
9. Model Sensitivity and Uncertainty Analysis

1. Introduction     255

2. Issues, Concerns and Terminology     256

3. Variability and Uncertainty In Model Output     258

3.1. Natural Variability     259

3.2. Knowledge Uncertainty     260

3.2.1. Parameter Value Uncertainty     260

3.2.2. Model Structural and Computational Errors     260

3.3. Decision Uncertainty     260

4. Sensitivity and Uncertainty Analyses     261

4.1. Uncertainty Analyses     261

4.1.1. Model and Model Parameter Uncertainties     262

4.1.2. What Uncertainty Analysis Can Provide     265

4.2. Sensitivity Analyses     265

4.2.1. Sensitivity Coefficients     267

4.2.2. A Simple Deterministic Sensitivity Analysis Procedure     267

4.2.3. Multiple Errors and Interactions     269

4.2.4. First-Order Sensitivity Analysis     270

4.2.5. Fractional Factorial Design Method     272

4.2.6. Monte Carlo Sampling Methods     273

5. Performance Indicator Uncertainties     278

5.1. Performance Measure Target Uncertainty     278

5.2. Distinguishing Differences Between Performance Indicator Distributions     281

6. Communicating Model Output Uncertainty     283

7. Conclusions     285

8. References     287

wrm_ch09.qxd  8/31/2005  11:56 AM  Page 254



1. Introduction

Models are the primary way we have to estimate the multi-
ple effects of alternative water resources system design and
operating policies. Models predict the values of various 
system performance indicators. Their outputs are based on
model structure, hydrological and other time-series inputs,
and a host of parameters whose values describe the system
being simulated. Even if these assumptions and input data
reflect, or are at least representative of, conditions believed
to be true, we know they will be inaccurate. Our models
are always simplifications of the real systems we study.
Furthermore, we simply cannot forecast the future with
precision, so we know the model outputs of future condi-
tions are at best uncertain.

Some prediction uncertainties can be reduced by addi-
tional research and data collection and analysis. Before
undertaking expensive studies to gather and analyse 
additional data, it is reasonable to ask what improvement in
estimates of system performance, or what reduction in the
uncertainty associated with those estimates, would result if
all data and model uncertainties could be reduced. Such
information helps determine how much one would be
willing to ‘pay’ in order to reduce prediction uncertainty. If
prediction uncertainty is costly, it may pay to invest in addi-
tional data collection, more studies or better models – all
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Model Sensitivity 
and Uncertainty Analysis

The usefulness of any model depends in part on the accuracy and reliability of its
output. Yet, because all models are imperfect abstractions of reality, and because
precise input data are rarely if ever available, all output values are subject to
imprecision. Input data errors and modelling uncertainties are not independent of
each other – they can interact in various ways. The end result is imprecision and
uncertainty associated with model output. This chapter focuses on ways of
identifying, quantifying, and communicating the uncertainties in model outputs.

9 

aimed at reducing that prediction uncertainty. If that uncer-
tainty has no, or only a very modest, impact on the likely
decision that is to be made, one should find other issues to
worry about.

If it appears that reducing prediction uncertainty is
worthwhile, then one should consider how best to do it.
If it involves obtaining additional information, then it is
clear that the value of this additional information, how-
ever measured, should exceed the cost of obtaining it. The
value of such information will be the increase in system
performance, or the reduction in its variance, that one can
expect from obtaining such information. If additional
information is to be obtained, it should be information
that reduces the uncertainties considered important, not
the unimportant ones.

This chapter reviews some methods for identifying 
and communicating model prediction uncertainty. The
discussion begins with a review of the causes of risk 
and uncertainty in model output. It then examines 
ways of measuring or quantifying uncertainty and 
model output sensitivity to model input imprecision,
concentrating on methods that seem most relevant or
practical for large-scale regional simulation modelling. It
builds on some of the statistical methods reviewed in
Chapter 7 and the modelling of risk and uncertainty in
Chapter 8.
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2. Issues, Concerns and
Terminology

Outcomes or events that cannot be predicted with 
certainty are often called risky or uncertain. Some indi-
viduals draw a special and interesting distinction between
risk and uncertainty. In particular, the term risk is often
reserved to describe situations for which probabilities are
available to describe the likelihood of various events or
outcomes. If probabilities of various events or outcomes
cannot be quantified, or if the events themselves are
unpredictable, some would say the problem is then one of
uncertainty, and not of risk. In this chapter, what is not
certain is considered uncertain, and uncertainty is often
described by a probability distribution. When the ranges
of possible events are known and their probabilities are
measurable, risk is called objective risk. If the probabilities
are based solely on human judgement, the risk is called
subjective risk.

Such distinctions between objective and subjective
risk, and between risk and uncertainty, rarely serve any
useful purpose to those developing and using models.
Likewise, the distinctions are often unimportant to those
who should be aware of the risks or uncertainties associ-
ated with system performance indicator values.

Uncertainty in information is inherent in future-
oriented planning efforts. It stems from inadequate infor-
mation and incorrect assumptions, as well as from the
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variability of natural processes. Water managers often
need to identify both the uncertainty and the sensitivity
of, or changes in, system performance indicator values
due to any changes in possible input data and parameter
values from what were predicted. They need to reduce
this level of uncertainty to the extent practicable. Finally,
they need to communicate the residual uncertainties
clearly so that decisions can be made with this knowledge
and understanding.

Sensitivity analysis can be distinguished from uncer-
tainty analysis. Sensitivity analysis procedures explore
and quantify the impact of possible errors in input data
on predicted model outputs and system performance
indices. Simple sensitivity analysis procedures can be
used to illustrate either graphically or numerically the
consequences of alternative assumptions about the future.
Uncertainty analyses employing probabilistic descriptions
of model inputs can be used to derive probability distri-
butions of model outputs and system performance
indices. Figure 9.1 illustrates the impact of both input
data sensitivity and input data uncertainty on model 
output uncertainty.

It is worthwhile to explore the transformation of
uncertainties in model inputs and parameters into uncer-
tainty in model outputs when conditions differ from those
reflected by the model inputs. Historical records of sys-
tem characteristics are typically used as a basis for model
inputs. Yet conditions in the future may change. There

Figure 9.1. Schematic diagram
showing relationship among
model input parameter
uncertainty and sensitivity to
model output variable
uncertainty (Lal, 1995).
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Model Sensitivity and Uncertainty Analysis 257

may be changes in the frequency and amounts of precipi-
tation, changes in land cover and topography, and
changes in the design and operation of control structures,
all resulting in changes of water stages and flows, and
their qualities, and consequently changes in the affected
ecosystems.

If asked how the system would operate with inputs
similar to those in the historical database, the model
should be able to interpolate within the available knowl-
edge base to provide a fairly precise estimate. Still, that
estimate will not be perfect. This is because our ability to
reproduce current and recent operations is not perfect,
though it should be fairly good. If asked to predict system
performance for situations very different from those in the
historical knowledge base, or when the historical data are
not considered representative of what might happen in
the future (due to climate change for example), such pre-
dictions become much less precise.

There are two reasons for this. First, our description of
the characteristics of those different situations or conditions
may be imprecise. Second, our knowledge base may not be
sufficient to calibrate model parameters in ways that would
enable us to reliably predict how the system will operate
under conditions unlike those that have been experienced
historically. The more conditions of interest differ from
those in the historical knowledge base, the less confidence
we have that the model is providing a reliable description
of systems operation. Figure 9.2 illustrates this issue.

Clearly, an uncertainty analysis needs to consider how
well a model can replicate current operations, and how
similar the target conditions or scenarios are to those
described in the historical record. The greater the
required extrapolation from what has been observed, the
greater will be the importance of parameter and model
uncertainties.

The relative and absolute importance of different
parameters will depend on the system performance indi-
cators of interest. Seepage rates may have a very large
local impact, but a small global effect. Changes in system-
wide evapotranspiration rates are likely to affect system-
wide flows. The precision of model projections and the
relative importance of errors in different parameters will
depend upon:

• the precision with which the model can reproduce
observed conditions

• the difference between the predicted conditions and
the historical experience included in the knowledge
base

• system performance characteristics of interest.

Errors and approximations in input data measurement,
parameter values, model structure and model solution
algorithms are all sources of uncertainty. While there are
reasonable ways of quantifying and reducing these errors
and the resulting range of uncertainty of various system
performance indicator values, they are impossible to 
eliminate. Decisions will still have to be made in the face
of a risky and uncertain future, and can be modified as
new data and knowledge are obtained in a process of
adaptive management.

There is also uncertainty with respect to human 
behaviour and reactions related to particular outcomes and
their likelihoods, that is, to their risks and uncertainties. As
important as risks and uncertainties associated with human
reactions are to particular outcomes, they are not usually
part of the models themselves. Social uncertainty may often
be the most significant component of the total uncertainty
associated with just how a water resources system will 
perform. For this reason we should seek designs and 
operating policies that are flexible and adaptable.

