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ABSTRACT 

In the past decades the world has been changing in 
almost every aspect. Systems development is facing 
rapidly changing and increasingly global environments 
in markets, competition, technology, regulatory and 
societal systems. Systems to be delivered must be 
designed not only to meet customer or market needs, 
but increasingly to meet requirements and constraints of 
systems sharing its operational context and throughout 
their entire lifecycle. The design of a system must 
provide for a continuous evolution of its architecture 
either by upgrading a system already in service or 
releasing a new version. 

Based on these key challenges imosed on 
development systems, this paper will evolve the idea of 
incorporating changeability into a systems architecture. 
Flexibility, agility, robustness, and adaptability as four 
key aspects of changeability will be defined and 
described. Design principles to enable flexibility, 
agility, robustness, and adaptability within integrated 
systems are proposed and described. A measurement of 
a degree of implementation of certain aspects of 
changeability as well as cost associated with it are 
addressed with metrics. A basic process outlining and 
guiding an application of the framework described 
concludes this paper. Examples from varying industries 
will illustrate the applicability and implementation of 
selected principles. 

Thus this paper spans a view from why, when 
and where, what, and how changeability has to be 
incorporated into a systems architecture. 

INTRODUCTION 

During the past decades several global factors 
tremendously shifted our world to a more complex one 
in almost every aspect. Based on Wenzel et al. (1997) 
and Schulz & Fricke (1999), three aspects are major 
drivers of development systems within the future: 

��Dynamic Marketplace 

��Technological Evolution 

��Variety of Environments 

Dynamic Marketplace. A high number of new 
markets is emerging rapidly , while existing markets are 
changing. Staying ahead of competition requires high 
responsiveness in terms of supporting late design 
decisions of a system architecture to narrow down the 
time gap between design freeze and system delivery. 
The ability to address evolving customer and market 
needs by implementing late changes into a system 
architecture will affect a systems success throughout its 
entire lifecycle. That is architectures must not only 
incorporate the ability to be changed easily and rapidly 
within late design phases but also when already being in 
service. Additionally, an increasing trend towards 
individualization requests for an individualization of 
mass products. Therefore the degree of variety 
supported by standard product platforms and their 
derivatives becomes crucial for commercial success. 

Automotive industry provides an example, where 
luxury car manufacturers statistically produce no car 
twice due to a high number of variants imposed by a 
wide range of equipment selected by the individual 
customer. 

Technological Evolution. The fast evolution of all 
our systems (Ring & Fricke, 1998) driven by a half life 
of technologies significantly shorter than system life 
cycles1 or even system development cycle times leads to 
further problems for system architectures. Functions of 
systems are evolving rapidly within a system life cycle, 
in terms of number and performance of available 
functions. Or as Iansiti (1998) puts it '... many business 
environments no longer have a stable technology base, 
instead it is novel, changing rapidly and unpredictable 
...'. Therefore, steady insertion of new technologies is 
necessary to keep a system competitive. Processes, 
organizational structures, tools or methods also have to 

                                                 
1 The gap between technology half-life and system lifecycle is 
in particular driven by an increasing percentage of system 
functionality being based on electronic and software 



  

be adapted accordingly. 
For example the wireless application protocol 

(WAP) has been recently introduced into the mobile 
telecommunication market to offer mobile internet 
access. Older cell phones do not support this protocol, 
but by installing a software update, short message 
service (SMS) may be used to achieve mobile internet 
access. 

Var iety of Environments. The composition of 
those systems increasingly relies on components based 
on rather diverse technologies and origin (i.e. 
mechanical and electrical hardware, embedded 
software, etc.). An integration of all those systems 
results in more complexity and integrity in all systems. 
Additionally, those complex systems are embedded into 
a higher system, that is they are part of a system of 
systems (e.g. a single satellite within a communication 
constellation, a car within cooperative traffic 
management, a cellular phone in varying national 
networks). As pointed out before also these system are 
subject to a dynamic marketplace and an increasing 
technological evolution. Since the dynamics of our 
economy is increasingly ruled by the logic of networks 
(Kelly, 1998) the elements of the overall system are 
highly interrelated and affect each other. 

Thus each system is affected by changes and the 
evolution of its embedding system and/or the systems 
within its operational context. Hence system 
architectures also need to incorporate the ability to 
adopt towards changes within its environment. 

