Paradigm Shift International,
Taos County, NM, 1999

Fey, V., Theory of Inventive Problem Solving (TRIZ),
The TRIZ Group, 1998

Fricke, E., Der Änderungsprozeß als Grundlage einer
nutzerzentrierten Systementwicklung, Ph.D.
Thesis. Technical University of Munich, 1999

Fricke, E., Gebhard B., Negele H., Igenbergs E., No
Innovation Process without Changes, but...
Proceedings of the 7th International Symposium of
INCOSE, Los Angeles, 1997

Iansiti, M., Technology Integration, Harvard Business
School Press, Boston, 1998.

Kelly, K., New Rules for the New Economy, Viking
Penguin, New York, 1998.

Maier, M., Architecting Principles for System of
Systems, Systems Engineering, Vol. I, No. 4, 1998,
pp. 267-284

Open Systems Joint Task Force, (OSJTF)
http://www.acd.osd.mil/osjtf, 1998

Rechtin, E., Systems Architecting - Creating and
Building Complex Systems, Prentice Hall, 1991

Rechtin, E. and Maier, M.W., The Art of Systems
Architecting. CRC Press, Boca Raton, FL, 1997

Ring, J. and Fricke, E., Rapid Evolution of All Your
Systems – Problem or Opportunity?, Proceedings
of IEEE 17th DASC, Seattle, October 1998

Schulz, A., Fricke, E., Incorporating Flexibility,
Agility, Robustness, and Adaptability within the
Design of Integrated Systems – Key to Success?,
Proceedings of the IEEE/AIAA 18th Digital
Avionics Systems Conference, St. Louis, 1999

Steiner, Rick, Systems Architecture and Evolvability -
Definitions and Perspective. Proceedings of 8th
Annual Symposium of INCOSE, Vancouver, 1998

Steward, D.V., The Design Structure System – A
Method for Managing the Design of Complex
Systems, IEEE Transactions on Engineering
Management, Vol. 28/3, 1981, p. 71-74

Suh, N.P., The Principles of Design, New York, Oxford
University Press, 1990

Taguchi, G., Taguchi on Robust Technology. ASME
Press, New York, 1993

Tate, D., A Roadmap for Decomposition: Activities,
Theories, and Tools for System Design, Ph.D.
Thesis, Massachusetts Institute of Technology,
1999

Ward, Allen, Jeffrey K. Liker, John J. Cristiano and
Durward K. Sobek II, The Second Toyota
Paradox: How Delaying Decisions Can Make
Better Cars Faster, Sloan Management Review
36(3): 43-61, 1995

Wenzel, S., Bauch, T., Fricke, E., Negele, H.,
Concurrent Engineering and More – A Systematic
Approach to Successful Product Development,
Proceedings of the 7th International Symposium of
INCOSE, Los Angeles, 1997

Wheelwright, S., Clark, K., Revolutionizing Product
Development, The Free Press, New York, 1992

AUTHOR’S BIOGRAPHIES

Armin P. Schulz is Research Assistant and PhD
candidate at the Division of Astronautics at the
Technical University of Munich. He received his
master’s degree in aerospace engineering from the
Technical University of Munich in 1998, after
completing his master’s thesis at the Center for
Innovation in Product Development at MIT. His
research focuses on technology development processes,
systems design and architecting. He is a co-founder and
currently secretary of the German Chapter of INCOSE.

Ernst Fr icke is Assistant Professor at the Division
of Astronautics at the Technical University of Munich.
He received his master’s degree in aerospace
engineering from the Technical University of Munich in
1994 and his Ph.D. in Systems Engineering from the
Technical University of Munich in January 1999. His
research focuses on managing changes and evolution in
product development. He is a co-founder and active
member of the German Chapter of INCOSE.

Eduard Igenbergs is Professor of Astronautics

Published in: Proceedings of the 10th annual INCOSE conference, July 2000, Minneapolis, USA

and Director of the Division of Astronautics at the
Technical University of Munich. He has a Ph.D. and a
masters degree in mechanical engineering. He had a
dust counter experiment on the japanese HITEN
spacecraft to the moon and a space debris experiment
on board the German BREMSAT. Another dust counter
experiment will fly 1998 to mars with the japanese
Planet-B spacecraft. He developed the Munich Space
Chair (MSC), a body restraint system on board MIR.
He has been teaching and researching in the field of
Systems Engineering for more than 15 years. He is an
active member of the German Chapter of INCOSE.