When uncertainties associated with system operation
under a new operating regime are large, one should 
anticipate the need to make changes and improvements as
experience is gained and new information accumulates.
When predictions are highly unreliable, responsible 

Figure 9.2. The precision of model predictions is affected by
the difference between the conditions or scenarios of interest
and the conditions or scenarios for which the model was
calibrated.
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managers should favour actions that are robust (good
under a wide range of situations), gain information
through research and experimentation, monitor results to
provide feedback for the next decision, update assess-
ments and modify policies in the light of new informa-
tion, and avoid irreversible actions and commitments.

3. Variability and Uncertainty in
Model Output

Differences between model output and observed values
can result from either natural variability, such as is
caused by unpredictable rainfall, evapotranspiration,
water consumption and the like, and/or by both known
and unknown errors in the input data, the model param-
eters or the model itself. The later is sometimes called
knowledge uncertainty, but it is not always due to a lack
of knowledge. Models are always simplifications of 
reality and, hence, ‘imprecision’ can result. Sometimes
imprecision occurs because of a lack of knowledge, such
as just how a particular species will react to various envi-
ronmental and other habitat conditions. At other times,
known errors are introduced simply for practical reasons.

Imperfect representation of processes in a model con-
stitutes model structural uncertainty. Imperfect knowledge
of the values of parameters associated with these processes
constitutes model parameter uncertainty. Natural variability
includes both temporal variability and spatial variability, to
which model input values may be subject.
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Figure 9.3 illustrates these different types of uncer-
tainty. For example, the rainfall measured at a weather
station within a particular model grid cell may be used as
an input value for that cell, but the rainfall may actually
vary at different points within that cell and its mean value
will vary across the landscape. Knowledge uncertainty
can be reduced through further measurement and/or
research. Natural variability is a property of the natural
system, and is usually not reducible at the scale being
used. Decision uncertainty is simply an acknowledgement
that we cannot predict ahead of time just what decisions
individuals and organizations will make, or even just
what particular set of goals or objectives will be consid-
ered and the relative importance of each.

Rather than contrasting ‘knowledge’ uncertainty 
versus natural variability versus decision uncertainty, one
can classify uncertainty in another way based on specific
sources of uncertainty, such as those listed below, and
address ways of identifying and dealing with each source
of uncertainty.

• Informational uncertainties
– imprecision in specifying the boundary and 

initial conditions that impact the output variable
values

– imprecision in measuring observed output variable
values.

• Model uncertainties
– uncertain model structure and parameter values
– variability of observed input and output values over

a region smaller than the spatial scale of the model

Figure 9.3. One way of
classifying types of uncertainty.
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– variability of observed model input and output 
values within a time smaller than the temporal scale
of the model. (e.g., rainfall and depths and flows
within a day)

– errors in linking models of different spatial and
temporal scales.

• Numerical errors
– errors in the model solution algorithm.

3.1. Natural Variability

The main source of hydrological model output value 
variability is the natural variability in hydrological and
meteorological input series. Periods of normal precipita-
tion and temperature can be interrupted by periods of
extended drought and intense meteorological events such
as hurricanes and tornadoes. There is no reason to believe
that such events will not continue to occur and become
even more frequent and extreme. Research has demon-
strated that climate has been variable in the past and there
are concerns about anthropogenic activities that may
increase that variability each year. Sensitivity analysis can
help assess the effect of errors in predictions if those pre-
dictions are based only on past records of historical time-
series data describing precipitation, temperature and
other exogenous forces across and on the border of the
regions being studied.

Time-series input data are often actual, or at least
based on, historical data. The time-series values typically
describe historical conditions including droughts and wet
periods. What is distinctive about natural uncertainty, as
opposed to errors and uncertainty due to modelling limi-
tations, is that natural variability in meteorological forces
cannot be reduced by improving the model’s structure,
increasing the resolution of the simulation or better 
calibration of model parameters.

Errors result if meteorological values are not measured
or recorded accurately, or if mistakes are made in the 
generation of computer data files. Furthermore, there is
no assurance that the statistical properties of historical
data will accurately represent those of future data. Actual
future precipitation and temperature scenarios will be 
different from those in the past, and this difference in
many cases may have a larger effect than the uncertainty
due to incorrect parameter values. However, the effects of
uncertainties in the parameter values used in stochastic

generation models are often much more significant than
the effects of using different stochastic generation models
(Stedinger and Taylor, 1982).

While variability of model output is a direct result of
variability of model input (e.g. hydrological and meteoro-
logical data), the extent of the variability, and its lower
and upper limits, may also be affected by errors in the
inputs, the values of parameters, initial boundary condi-
tions, model structure, processes and solution algorithms.

Figure 9.4 illustrates the distinction between the 
variability of a system performance indicator due to 
input data variability, and the extended range of variability
due to the total uncertainty associated with any 
combination of the causes listed in the previous section.
This extended range is what is of interest to water resources
planners and managers.

What can occur in practice is a time series of system
performance indicator values that can range anywhere
within or even outside the extended range, assuming the
confidence level of that extended range is less than 100%.
The confidence one can have that some future value of a
time series will be within a given range is dependent on two
factors. The first is the number of measurements used to
compute the confidence limits. The second is the assump-
tion that those measurements are representative (come
from the same statistical or stochastic process yielding)
future measurements, i.e. they come from the same statisti-
cal or stochastic process. Figure 9.5 illustrates this point.
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Figure 9.4. Time series of model output or system
performance showing variability over time. Range ‘a’ results
from the natural variability of input data over time. The
extended range ‘b’ results from the variability of natural input
data as well as from imprecision in input data measurement,
parameter value estimation, model structure and errors in
model solution algorithms. The extent of this range will
depend on the confidence level associated with that range.
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Note that the time series may even contain values outside
the range ‘b’ defined in Figure 9.4 if the confidence level of
that range is less than 100%. Confidence intervals associ-
ated with less than 100% certainty will not include every
possible value that might occur.

3.2. Knowledge Uncertainty

Referring to Figure 9.3, knowledge uncertainty includes
model structure and parameter value uncertainties. First
we consider parameter value uncertainty including
boundary condition uncertainty, and then model and
solution algorithm uncertainty.

3.2.1. Parameter Value Uncertainty

A possible source of uncertainty in model output results
from uncertain estimates of various model parameter
values. If the model calibration procedure were repeated 
using different data sets, different parameter values would
result. Those values would yield different simulated sys-
tem behaviour and, thus, different predictions. We can call
this parameter uncertainty in the predictions because it is
caused by imprecise parameter values. If such parameter
value imprecision were eliminated, then the prediction
would always be the same and so the parameter value
uncertainty in the predictions would be zero. But this does
not mean that predictions would be perfectly accurate.

In addition to parameter value imprecision, uncertainty
in model output can result from imprecise specification 
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of boundary conditions. These boundary conditions 
may be either fixed or variable. However, because they 
are not being computed on the basis of the state of the
system, their values can be uncertain. These uncertainties
can affect the model output, especially in the vicinity of the
boundary, in each time step of the simulation.

3.2.2. Model Structural and Computational Errors

Uncertainty in model output can also result from errors in
the model structure compared to the real system, and
approximations made by numerical methods employed in
the simulation. No matter how good our parameter value
estimates, our models are not perfect and there is a resid-
ual model error. Increasing model complexity in order to
more closely represent the complexity of the real system
may not only add to the cost of data collection, but may
also introduce even more parameters, and thus even more
potential sources of error in model output. It is not an
easy task to judge the appropriate level of model com-
plexity and to estimate the resulting levels of uncertainty
associated with various assumptions regarding model
structure and solution methods. Kuczera (1988) provides
an example of a conceptual hydrological modelling exer-
cise with daily time steps where model uncertainty dom-
inates parameter value uncertainty.

3.3. Decision Uncertainty

Uncertainty in model predictions can result from 
unanticipated changes in what is being modelled. These
can include changes in nature, human goals, interests,
activities, demands and impacts. An example of this is the
deviation from standard or published operating policies
by operators of infrastructure such as canal gates, pumps
and reservoirs in the field, as compared to what is
specified in documents and incorporated into the water 
systems models. Comparing field data with model data
for model calibration may yield incorrect calibrations if
operating policies actually implemented in the field differ
significantly from those built into the models. What do
operators do in times of stress? 