Key Challenges. Eventually these three drivers of 
future system development lead to two key challenges 
which have to be met within the design of system 
architectures. 
(1) system architectures have to incorporate the ability 

to be changed easily and rapidly 
(2) system architectures have to incorporate the ability 

to be insensitive or adaptable towards changing 
environments 
It is moreover necessary to reduce the time gap 

between freezing properties, functions, features and 
architectures of a product and the product market 
delivery to a absolute minimum. In a study on Toyota's 
development system Ward et al. (1995) come to the 
conclusion that delaying design decisions is a major 
success factor for Toyota's superior performance in 
development time and quality. Ward and his co-authors 
call that the 'Second Toyota Paradox'. However, this 
approach being recognized within Toyota's 
development is more related to the implementation of 
the system architecture design process, incorporating 
the principles introduced and will be elaborated in 
future work. 

 

ARCHITECTING FOR SYSTEM 
EVOLUTION ? 

Evolve Idea. The current practice is to prevent and 
front-load changes, being based on the experience that 
late changes – and therefore any evolution – of systems 
are very costly. This is described by the ‘Rule of Ten’  
stating that with each subsequent program phase the 
implementation of a change becomes ten times more 
costly and therefore recommends to prevent or front-
load changes (e.g. Boehm, 1981, Clark & Fujimoto, 
1991). But in today’s fast moving business 
environments this is simply not enough, as preventing 
change and evolution is a serious obstacle to 
technological evolution and endangers competitive 
advantage due to technological leadership. With regard 
to front-loading Wheelwright & Clark (1992) point out 
that even the best forecasters and most clever 
downstream engineers will encounter unexpected 
changes in design. 

Hence, companies have to deliver systems 
incorporating an architecture which supports changes 
throughout its entire life-cycle. Being part of higher 
systems (system of systems), as well as being part of a 
human response system (markets, customers and their 
needs), the ability to adapt towards changing 
environments is a further requirement. This is supported 
by different other authors (e.g. Adaptive Systems Group 
1998, Dove 1999, Iansiti, 1998, Kelly, 1998, Open 
Systems Joint Task Force, 1998). In particular Kelly 
(1998) pointed out that instability and imbalance are the 
norm in today’s economy and therefore systems 
optimized to a single design point will not last very 
long. But not only delivered systems have to have those 
abilities. Companies itself need to incorporate these 
abilities within their entire development system (i.e. 
development processes, test and verification, 
manufacturing, etc.). 

There is a set of distinguishing characteristics, for 
which type of system architectures an incorporation of 
changeability should be considered or should not be 
considered. Steiner (1998) introduced a set of 
distinguishing features for enduring architectures, which 
is in the context of system evolution comparable to the 
approach the authors have taken. Basically 
incorporating changeability within a system architecture 
is required for systems, which 

��are subject to a dynamic (that is rapidly and 
strongly changing) marketplace with varying 
customer base and strong competition 

��have a long lifecycle compared to cycle times of 
technologies driving major quality attributes (i.e 
functionality, performance, reliability, etc.) 

��are highly interrelated with other systems sharing 
their operational context 
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��require high deployment and maintenance cost 

SOLUTION APPROACH 

Four  Aspects of Changeability. As an answer to the 
challenges imposed on today's development system the 
approach 'Design for Changeability', which has been 
first proposed by Fricke (1999) is introduced. Basically 
four aspects of changeability are distinguished: 

��Flexibility 
��Agility 
��Robustness 
��Adaptability 

These four aspects describe a systems ability to cope 
with changes within itself or its environment (Schulz & 
Fricke, 1999). A set of varying design principles is used 
to enable each aspect of changeability within 
architecture design. While some principles only support 
a single aspect, other principles support several aspects. 
A different mix of practices supports the 
implementation of the principles and is partially domain 
specific. Finally, a set of metrics is needed to evaluate 
and control the design of a system architecture 
regarding changeability. 

Flexibility and Agility. Flexibility represents the 
property of a system to be changed easily, that is low 
effort and without undesired effects. Agility represents 
the property of a system to implement necessary 
changes rapidly. Flexibility is a prerequisite to achieve 
agility, i.e., agility is an evolutionary level of flexibility 
(Figure 2). 

Robustness and Adaptability Robustness 
characterizes systems, which are not affected by 
changing environments, that is robust systems deliver 
their intended functionality under varying operating 
conditions without being changed. Taguchi (1993) and 
Clausing (1994) have performed extensive research in 
the area of robustness within systems. Adaptability 
characterizes a systems ability to adapt itself towards 
changing environments to deliver its intended 
functionality. Robustness is a prerequisite to achieve 
adaptability, i.e. adaptability is an evolutionary level of 
robustness (Figure 2). 