What humans will want to achieve in the future may 
not be the same as what they want today. Predictions of
people’s future desires are clearly sources of uncertainty. 
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Figure 9.5. Typical time series of model output or system
performance indicator values that are the result of input data
variability and possible imprecision in input data
measurement, parameter value estimation, model structure
and errors in model solution algorithms.
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A perfect example of this can be seen in the very flat 
Greater Everglades region of south Florida in the United
States. Fifty years ago, folk wanted the swampy region
protected from floods and drained for agricultural and
urban development. Today many want just the opposite, at
least where there are no human settlements. They want to
return to a more natural hydrological system with more
wetlands and unobstructed flows, but now for ecological
restoration reasons, which were not a major concern 
or much appreciated some half a century ago. Once the
mosquitoes return, and if the sea level continues to rise,
future populations who live there may want more flood
control and drainage again. Who knows? Complex and
changing social and economic processes influence human
activities and their demands for water resources and envi-
ronmental amenities over time. Some of these processes
reflect changes in local concerns, interests and activities,
but population migration and many economic activities
and social attitudes can also reflect changing national and
international trends.

Sensitivity scenarios that include human activities can
help define the effects of those activities within an area.
Careful attention should be given to the development of
these alternative scenarios so that they capture the real
forces or stresses that the system may face. The history 
of systems studies are full of examples where the issues
studied were overwhelmed by much larger social forces
resulting from, for example, the relocation of major
economic activities, an oil embargo, changes in national
demand for natural resources, economic recession, an 
act of terrorism or even war. One thing is certain: the
future will be different than the past, and no one knows
just how.

Surprises

Water resources managers may also want to consider how
vulnerable a system is to undesirable environmental 
surprises. What havoc might an introduced species 
like the zebra mussel invading the Great Lakes of 
North America have in a particular watershed? Might some
introduced disease suddenly threaten key plant or animal
species? Might management plans have to be restructured
to address the survival of species such as salmon in the
Rhine River in Europe or in the Columbia River in North

America? Such uncertainties are hard to anticipate when
by their nature they will truly be surprises. But surprises
should be expected. Hence system flexibility and adapt-
ability should be sought to deal with changing manage-
ment demands, objectives and constraints.

4. Sensitivity and Uncertainty
Analyses

An uncertainty analysis is not the same as a sensitivity
analysis. An uncertainty analysis attempts to describe 
the entire set of possible outcomes, together with their
associated probabilities of occurrence. A sensitivity analysis
attempts to determine the change in model output 
values that results from modest changes in model input 
values. A sensitivity analysis thus measures the change in
the model output in a localized region of the space of
inputs. However, one can often use the same set of model
runs for both uncertainty analyses and sensitivity analyses.
It is possible to carry out a sensitivity analysis of the model
around a current solution, and then use it as part of a first-
order uncertainty analysis.

This discussion begins by focusing on some methods
of uncertainty analysis, then reviews various ways of
performing and displaying sensitivity analyses.

4.1. Uncertainty Analyses

Recall that uncertainty involves the notion of random-
ness. If a value of a performance indicator or performance
measure, like the phosphorus concentration or the depth
of water at a particular location, varies, and this variation
over space and time cannot be predicted with certainty, it
is called a random variable. One cannot say with certainty
what the value of a random variable will be but only the
likelihood or probability that it will be within some spec-
ified range of values. The probabilities of observing par-
ticular ranges of values of a random variable are described
or defined by a probability distribution. There are many
types of distributions and each can be expressed in several
ways as presented in Chapter 7.

Suppose the random variable is denoted as X. As dis-
cussed in Chapter 7, if the observed values of this random
variable can only have discrete values, then the probability
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distribution of X is easily described by a histogram, as
shown in Figure 9.6a. The sum of the probabilities for all
possible outcomes must equal 1. If the random variable is
a continuous variable that can assume any real value over a
range of values, the probability distribution of X can be
expressed as a continuous distribution, as shown in Figure
9.6b. The shaded area under the density function for the
continuous distribution, is 1. The area between two values
of the continuous random variable, such as between u and
v in Figure 9.6c, represents the probability that the
observed value x of the random variable value X will be
within that range of values.

The probability distributions shown in Figure 9.6b and
Figure 9.6c are called probability density functions (pdf)
and are denoted by fX(x). The subscript X on PX and fX
represents the random variable, and the variable x is some
value of that random variable X.

Uncertainty analyses involve identifying characteristics
of various probability distributions of model input and
output variables, and subsequently functions of those
random output variables that are performance indicators
or measures. Often targets associated with these indica-
tors or measures are themselves uncertain.

A complete uncertainty analysis would involve a
comprehensive identification of all sources of uncer-
tainty that contribute to the joint probability distribu-
tions of each input or output variable. Assume such
analyses were performed for two alternative project
plans, A and B, and that the resulting probability density
distributions for a specified performance measure were
as shown in Figure 9.7. The figure also identifies the
costs of these two projects. The introduction of two per-
formance criteria – cost and probability of exceeding a
performance measure target, e.g. a pollutant concentra-
tion standard – introduces a conflict where a tradeoff
must be made.
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Figure 9.6. Probability
distributions for a discrete or
continuous random variable X.
The area under the distributions
(shaded areas in a and b) is 1,
and the shaded area in c is the
probability that the observed
value x of the random variable X
will be between u and v.
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Figure 9.7. Tradeoffs involving cost and the probability that a
maximum desired target value will be exceeded. In this
illustration we want the lowest cost (B is best) and the lowest
probability of exceedance (A is best).
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4.1.1. Model and Model Parameter Uncertainties

Consider a situation as shown in Figure 9.8, in which, for
a specific set of model inputs, the model outputs differ
from the observed values, and for those model inputs, 
the observed values are always the same. Here, nothing
occurs randomly. The model parameter values or model
structure need to be changed. This is typically done in a
model calibration process.

Given specific inputs, the outputs of deterministic
models are always going to be the same each time those
inputs are simulated. If for specified inputs to any simu-
lation model the predicted output does not agree with 
the observed value, as shown in Figure 9.8, this could
result from imprecision in the measurement of observed
data. It could also result from imprecision in the model
parameter values, the model structure or the algorithm
used to solve the model.
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Next, consider the same deterministic simulation
model, but now assume at least some of the inputs are
random (that is, not predictable), as may be case when
random outputs of one model are used as inputs into
another model. Random inputs will yield random outputs.
The model input and output values can be described by
probability distributions. If the uncertainty in the output is
due only to the uncertainty in the input, the situation is
similar to that shown in Figure 9.8. If the distribution of
performance measure output values does not fit or is not
identical to the distribution of observed performance meas-
ure values, then calibration of model parameter values or
modification of the model structure may be needed.

If a model calibration or ‘identification’ exercise finds
the ‘best’ values of the parameters to be outside reasonable

ranges of values based on scientific knowledge, then the
model structure or algorithm might be in error. Assuming
that the algorithms used to solve the models are correct
and that observed measurements of system performance
vary for the same model inputs, as shown in Figure 9.9, it
can be assumed that the model structure does not capture
all the processes that are taking place that affect the value
of the performance measures. This is often the case when
relatively simple and low-resolution models are used to
estimate the hydrological and ecological impacts of water
and land management policies. However, even large and
complex models can fail to include or adequately describe
important phenomena.

In the presence of informational uncertainties, there
may be considerable uncertainty about the values of the

Figure 9.8. A deterministic
system and a simulation model
of that system needing
calibration or modification in its
structure. There is no
randomness, only parameter
value or model structure errors
to be identified and corrected. 
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Figure 9.9. A deterministic
simulation model of a ‘random or
stochastic’ system. To produce 
the variability in the model 
output that is observed in the real
system, even given the same input
values, the model’s parameter
values may need to vary over
distributions of values and/or the
model structure may need
modification along with additional
model inputs.
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‘best’ parameters during calibration. This problem
becomes even more pronounced with increases in model
complexity.

An example:

Consider the prediction of a pollutant concentration at
some site downstream of a pollutant discharge site. Given
a streamflow Q (in units of 1000 m3/day), the distance
between the discharge site and the monitoring site, X(m),
the pollutant decay rate constant k (day�1) and the pollu-
tant discharge W (Kg/day), we can use the following
simple model to predict the concentration of the pollutant
C (g/m3 � mg/l) at the downstream monitoring site:

C � (W/Q) exp{�k(X/U)}

In the above equation, assume the velocity U (m/day) is a
known function of the streamflow Q.

In this case, the observed value of the pollutant con-
centration C may differ from the computed value of C
even for the same inputs of W, Q, k, X and U.
Furthermore, this difference varies in different time peri-
ods. This apparent variability, as illustrated in Figure 9.9,
can be simulated using the same model but by assuming
a distribution of values for the decay rate constant k.
Alternatively, the model structure can be modified to
include the impact of streamflow temperature T on the
prediction of C.

C � (W/Q) exp{�kθT�20 (X/U)} 

Now there are two model parameters, the decay rate 
constant k and the dimensionless temperature correction
factor θ , and an additional model input, the streamflow
temperature, T, in °C. It could be that the variation in
streamflow temperature was the major cause of the first
equation’s ‘uncertainty’ and that the assumed parameter
distribution of k was simply the result of the distribution
of streamflow temperatures on the term kθT�20.