Solution Framework. The Design Principles are 
enablers for the realization of changeability. Among the 
principles being identified as characterizing flexible, 
agile, robust, and adaptive systems, a distinction is 
made between Basic Principles, supporting all four 
aspects of changeability, and Extending Principles, 
supporting only selected aspects of changeability and 
also having interrelations (Schulz & Fricke, 1999). The 
matrix in Figure 2 indicates which principle is 
contributing to what extent to each aspect of 
changeability. Although examples presented in this 

paper are mainly covering product systems, the authors 
believe the proposed principles to be applicable to any 
type of system (i.e. processes, organizations, etc.). 
Whatever type of system is under analysis, the design of 
its architecture is based on a system’s elements, their 
attributes in terms of functions and properties, and their 
(inter-) relations. The degree to which a single principle 
is incorporated within a system architecture may be 
measured using various types of metrics. 
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Figure 1 The Four Aspects of 
Changeability 

The principles have been derived of various 
research projects and a number of sources in literature 
like Adaptive System Group (1999), Altshuller (1984), 
Dove (1999), Fey (1998), Fricke (1999), Maier (1998), 
Negele (1998), Open Systems Joint Task Force (1998), 
Rechtin (1991), Rechtin and Maier (1997), Suh (1990). 

THE BASIC PRINCIPLES 

Ideality/Simplicity. This principle is derived from the 
basic Pattern of Evolution in TRIZ2, that all system 
evolve towards increasing ideality. Ideality in this 
context is defined as the ratio of a systems sum of useful 
functions against a systems sum of harmful or undesired 
effects. Based on that principle an ideal system consists 
of only useful functions, which may be interpreted as 
establishing small, simple units/elements with a 
minimized number of interfaces (loose coupling among 
and strong cohesion within modules) within an 
architecture. Moreover, an ideal system makes use of 
already existing resources and applies principles of 

                                                 
2 comprehensive material on TRIZ and the patterns of 
evolution is contained in Altshuller (1984), Fey (1998), and 
Schulz and Clausing (1998) 



  

design streamlining. A similar approach can be found in 
Function Analysis (Akiyama, 1991), where the number 
of secondary functions, i.e., functions only supporting 
primary or main functions is to be minimized. 

The principle of ideality/simplicity directly 
correlates to the information axiom (second axiom) in 
axiomatic design as introduced by Suh (1990). Suh 
defines an ‘ information content’  incorporated within 
each system architecture, which is basically 
representing the degree of complexity needed to 
describe the architecture. A system architecture with a 
low information content is thus less complex, that is 
‘simpler’  and therefore to prefer or to aim at. Suh also 
provides an approach to measure the information 
content and thus to evaluate alternative architectures. 

Independence. This principle is derived from the 
axiomatic approach to design as introduced by Suh 
(1990). According to the first axiom in axiomatic design 
each system function or functional requirement has to 
be satisfied by an independent design parameter. A 
design parameter is representing the physical 
embodiment of a functions solution, that is i.e. a 
physical principle, a parameter, a component, etc. 
Independence of design parameters means, that 
changing a design parameter does not affect any related 
design parameters and thus not the proper operation of 
related functions. Suh (1990) distinguishes three 
degrees or levels of independence, which are defined as 
coupled, decoupled, and uncoupled. The relation 
between system functions and design parameter and 
their degree or level of coupling is displayed using 
design matrices. Capturing the properties of an 
architecture with respect to independence in that type of 

matrices is basis for evaluating alternative 
architectures applying metrics. 

Modular ity/Encapsulation. Building a 
system architecture that clusters the system’s 
functions into various modules while 
minimizing the coupling among the modules 
(loose coupling) and maximizing the 
cohesion within the modules (strong 
cohesion) yields great benefits. In general 
two basic types of modularity may be 
distinguished, vertical and horizontal 
modularity. While horizontal modularity 
represents the clustering of a systems 
functions in different modules within a 
common layer, vertical modularity 
represents a layering of an architecture. 
According to Tate (1999) three types of 
modularity3 may be distinguished, which 
basically correlate to the different type of 
architecture under consideration within the 
various phases of the design phase (e.g. 
problem architecture, operational 

architecture, functional architecture, physical 
architecture, etc.). 

Modular architectures support reuse of elements, 
modules or even entire sections of an architecture with a 
certain scope of functionality and defined interfaces. 
Ease of exchanging and adapting modules or layers is 
facilitated incorporating self-sufficient, distinct, and not 
intimately integrated units. An implementation of 
platform concepts is possible as well as the use as a 
reference architecture for system evolution. Robustness 
is greatly enhanced since the impact of changes or 
noises is limited or isolated within the modules or 
layers. 