If the output were still random given constant values
of all the inputs, then another source of uncertainty
exists. This uncertainty might be due to additional 
random loadings of the pollutant, possibly from non-
point sources. Once again, the model could be modified
to include these additional loadings if they are knowable.
Assuming these additional loadings are not known, a
new random parameter could be added to the input 
variable W or to the right hand side of the equations
above that would attempt to capture the impact on C of
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these additional loadings. A potential problem, however,
might be the likely correlation between those additional
loadings and the streamflow Q.

While adding model detail removed some ‘uncertainty’
in the above example, increasing model complexity will
not always eliminate or reduce uncertainty in model out-
put. Adding complexity is generally not a good idea when
the increased complexity is based on processes whose
parameters are difficult to measure, when the right equa-
tions are not known at the scale of application, or when
the amount of data for calibration is small compared to
the number of parameters.

Even if more detailed models requiring more input
data and more parameter values were to be developed, the
likelihood of capturing all the processes occurring in a
complex system is small. Hence, those involved will have
to make decisions while taking this uncertainty into
account. Imprecision will always exist due to a less than
complete understanding of the system and the hydro-
logical processes being modelled. A number of studies
have addressed model simplification, but only in some
simple cases have statisticians been able to identify just
how one might minimize modelling related errors in
model output values.

The problem of determining the ‘optimal’ level of
modelling detail is particularly important when simulat-
ing the hydrological events at many sites over large areas.
Perhaps the best approach for these simulations is to
establish confidence levels for alternative sets of models
and then statistically compare simulation results. But even
this is not a trivial or cost-free task. Increases in the tem-
poral or spatial resolution typically require considerable
data collection and/or processing, model recalibrations,
and possibly the solution of stability problems resulting
from the numerical methods used in the models.
Obtaining and implementing alternative hydrological
simulation models will typically involve considerable
investment of money and time for data preparation and
model calibration.

What is needed is a way to predict the variability evi-
dent in the system shown in Figure 9.9. Instead of a fixed
output vector for each fixed input vector, a distribution of
outputs is needed for each performance measure based on
fixed inputs (Figure 9.9) or a distribution of inputs
(Figure 9.10.). Furthermore, the model output distribu-
tion for each performance measure should ‘match’ as well
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as possible the observed distribution of that performance
measure.

4.1.2. What Uncertainty Analysis Can Provide

An uncertainty analysis takes a set of randomly chosen
input values (which can include parameter values), passes
them through a model (or transfer function) to obtain the
distributions (or statistical measures of the distributions)
of the resulting outputs. As illustrated in Figure 9.11, the
output distributions can be used to

• describe the range of potential outputs of the system at
some probability level

• estimate the probability that the output will exceed a
specific threshold or performance measure target value.

Uncertainty analyses are often used to make general infer-
ences, such as the following:

• estimating the mean and standard deviation of the 
outputs

• estimating the probability the performance measure
will exceed a specific threshold

• assigning a reliability level to a function of the outputs,
for example, the range of function values that is likely
to occur with some probability

• describing the likelihood of different potential outputs
of the system

• estimating the relative impacts of input variable
uncertainties.

Implicit in any uncertainty analysis are the assumptions
that statistical distributions for the input values are correct
and that the model is a sufficiently realistic description of
the processes taking place in the system. Neither of these
assumptions is likely to be entirely correct.

4.2. Sensitivity Analyses

‘Sensitivity analysis’ aims to describe how much model
output values are affected by changes in model input 
values. It is the investigation of the importance of impreci-
sion or uncertainty in model inputs in a decision-making
or modelling process. The exact character of a sensitivity
analysis depends upon the particular context and the
questions of concern. Sensitivity studies can provide a

Figure 9.10. Simulating variable
inputs to obtain probability
distributions of predicted
performance indices that match
the probability distributions of
observed performance values.
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general assessment of model precision when used to assess
system performance for alternative scenarios, as well as
detailed information addressing the relative significance of
errors in various parameters. As a result, sensitivity results
should be of interest to the general public, federal and
state management agencies, local water resources planners
and managers and model users and developers.

Clearly, upper level management and the public may be
interested in more general statements of model precision,
and should be provided such information along with model
predictions. On the other hand, detailed studies addressing
the significance and interactions among individual parame-
ters would likely be meaningful to model developers and
some model users. They can use such data to interpret
model results and to identify to where their efforts to
improve models and input values should be directed.

Initial sensitivity analysis studies could focus on two
products:

• detailed results that guide research and assist model
development efforts

• calculation of general descriptions of uncertainty associ-
ated with model predictions, so that policy decisions can
reflect both the modelling efforts’ best prediction of sys-
tem performance and the precision of such predictions.

In the first case, knowing the relative uncertainty in model
projections due to possible errors in different sets of
parameters and input data should assist in efforts to
improve the precision of model projections. This knowl-
edge should also contribute to a better understanding of
the relationships between model assumptions, parameters,
data and model predictions.

In the second case, knowing the relative precision
associated with model predictions should have a signifi-
cant effect on policy development. For example, the
analysis may show that, given data inadequacies, there 
are very large error bands associated with some model 
variables. When such large uncertainties exist, predic-
tions should be used with appropriate scepticism.
Incremental strategies should be explored along with
monitoring so that greater experience can accumulate to
resolve some of these uncertainties.

Sensitivity analysis features are available in many 
linear and non-linear programming (optimization) pack-
ages. They identify the changes in the values of the 
objective function and unknown decision-variables given
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a change in the model input values, and a change in 
levels set for various constraints (Chapter 4). Thus, sensi-
tivity analysis can address the change in ‘optimal’ system
performance associated with changes in various param-
eter values, and also how ‘optimal’ decisions would
change with changes in resource constraint levels or tar-
get output requirements. This kind of sensitivity analysis
provides estimates of how much another unit of resource
would be worth, or what ‘cost’ a proposed change in a
constraint places on the optimal solution. This informa-
tion is of value to those making design decisions.

Various techniques have been developed to determine
how sensitive model outputs are to changes in model
inputs. Most approaches examine the effects of changes in
a single parameter value or input variable assuming no
changes in all the other inputs. Sensitivity analyses can be
extended to examine the combined effects of multiple
sources of error, as well.

Changes in particular model input values can affect
model output values in different ways. It is generally true
that only a relatively few input variables dominate or 
substantially influence the values of a particular output
variable or performance indicator at a particular location
and time. If the range of uncertainty of only some of the
output data is of interest, then undoubtedly only those
input data that significantly affect the values of those 
output data need be included in the sensitivity analysis.

If input data estimates are based on repeated measure-
ments, a frequency distribution can be estimated that 
characterizes natural variability. The shorter the record of
measurements, the greater will be the uncertainty regarding
the long-term statistical characteristics of that variability. If
obtaining a sufficient number of replicate measurements is
not possible, subjective estimates of input data ranges and
probability distributions are often made. Using a mixture of
subjective estimates and actual measurements does not
affect the application of various sensitivity analysis methods
that can use these sets or distributions of input values, but
it may affect the conclusions that can be drawn from the
results of these analyses.

It would be nice to have available accurate and easy-
to-use analytical methods for relating errors in input data
to errors in model outputs, and to errors in system 
performance indicator values that are derived from 
model output. Such analytical methods do not exist for
complex simulation models. However, methods based on
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simplifying assumptions and approximations can be used
to yield useful sensitivity information. Some of these are
reviewed in the remainder of this chapter.

4.2.1. Sensitivity Coefficients

One measure of sensitivity is the sensitivity coefficient.
This is the derivative of a model output variable with
respect to an input variable or parameter. A number of
sensitivity analysis methods use these coefficients. First-
order and approximate first-order sensitivity analyses are
two such methods that will be discussed later. Analytical
methods are faced with considerable difficulties in:

• obtaining the derivatives for many models
• needing to assume mathematical (usually linear) 

relationships when obtaining estimates of derivatives
by making small changes of input data values near
their nominal or most likely values

• having large variances associated with most hydrological
process models.

These have motivated the replacement of analytical meth-
ods by numerical and statistical approaches to sensitivity
analysis.

Implicit in any sensitivity analysis are the assumptions
that statistical distributions for the input values are correct
and that the model is a sufficiently realistic description of
the processes taking place in the system. Neither of these
assumptions is likely to be entirely correct.

The importance of the assumption that the statistical
distributions for the input values are correct is easy to
check by using different distributions for the input
parameters. If the outputs vary significantly, then the
output is sensitive to the specification of the input distri-
butions, and hence they should be defined with care. A
relatively simple deterministic sensitivity analysis can be
of value here (Benaman, 2002). A sensitivity coefficient
can be used to measure the magnitude of change in an
output variable Q per unit change in the magnitude of an
input parameter value P from its base value P0. Let SIPQ

be the sensitivity index for an output variable Q with
respect to a change �P in the value of the input variable
P from its base value P0. Noting that the value of the out-
put Q(P) is a function of P, the sensitivity index could be
defined as

SIPQ � [Q(P0 � �P) � Q(P0 � �P)]/2�P (9.1)

Other sensitivity indices could be defined (McCuen,
1973). Letting the index i represent a decrease and j rep-
resent an increase in the parameter value from its base
value P0, the sensitivity index SIPQ for parameter P and
output variable Q could be defined as

SIPQ � {|(Q0 � Qi)/(P0 � Pi)| � |(Q0 � Qj)/ 

(P0 � Pj)|}/2 (9.2)

or

SIPQ � max{|(Q0 � Qi)/(P0 � Pi)|, |(Q0 � Qj)/ 

(P0 � Pj)|} (9.3)

A dimensionless expression of sensitivity is the elasticity
index, EIPQ, which measures the relative change in output
Q for a relative change in input P, and could be defined as

EIPQ � [P0/Q(P0)]SIPQ (9.4)

4.2.2. A Simple Deterministic Sensitivity Analysis
Procedure

This deterministic sensitivity analysis approach is very
similar to those most often employed in the engineering
economics literature. It is based on the idea of varying one
uncertain parameter value, or set of parameter values, at a
time. The ideas are applied to a water quality example to
illustrate their use.

The output variable of interest can be any performance
measure or indicator. Thus, one does not know if more or
less of a given variable is better or worse. Perhaps too
much and/or too little is undesirable. The key idea is that,
whether employing physical measures or economic 
metrics of performance, various parameters (or sets of
associated parameters) are assigned high and low values.
Such ranges may reflect either the differences between the
minimum and maximum values for each parameter, the
5th and 95th percentiles of a parameter’s distribution, or
points corresponding to some other criteria. The system
model is then run with the various alternatives, one at a
time, to evaluate the impact of those errors in various sets
of parameter values on the output variable.

Table 9.1 illustrates the character of the results that
one would obtain. Here Y0 is the nominal value of the
model output when all parameters assume the estimated
best values, and Yi,L and Yi,H are the values obtained 
by increasing or decreasing the values of the ith set of
parameters.
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A simple water quality example is employed to illus-
trate this deterministic approach to sensitivity analysis.
The analysis techniques illustrated here are just as appli-
cable to complex models. The primary difference is that
more work would be required to evaluate the various
alternatives with a more complex model, and the model
responses might be more complicated.

The simple water quality model is provided by
Vollenweider’s empirical relationship for the average phos-
phorus concentration in lakes (Vollenweider, 1976). 
He found that the phosphorus concentration, P (mg/m3),
is a function of the annual phosphorus loading rate, 
L (mg/m2 � a), the annual hydraulic loading, q (m/a, or
more exactly, m3/m2 � a), and the mean water depth, z (m):

P � (L /q)/[1 � (z/q)0.5] (9.5)

L /q and P have the same units; the denominator is an
empirical factor that compensates for nutrient recycling
and elimination within the aquatic lake environment.
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Data for Lake Ontario in North America would suggest
that reasonable values of the parameters are L � 680 mg/m3,
q � 10.6 m/a, and z � 84 m, yielding P � 16.8 mg/m3.
Values of phosphorus concentrations less than 10 mg/m3 are
considered oligotrophic, whereas values greater than
20 mg/m3 generally correspond to eutrophic conditions.
Reasonable ranges reflecting possible errors in the three
parameters yield the values in Table 9.2.

One may want to display these results so they can be
readily visualized and understood. A tornado diagram
(Eschenbach, 1992) would show the lower and upper 
values of P obtained from variation of each parameter,
with the parameter with the widest limits displayed on
top, and the parameter with smallest limits on the 
bottom. Tornado diagrams (Figure 9.12) are easy to 
construct and can include a large number of parameters
without becoming crowded.

An alternative to tornado diagrams is a Pareto chart
showing the width of the uncertainty range associated
with each variable, ordered from largest to smallest. A
Pareto chart is illustrated in Figure 9.13.

Another visual presentation is a spider plot showing the
impact of uncertainty in each parameter on the variable in
question, all on the same graph (Eschenback, 1992;
DeGarmo et al., 1993). A spider plot, Figure 9.14, shows
the particular functional response of the output to each
parameter on a common scale, so one needs a common
metric to represent changes in all of the parameters. Here,
we use percentage change from the nominal or best values.

Spider plots are a little harder to construct than 
tornado diagrams, and can generally include only four or
five variables without becoming crowded. However, they
provide a more complete view of the relationships
between each parameter and the performance measure. In
particular, a spider plot reveals non-linear relationships

Table 9.1. Sensitivity of model output Y to possible errors in
four parameter sets containing a single parameter or a group
of parameters that vary together. 
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Table 9.2. Sensitivity of estimates of
phosphorus concentration (mg/m3) to
model parameter values. The two right-
most values in each row correspond to
the low and high values of the
parameter, respectively.
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Groups of factors

It is often the case that reasonable error scenarios would
have several parameters changing together. For this
reason, the alternatives have been called parameter sets.
For example, possible errors in water depth would be
accompanied by corresponding variations in aquatic vege-
tation and chemical parameters. Likewise, alternatives
related to changes in model structure might be accompa-
nied with variations in several parameters. In other cases,
there may be no causal relationship among possible errors
(such as model structure versus inflows at the boundary of
the modelled region), but they might still interact to affect
the precision of model predictions.

Combinations

If one or more non-grouped parameters interact in signif-
icant ways, then combinations of one or more errors
should be investigated. However, one immediately runs
into a combinatorial problem. If each of m parameters can
have 3 values (high, nominal, and low), then there are 
3m combinations, as opposed to 2m � 1 if each parameter
is varied separately. (For m � 5, the differences are 
35 � 243 versus 2(5) � 1 � 11.) These numbers can be
reduced by considering instead only combinations of
extremes so that only 2m � 1 cases need be considered 
(25 � 1 � 33), which is a more manageable number.
However, all of the parameters would be at one extreme or
the other, and such situations would be very unusual.

phosphorus concentration
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Figure 9.12. A tornado diagram showing the range of the
output variables representing phosphorus concentrations for
high and low values of each of the parameter sets.
Parameters are sorted so that the largest range is on top,
and the smallest on the bottom, so the diagram looks like a
tornado.
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Figure 9.13. A Pareto chart showing the range of the output
variable representing phosphorus concentrations resulting
from high and low values of each parameter set considered.
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Figure 9.14. A spider Plot illustrates the relationships
between model output describing phosphorus
concentrations and variations in each of the parameter 
sets, expressed as a percentage deviation from their
nominal values.

and the relative sensitivity of the performance measure to
(percentage) changes in each variable.

In the spider plot, the linear relationship between P and
L and the gentle non-linear relationship between P and q is
illustrated. The range for z has been kept small, given the
limited uncertainty associated with that parameter.

4.2.3. Multiple Errors and Interactions

An important issue that should not be ignored is the
impact of simultaneous errors in more than one param-
eter. Probabilistic methods directly address the occurrence
of simultaneous errors, but the correct joint distribution
needs to be employed. With simple sensitivity analysis
procedures, errors in parameters are generally investigated
one at a time or in groups. The idea of considering pairs or
sets of parameters is discussed here.
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Two factors at a time

A compromise is to consider all pairs of two parameters at a
time. There are m(m � 1)/2 possible pairs of m parameters.
Each parameter has a high and low value. Since there are 
4 combinations of high and low values for each pair, there
are a total of 2m(m � 1) combinations. (For m � 5 there 
are 40 combinations of two parameters each having two
values.)

The presentation of these results could be simplified by
displaying for each case only the maximum error, which
would result in m(m � 1)/2 cases that might be displayed
in a Pareto diagram. This would allow identification of
those combinations of two parameters that might yield the
largest errors and thus are of most concern.

For the water quality example, if one plots the absolute
value of the error for all four combinations of high (�)
and low (�) values for each pair of parameters, they
obtain Figure 9.15.

Considering only the worst error for each pair of vari-
ables yields Figure 9.16.

Here we see, as is no surprise, that the worst error results
from the most unfavourable combination of L and q values.
If both parameters have their most unfavourable values, the
predicted phosphorus concentration would be 27 mg/m3.

4.2.4. First-Order Sensitivity Analysis

The above deterministic analysis has trouble representing
reasonable combinations of errors in several parameter
sets. If the errors are independent, it is highly unlikely that
any two sets would actually be at their extreme ranges at
the same time. By defining probability distributions of 
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the values of the various parameter sets, and specifying
their joint distributions, a probabilistic error analysis can
be conducted. In particular, for a given performance
indicator, one can use multivariate linear analyses to
evaluate the approximate impact on the performance
indices of uncertainty in various parameters. As shown
below, the impact depends upon the square of the sensi-
tivity coefficients (partial derivatives) and the variances
and covariances of the parameter sets.