SELECTED EXTENDING PRINCIPLES 
Integrability. This principle is key to achieving 

flexibility and adaptability. Integrability is characterized 
by compatibility and inter-operability applying generic, 
open, or common/consistent interfaces. Compatibility 
and inter-operability are necessary in a rapidly changing 
environment built of multiple interrelated systems. 
These abilities are even enhanced by implementing only 
mature and robust functions delivering a constant 
range/degree of functionality and thus ensuring stable 
interfaces independent of the environment. Concerning 
the principle of intgrability there is a strong correlation 
to the work being pursued in the area of open systems 
which is mainly driven by the DoD and related 

                                                 
3 Tate (1999) distinguishes between resource (ease of 
manufacturing), interfacial (independence of system 
modules), and operational (range of operational variety) 
modularity 
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industries (Open Systems Joint Task Force, 1998). The 
principle of integrability is in particular critical for 
architectures in the context of system of systems, that is 
architectures having strong interrelations with systems 
sharing its operational context. This perspective is also 
supported by Maier (1998). 
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Figure 2. Principle of Integrability 

As an example for integrability web-clients may be 
mentioned. These clients serve as a generic interface for 
information retrieval independent from the hardware 
platform they are running on. To cope with the 
dramatically increasing number of Electronic Control 
Units (ECUs) automotive industry introduced bus 
communication among the ECUs to provide common 
interfaces for at least groups of ECUs. A new ECU 
could be added with regard to the already existing 
interface. This is also an example for scalability. 

Decentralization. This principle is key to agility 
and adaptability. Based on loose coupling and strong 
cohesion a decentralized distribution of control (see 
autonomy), information, resources, attributes, and 
properties within the system architecture strengthens the 
capability of the system to rapidly adapt itself towards 
its environment and to respond autonomously to 
changing requirements. Thus necessary decisions are 
made at the point of ‘best knowledge and information’ , 
while all knowledge and information has to remain 
accessible throughout the entire system for decisions on 
system level. This also enables the allocation of 
attributes or properties to the most appropriate location 
within the system. 

A critical aspect within distributed control is to 
ensure consistency of objects/units throughout the entire 
system, that is this principle may have a harmful 

interaction with the principle of integrability. 
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Figure 3. Principle of Decentralization 
Within modern fly-by-wire flight control systems 

elevators, rudders, or spoilers are no longer steered by 
force of the pilot but by actuators located directly at the 
elevator, rudder, or spoiler and acting on stimulation by 
electric signals. 
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Figure 4. Principle of Scalability 

Scalability/Self-Similar ity. This principle is a key 
to flexibility, agility and adaptability. Based on 
elements independent from scale (fractals), architectures 
may be scaled upwards or downward. Basically there 
are two different ways of approaching scalability. First 
several identical elements of the architecture may be 
linked together to provide scaled performance or 
functionality. Second a single element of the 



  

architecture may be scaled by up-/downsizing its 
characteristic parameters. As a basis the system 
architecture has to provide the necessary capability for 
an unrestricted increase or decrease of total unit 
population within the system. 

Typical examples for scalability besides bus 
communication in today’s cars’  on-board networks (see 
integrability) are expandable launchers using additional 
boosters for higher payload into orbit (e.g. Ariane 4, 
Titan IV, etc.). 

Non-Hierarchical Integration. This principle is 
key to agility and adaptability. Non-hierarchical 
integration is characterized by linking object/units 
across the total system, that is with no respect to any 
type of modularity or encapsulation. This ensures a 
direct, flexible, and fast communication, negotiation, or 
interaction among objects/units. It also covers the 
evolution of new and the destruction of obsolete links 
among objects/units, partially self-organized by 
objects/units based on autonomy and incorporation of 
agents. 
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Figure 5. Principle of Non-Hierarchical 
Integration 

A critical aspect within non-hierarchical integration 
is establishing links among objects/units within different 
modules or layers of the system architecture, that is this 
principle might have a harmful interaction with the 
principle of modularity/ encapsulation. 

Any type of cross-functional or integrated product 
team represents a typical example for non-hierarchical 
integration. Moreover the world wide web is another 
example for rapidly changing but direct communication 
based on standardized and common interfaces (i.e. 

TCP/IP Protocol). 