For a performance indicator I � F(Y), which is a func-
tion F(�) of model outputs Y, which are in turn a function
g(P) of input parameters P, one can use a multivariate
Taylor series approximation of F to obtain the expected
value and variance of the indicator:

E[I] � F(based on mean values of input parameters) 
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Figure 9.15. Pareto diagram
showing errors in phosphorus
concentrations for all
combinations of pairs of input
parameters errors. A ‘�’
indicates a high value, and a ‘�’
indicates a low value for
indicated parameter. L is the
phosphorus loading rate, q is the
hydraulic loading, and z is the
mean lake depth.
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Figure 9.16. Pareto diagram showing worst error combinations 
for each pair of input parameters. A '�' indicates a high value,
and a '�'  indicates a low value for indicated parameter. 
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and

Var[I] � ∑
i

∑
j 

(∂F/∂Pi)(∂F/∂Pj) Cov[Pi, Pj] (9.7)

where (∂F/∂Pi) are the partial derivatives of the function F
with respect to Pi evaluated at the mean value of the input
parameters Pi, and ∂F2/∂Pi∂Pj are the second partial deriv-
atives. The covariance of two random input parameters Pi

and Pj is the expected value of the product of differences
between the values and their means:

Cov[Pi, Pj] � E[(Pi � E[Pi])(Pj � E[Pj])] (9.8)

If all the parameters are independent of each other, and
the second-order terms in the expression for the mean
E[I] are neglected, one obtains

E[I] � F(based on mean values of input 
parameters) (9.9)

and

Var[I] � [∂F/∂Pi]
2 Var[Pi] (9.10)

(Benjamin and Cornell, 1970). Equation 9.6 for E[I]
shows that in the presence of substantial uncertainty, the
mean of the output from non-linear systems is not simply
the system output corresponding to the mean of the
parameters (Gaven and Burges, 1981). This is true for any
non-linear function.

Of interest in the analysis of uncertainty is the approx-
imation for the variance Var[I] of indicator I. In Equation
9.10 the contribution of Pi uncertainty to the variance of
I equals Var[Pi] times [∂F/∂Pi]

2, which are the squares of
the sensitivity coefficients for indicator I with respect to
each input parameter value Pi.

An Example of First-Order Sensitivity Analysis

It may appear that first-order analysis is difficult because
the partial derivatives of the performance indicator I are
needed with respect to the various parameters. However,
reasonable approximations of these sensitivity coefficients
can be obtained from the simple sensitivity analysis
described in Table 9.3. In that table, three different
parameter sets, Pi, are defined in which one parameter of
the set is at its high value, PiH, and one is at its low value,
PiL, to produce corresponding values (called high, IiH, and
low, IiL) of a system performance indicator I.

i
∑

It is then necessary to estimate some representation of
the variances of the various parameters with some consistent
procedure. For a normal distribution, the distance between
the 5th and 95th percentiles is 1.645 standard deviations on
each side of the mean, or 2(1.645) � 3.3 standard devia-
tions. Thus, if the high/low range is thought of as approxi-
mately a 5–95 percentile range for a normally distributed
variate, a reasonable approximation of the variance might be

Var[Pi] � {[PiH � PiL]/3.3}2 (9.11)

This is all that is needed. Use of these average sensitivity
coefficients is very reasonable for modelling the behaviour
of the system performance indicator I over the indicated
ranges.

As an illustration of the method of first-order uncer-
tainty analysis, consider the lake-quality problem
described earlier. The ‘system performance indicator’ in
this case is the model output, the phosphorus concentra-
tion P, and the input parameters, now denoted as X � L,
q and z. The standard deviation of each parameter is
assumed to be the specified range divided by 3.3. Average
sensitivity coefficients ∂P/∂X were calculated. The results
are reported in Table 9.4.

Assuming the parameter errors are independent:

Var[P] � 9.18 � 2.92 � 0.02 � 12.12 (9.12)

The square root of 12.12 is the standard deviation and
equals 3.48. This agrees well with a Monte Carlo analysis
reported below.

Note that 100*(9.18/12.12), or about 76% of the total
parameter error variance in the phosphorus concentration
P, is associated in the phosphorus loading rate L and the
remaining 24% is associated with the hydrological loading
q. Eliminating the uncertainty in z would have a negligible
impact on the overall model error. Likewise, reducing the

Table 9.3. Approximate parameter sensitivity coefficients.
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Table 9.4. Calculation of approximate
parameter sensitivity coefficients.

z m

L mg/m2.a

q m/a

variable
X units St Dev[X ] Var[X ] %

(∂P /∂X )2

∂P /∂X
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to exclude some parameter combinations. Such errors 
can result in a distortion in the ranking of predominant
sources of uncertainty. However, in most cases very sim-
ilar results were obtained.

4.2.5. Fractional Factorial Design Method

An extension of first-order sensitivity analysis would be 
a more complete examination of the response surface using
a careful statistical design. First, consider a complete facto-
rial design. Input data are divided into discrete ‘levels’. 
The simplest case is two levels, which can be defined as a
nominal value, and a high (low) value. Simulation runs 
are made for all combinations of parameter levels. For n
different inputs, this would require 2n simulation runs.
Hence, for a three-input variable or parameter problem,
eight runs would be required. If four discrete levels of 
each input variable or parameter were allowed to provide a
more reasonable description of a continuous variable, the 
three-input data problem would require 43 or 64 simula-
tion runs. Clearly this is not a useful tool for large regional
water resources simulation models.

A fractional factorial design involves simulating only a
fraction of what is required from a full factorial design
method. The loss of information prevents a complete
analysis of the impacts of each input variable or parameter
on the output.

To illustrate the fractional factorial design method,
consider the two-level with three-input variable or param-
eter problem. Table 9.5 below shows the eight simula-
tions required for a full factorial design method. The ‘�’
and ‘�’ symbols show the upper and lower levels of each
input variable or parameter Pi where i � 1, 2, 3. If all
eight simulations were performed, seven possible effects
could be estimated. These are the individual effects of the
three inputs P1, P2, and P3; the three two-input variable or

error in q would at best have a modest impact on the total
error.

Due to these uncertainties, the estimated phosphorus
concentration has a standard deviation of 3.48. Assuming
the errors are normally distributed, and recalling that 
� 1.645 standard deviations around the mean define a
5–95 percentile interval, the 5–95 percentile interval
would be about

16.8 � 1.645(3.48) mg/m3 � 16.8 � 5.7 mg/m3

� 11.1 to 22.5 mg/m3 (9.13)

These error bars indicate that there is substantial uncer-
tainty associated with the phosphorus concentration P,
primarily due to uncertainty in the loading rate L.

The upper bound of 22.6 mg/m3 is considerably less
than the 27 mg/m3 that would be obtained if both L and
q had their most unfavourable values. In a probabilistic
analysis with independent errors, such a combination is
highly unlikely.

Warning on Accuracy

First-order uncertainty analysis is indeed an approximate
method based upon a linearization of the response 
function represented by the full simulation model. It 
may provide inaccurate estimates of the variance of 
the response variable for non-linear systems with large
uncertainty in the parameters. In such cases, Monte Carlo 
simulation (discussed below and in Chapters 7 and 8) or
the use of higher-order approximation may be required.
Beck (1987) cites studies that found that Monte Carlo and
first-order variances were not appreciably different, and a
few studies that found specific differences. Differences 
are likely to arise when the distributions used for the
parameters are bimodal (or otherwise unusual), or some
rejection algorithm is used in the Monte Carlo analysis 
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parameter interactions, (P1)(P2), (P1)(P3), and (P2)(P3);
and the one three-input variable or parameter interaction,
(P1)(P2)(P3).

Consider an output variable Y, where Yj is the value of
Y in the jth simulation run. Then an estimate of the effect,
denoted �(Y | Pi), that input variable or parameter Pi has
on the output variable Y is the average of the four separate
effects of varying Pi:

For i � 1:

�(Y | P1) � 0.25[(Y2 � Y1) � (Y4 � Y3)

� (Y6 � Y5) � (Y8 � Y7)] (9.14)

Each difference in parentheses is the difference between a
run in which P1 is at its upper level and a run in which P1

is at its lower level, but the other two parameter values, P2

and P3, are unchanged. If the effect is equal to 0, then, 
in that case, P1 has on average no impact on the output
variable Y.

Similarly the effects of P2 and P3, on variable Y can be
estimated as:

�(Y | P2) � 0.25{(Y3 � Y1) � (Y4 � Y2) � (Y7 � Y5)

� (Y8 � Y6)} (9.15)

and

�(Y | P3) � 0.25{(Y5 � Y1) � (Y6 � Y2) � (Y7 � Y3)

� (Y8 � Y4)} (9.16)

Consider next the interaction effects between P1 and P2.
This is estimated as the average of the difference between
the average P1 effect at the upper level of P2 and the
average P1 effect at the lower level of P2. This is the same

as the difference between the average P2 effect at the 
upper level of P1 and the average P2 effect at the lower 
level of P1:

�(Y | P1, P2) � (1/2){[(Y8 � Y7) � (Y4 � Y3)]/2
� [(Y2 � Y1) � (Y6 � Y5)]/2}

� (1/4){[(Y8 � Y6) � (Y4 � Y2)]
� [(Y3 � Y1) � (Y7 � Y5)]} (9.17)

Similar equations can be derived to show the interaction
effects between P1 and P3, and between P2 and P3 and the
interaction effects among all three inputs P1, P2, and P3.

Now assume only half of the simulation runs were
performed, perhaps runs 2, 3, 5 and 8 in this example. If
only outputs Y2, Y3, Y5, and Y8 are available, for our
example:

�(Y | P3) � �(Y | P1, P2) 

� 0.5{(Y8 � Y3) � (Y2 � Y5)} (9.18)

The separate effects of P3 and of P1P2 are not available
from the output. This is the loss in information resulting
from fractional instead of complete factorial design.

4.2.6. Monte Carlo Sampling Methods

The Monte Carlo method of performing sensitivity analy-
ses, illustrated in Figure 9.17, first selects a random set of
input data values drawn from their individual probability
distributions. These values are then used in the simula-
tion model to obtain some model output variable values.
This process is repeated many times, each time making
sure the model calibration is valid for the input data 
values chosen. The end result is a probability distribution
of model output variables and system performance
indices that results from variations and possible values of
all of the input values.

Using a simple Monte Carlo analysis, values of all of
the parameter sets are selected randomly from distribu-
tions describing the individual and joint uncertainty in
each, and then the modelled system is simulated to obtain
estimates of the selected performance indices. This must
be done many times (often well over 100) to obtain a 
statistical description of system performance variability.
The number of replications needed is generally not
dependent on the number of parameters whose errors are
to be analysed. One can include in the simulation the

Table 9.5. A three-input factorial design.
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Figure 9.17. Monte Carlo
sampling and simulation
procedure for finding
distributions of output variable
values based on distributions,
for specified reliability levels, of
input data values. This technique
can be applied to one or more
uncertain input variables at a
time. The output distributions
will reflect the combined effects
of this input uncertainty over the
specified ranges.

wrm_ch09.qxd  8/31/2005  11:56 AM  Page 274



Model Sensitivity and Uncertainty Analysis 275

uncertainty in parameters as well as natural variability.
This method can evaluate the impact of single or multiple
uncertain parameters.

A significant problem that arises in such simulations is
that some combinations of parameter values result in
unreasonable models. For example, model performance
with calibration data sets might be inconsistent with 
available data sets. The calibration process places interest-
ing constraints on different sets of parameter values. Thus,
such Monte Carlo experiments often contain checks 
that exclude combinations of parameter values that are
unreasonable. In these cases the generated results are
conditioned on this validity check.

Whenever sampling methods are used, one must 
consider possible correlations among input data values.
Sampling methods can handle spatial and temporal
correlations that may exist among input data values, but
the existence of correlation requires defining appropriate
conditional distributions.

One major limitation of applying Monte Carlo meth-
ods to estimate ranges of risk and uncertainty for model
output variable values, and system performance indicator
values on the basis of these output variable values, is the
computing time required. To reduce the time needed to
perform sensitivity analyses using sampling methods,
some tricks and stratified sampling methods are available.
The discussion below illustrates the idea of a simple 
modification (or trick) using a ‘standardized’ Monte Carlo
analysis. The more general Latin Hypercube Sampling
procedure is also discussed.

Simple Monte Carlo Sampling

To illustrate the use of Monte Carlo sampling methods,
consider again Vollenweider’s empirical relationship,
Equation 9.5, for the average phosphorus concentration
in lakes (Vollenweider, 1976). Two hundred values of
each parameter were generated independently from 
normal distributions with the means and variances as
shown in Table 9.6.

The table contains the specified means and variances for
the generated values of L, q and z, and also the actual values
of the means and variances of the 200 generated values of
L, q, z and also of the 200 corresponding generated output
phosphorus concentrations, P. Figure 9.18 displays the
distribution of the generated values of P.

One can see that, given the estimated levels of uncer-
tainty, phosphorus levels could reasonably range from
below 10 to above 25. The probability of generating 
a value greater than 20 mg/m3 was 12.5%. The 5–95 
percentile range was 11.1 to 23.4 mg/m3. In the figure,
the cumulative probability curve is rough because 
only 200 values of the phosphorus concentration were
generated, but these are clearly enough to give a good
impression of the overall impact of the errors.

Sampling Uncertainty

In this example, the mean of the 200 generated values 
of the phosphorus concentration, P, was 17.07. However,
a different set of random values would have generated a 

Table 9.6. Monte Carlo analysis of lake
phosphorus levels.

parameter L q z P

mean standard
deviations

680.00

121.21

10.60

1.67

84.00

1.82

—

---

mean standard
deviations

674.18

130.25

10.41

1.73

84.06

1.82

17.07

3.61

specified means and standard deviations

generated means and standard deviations
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20

82
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different set of P values as well. Thus, it is appropriate 
to estimate the standard error, SE, of this average. The
standard error equals the standard deviation σ of the P
values divided by the square root of the sample size n:

SE � σ/(n)0.5 � 3.61/(200)0.5 � 0.25. (9.19)

From the central limit theorem of mathematical statistics,
the average of a large number of independent values
should have very nearly a normal distribution. Thus, 95%
of the time, the true mean of P should be in the interval
17.1 � 1.96(0.25), or 16.6 to 17.6 mg/m3. This level of
uncertainty reflects the observed variability of P and the
fact that only 200 values were generated.

Making Sense of the Results

A significant challenge with complex models is to deter-
mine from the Monte Carlo simulation which parameter
errors are important. Calculating the correlation between
each generated input parameter value and the output
variable value is one way of doing this. As Table 9.7 below
shows, on the basis of the magnitudes of the correlation
coefficients, errors in L were most important, and those in
q were second in importance.

One can also use regression to develop a linear model
defining variations in the output on the basis of errors 
in the various parameters. The results are shown in the
Table 9.8. The fit is very good, and R2 � 98%. If the
model for P had been linear, a R2 value of 100% should
have resulted. All of the coefficients are significantly 
different from zero.

Note that the correlation between P and z was positive
in Table 9.7, but the regression coefficient for z is nega-
tive. This occurred because there is a modest negative 
correlation between the generated z and q values. Use of
partial correlation coefficients can also correct for such
spurious correlations among input parameters.

Finally, we display a plot, Figure 9.19, based on 
this regression model, illustrating the reduction in the
variance of P that results from dropping each variable 
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variable L q z P

L

q

z

P

1

0.079

0.130

0.851

1

-0.139

-0.434

1

0.144 1

Table 9.7. Correlation analysis of Monte Carlo results.

L

q

z

18.605

0.025

-1.068

-0.085

intercept

coefficient
standardized
error ratio t

1.790

0.000

10.39

85.36

0.022

0.021

-48.54

-  4.08

E0
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9u

Table 9.8. Results of regression analysis on Monte Carlo
Results.
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Figure 9.19. Reduction in the variance of P that is due to
dropping from the regression model each variable individually.
Clearly L has the biggest impact on the uncertainty in P, and z
the least.

Figure 9.18. Distribution of lake phosphorus concentrations
from Monte Carlo analysis.
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individually. Clearly, L has the biggest impact on the
uncertainty in P, and z the least.

Standardized Monte Carlo Analysis

Using a ‘standardized’ Monte Carlo analysis, one could
adjust the generated values of L, q and z above so that the
generated samples actually have the desired mean and
variance. While making that correction, one can also
shuffle their values so that the correlations among the
generated values for the different parameters are near
zero, as is desired. This was done for the 200 generated
values to obtain the statistics shown in Table 9.9.

Repeating the correlation analysis from before (shown 
in Table 9.10) now yields much clearer results that are 
in agreement with the regression analysis. The correlation
between P and both q and z are now negative, as they
should be. Because the generated values of the three param-
eters have been adjusted to be uncorrelated, the signal from
one is not confused with the signal from another.

The mean phosphorus concentration changed very 
little. It is now 17.0 instead of 17.1 mg/m3.

Generalized Likelihood Estimation

Beven (1993) and Binley and Beven (1991) suggest a
Generalized Likelihood Uncertainty Estimation (GLUE)
technique for assessment of parameter error uncertainty
using Monte Carlo simulation. It is described as a ‘formal
methodology for some of the subjective elements of model
calibration’ (Beven, 1989, p. 47). The basic idea is to begin
by assigning reasonable ranges for the various parameters,

and then to draw parameter sets from those ranges using 
a uniform or some similar (and flat) distribution. These
generated parameter sets are then used on a calibration
data set so that unreasonable combinations can be
rejected, while reasonable values are assigned a posterior
probability based upon a likelihood measure that may
reflect several dimensions and characteristics of model
performance.