PRACTICES AND METRICS 

Practices. The enabling principles introduced in the 
paragraph above merely indicate which characteristics 
system architectures should incorporate in order to be 
changeable. But are these characteristics actually 
implemented within the design of a certain architecture? 
The need to answer this question lead to the definition 
of a variety of practices supporting the implementation 
of single principles. Due to the scope of this paper only 
few simple examples shall outline the general idea. 
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Figure 6 Defining Modular ity using 
the Design Structure Matr ix 

Within the principle of modularity a well-known 
practice can be introduced. A clustering of system 
objects/units into modules is supported by the design 
structure matrix, which has been first introduced by 
Steward (1981) and is illustrated in Figure 6. Design 
structure matrices capture the existence and type of 
interrelations among a system’s elements. Various 
algorithms depending on the objectives are applicable 
to restructure these matrices in order to achieve a 
modular/encapsulated architecture (Browning, 1998). 
Based on the resulting clusters within the architecture 
platform concepts are applicable to incorporate rather 
static functions, that is functions not imposed to rapid 
technological evolution and highly dependent on 
specific market segments, into a common platform, 
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serving as a basis for a flexible product family. Rather 
dynamic functions, that is functions imposed to rapid 
technological evolution and highly dependent on 
specific market segments, will be incorporated into 
derivatives of the platform. 

Measurement. It is not necessarily useful to 
implement changeability into a system architecture to its 
full extent, that is implement all four aspects of 
changeability throughout the entire system architecture. 
Basically the architecting process should be guided by 
the question: Where in the system architecture do I 
need what type of and how much changeability? 
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Figure 7 Degree of Changeability vs. 
Sources of Cost 

Further, implementation of changeability might be 
accompanied by a certain effort in terms of money or 
time. The trade-off between the right price to pay or the 
right amount of time to spend to the expected benefit is 
a critical consideration. Therefore our current research 
focuses on advancing our knowledge in two critical 
areas: 

First, the measurement of the degree to which 
certain principles enabling changeability have to be 
implemented within a system competing in a specific 
business environment. This area is mainly guided by the 
following questions: 

��How much X (i.e. modularity) is incorporated? 
��How much X (i.e. integrability) is required? 
Second, the measurement of the impact an 

implementation of certain principles within a system 
architecture has. This area is guided by the following 
questions: 

��What is the cost for implementing it ? 
��What is the benefit for implementing it ? 
A typical relationship between the cost imposed on 

a system architecture due to incorporating changeability 
and due to changes expected within its lifecycle is 
illustrated in Figure 7. 

Cost of changeability within an architecture is 

typically imposed by higher design or manufacturing 
effort due to incorporating changeability, while cost of 
changes are typically imposed by a higher effort to 
change a system architecture at any time within its 
lifecycle due to not incorporating changeability. Both 
curves result in a distribution of the total cost of a 
system architecture depending on its degree of 
changeability. A certain range of changeability within 
the architecture results in minimized total cost. This 
window of opportunity is what should be aimed at 
during the design of a specific system architecture. 

CONCLUSIONS 

Benefits. To stay ahead of competition in dynamic 
environments it is inevitable to ensure sustaining 
superior system capabilities, i.e., offering state of the art 
systems throughout their entire lifecycle. Therefore, 
systems and their architectures have to offer 
changeability throughout their lifecycle not only within 
themselves but also towards their environments. To 
cope with these challenges a strategy ‘Design for 
Changeability’  is proposed, incorporating the following 
four attributes. 

• Flexibility 
• Agility 
• Robustness 
• Adaptability 
System architectures characterized by these 

attributes will yield great enhancements. Technology 
insertion throughout the entire system life-cycle to 
ensure superior system capabilities and customized 
functionality is possible. Upgrade opportunities and the 
ease of customization leads to high attractiveness to 
customers or stakeholders. Rapid responsiveness to 
emerging and changing markets is facilitated by 
adapting the architectures accordingly based on 
modular and platform concepts. Reduced life cycle cost 
result from cross-platform integrability, reuse of units, 
modules, or architectures, while the impact of changes 
necessary to adapt the architecture throughout the entire 
lifecycle is minimized. 

Discussion and Outlook. Although a wide range 
of benefits already has been achieved there are open 
issues which have not been addressed yet. A consistent 
framework building from strategies incorporating the 
four attributes of ‘Design for Changeability’ , principles 
characterizing the properties of architectures meeting 
the four attributes, practices supporting the principle’s 
implementation, and metrics measuring and controlling 
the maturity of implementation has been proposed. The 
principles introduced are not considered to be 
comprehensive yet. Moreover case studies have to be 
performed ensuring applicability of the framework and 
its elements. The question what principles and practices 



  

are to applied in which environment and context is still 
to be answered. Interrelations, both useful and harmful, 
among the strategies, principles, practices, and metrics 
so far have only been identified on a very high level and 
are a main subject to further research. 
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