Let L(Pi) � 0 be the value of the likelihood measure
assigned to the calibration sequence of the ith parameter
set. Then the model predictions generated with parameter
set/combination Pi are assigned posterior probability,
p(Pi), where

p(Pi) � L(Pi)� L(Pj) (9.20)

These probabilities reflect the form of Bayes theorem,
which is well supported by probability theory (Devore,
1991). This procedure should capture reasonably well the
dependence or correlation among parameters, because rea-
sonable sequences will all be assigned larger probabilities,
whereas sequences that are unable to reproduce the system
response over the calibration period will be rejected or
assigned small probabilities.

However, in a rigorous probabilistic framework, the L
would be the likelihood function for the calibration series
for particular error distributions. (This could be checked
with available goodness-of-fit procedures; for example,
Kuczera, 1988.) When relatively ad hoc measures are
adopted for the likelihood measure with little statistical
validity, the p(Pi) probabilities are best described as
pseudo probabilities or ‘likelihood’ weights.

Another concern with this method is the potential 
efficiency. If the parameter ranges are too wide, a large

j
∑
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parameter L q z P

680.00

121.21

680.00

121.21

10.60

1.67

10.60

1.67

84.00

1.82

84.00

1.82

—

---

17.03

3.44

specified means and standard deviations

generated means and standard deviations

mean

standard deviations

mean

standard deviations

E0
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variable L q z P

L

q

z

P

1.00

0.01

0.02

0.85

1.00

0.00

-0.50

1.00

-0.02 1.00

Table 9.10. Correlation analysis of standardized Monte Carlo
results.

Table 9.9. Standardized Monte Carlo analysis of lake
phosphorus levels.
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number of unreasonable or very unlikely parameter com-
binations will be generated. These will either be rejected
or else will have small probabilities and, thus, little effect
on the analysis. In this case, the associated processing
would be a waste of effort. A compromise is to use some
data to calibrate the model and to generate a prior or ini-
tial distribution for the parameters that is at least centred
in the best range (Beven, 1993, p. 48). Use of a different
calibration period to generate the p(Pi) then allows 
an updating of those initial probabilities to reflect the
information provided by the additional calibration period
with the adopted likelihood measures.

After the accepted sequences are used to generate sets
of predictions, the likelihood weights would be used in
the calculation of means, variances and quantiles. The
resulting conditional distribution of system output
reflects the initial probability distributions assigned to
parameters, the rejection criteria and the likelihood meas-
ure adopted to assign ‘likelihood’ weights.

Latin Hypercube Sampling

For the simple Monte Carlo simulations described in
Chapters 7 and 8, with independent errors, a proba-
bility distribution is assumed for each input parameter
or variable. In each simulation run, values of all input
data are obtained from sampling those individual and
independent distributions. The value generated for an
input parameter or variable is usually independent of
what that value was in any previous run, or what other
input parameter or variable values are in the same run.
This simple sampling approach can result in a cluster-
ing of parameter values, and hence both redundancy 
of information from repeated sampling in the same
regions of a distribution and lack of information
because there is no sampling in other regions of the 
distributions.

A stratified sampling approach ensures more even 
coverage of the range of input parameter or variable 
values with the same number of simulation runs. This can
be accomplished by dividing the input parameter or vari-
able space into sections and sampling from each section
with the appropriate probability.

One such approach, Latin hypercube sampling (LHS),
divides each input distribution into sections of equal
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probability for the specified probability distribution, and
draws one observation randomly from each section.
Hence the ranges of input values within each section 
actually occur with equal frequency in the experiment.
These values from each section for each distribution 
are randomly assigned to those from other sections to 
construct sets of input values for the simulation analysis.
Figure 9.20 shows the steps in constructing an LHS for 
six simulations involving three inputs Pj (P1, P2, and P3)
and six intervals of their respective normal, uniform and 
triangular probability distributions.

5. Performance Indicator
Uncertainties

5.1. Performance Measure Target Uncertainty

Another possible source of uncertainty is the selection of
performance measure target values. For example, con-
sider a target value for a pollutant concentration based on
the effect of exceeding it in an ecosystem. Which target
value is best or correct? When this is not clear, there are
various ways of expressing the uncertainty associated
with any target value. One such method is the use of
fuzzy sets (Chapter 5). Use of ‘grey’ numbers or intervals
instead of ‘white’ or fixed target values is another. When
some uncertainty or disagreement exists over the selec-
tion of the best target value for a particular performance
measure, it seems to us the most direct and transparent
way to do this is to subjectively assign a distribution over
a range of possible target values. Then this subjective
probability distribution can be factored into the tradeoff
analysis, as outlined in Figure 9.21.

One of the challenges associated with defining and
including in an analysis the uncertainty associated with a
target or threshold value for a performance measure is
that of communicating just what the result of such an
analysis means. Referring to Figure 9.21, suppose the 
target value represents some maximum limit of a pollu-
tant concentration, such as phosphorus, in the flow dur-
ing a given period of time at a given site or region, and it
is not certain just what that maximum limit should be.
Subjectively defining the distribution of that maximum
limit, and considering that uncertainty along with the
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uncertainty (probability of exceedance function) of
pollutant concentrations – the performance measure –
one can attach a reliability to any probability of exceed-
ing the maximum desired concentration value.

The 95% probability of exceedance shown on Figure
9.21, say P0.95, should be interpreted as: ‘we can be 95%
confident that the probability of the maximum desired

pollutant concentration being exceeded will be no greater
than P0.95.’ We can be only 5% confident that the proba-
bility of exceeding the desired maximum concentration
will be no greater than the lower P0.05 value. Depending
on whether the middle line through the subjective distri-
bution of target values in Figure 9.21 represents the most
likely or median target value, the associated probability of
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Figure 9.20. Schematic
representation of a Latin
hypercube sampling procedure
for six simulation runs.
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exceedance is either the most likely, as indicated in Figure
9.21, or that for which we are only 50% confident.

Figure 9.22 attempts to show how to interpret the
reliabilities when the uncertain performance targets are:

• minimum acceptable levels that are to be maximized,
• maximum acceptable levels that are to be minimized, or 
• optimum levels.

An example of a minimum acceptable target level might
be the population of wading birds in an area. An example
of a maximum acceptable target level might be, again, 
the phosphorus concentration of the flow in a specific
wetland or lake. An example of an optimum target level
might be the depth of water most suitable for selected
species of aquatic vegetation during a particular period of
the year.

For performance measure targets that are not
expressed as minimum or maximum limits but that are
the ‘best’ values, referring to Figure 9.22, one can state
that there is a 90% reliability that the probability of
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achieving the desired target is no more than β. The 90%
reliability level of not achieving the desired target is at
least α � γ. The probability of the performance measure
being too low is at least α, and the probability of the per-
formance measure being too high is at least γ, again at the
90% reliability levels. As the reliability level decreases, the
bandwidth decreases, and the probability of not meeting
the target increases.

Now, clearly there is uncertainty associated with each of
these uncertainty estimations, and this raises the question
of how valuable is the quantification of the uncertainty of
each additional component of the plan in an evaluation
process. Will plan-evaluators and decision-makers benefit
from this additional information, and just how much addi-
tional uncertainty information is useful?

Now consider again the tradeoffs that need to be
made, as illustrated in Figure 9.7. Instead of considering
a single target value, as shown on the figure, assume 
there is a 90% reliability or probability range associated 
with that single performance measure target value. Also

Figure 9.21. Combining the
probability distribution of
performance measure values
with the probability distribution
of performance measure target
values to estimate the
confidence one has in the
probability of exceeding a
maximum desired target value.
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For a performance measure
that is to be minimized:

For a performance measure
that is to be minimized:

95% confident that the probability of exceeding
a desired target is no greater than β+γ.

95% confident that the probability of not
exceeding the desired target is at least α.

5% confident that the probability of exceeding
a desired target is no greater than γ.

5% confident that the probability of not
exceeding the desired target is at least α+β.
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Figure 9.22. Interpreting the
results of combining
performance measure
probabilities with performance
measure target probabilities
depends on the type of
performance measure. The
letters α, β and γ represent
proportions of the probability
density function of performance
measure values. (Hence
probabilities α � β � γ � 1.)

assume that the target is a maximum desired upper limit,
e.g. of some pollutant concentration.

In the case shown in Figure 9.23, the tradeoff is
clearly between cost and reliability. In this example, no
matter what reliability one chooses, Plan A is preferred
to Plan B with respect to reliability, but Plan B is
preferred to Plan A with respect to cost. The tradeoff is
only between these two performance indicators or
measures.

Consider, however, a third plan, as shown in Figure
9.24. This situation adds to the complexity of making
appropriate tradeoffs. Now there are three criteria: cost,
probability of exceedance and the reliabilities of those
probabilities. Add to this the fact that there will be multi-
ple performance measure targets, each expressed in terms
of their maximum probabilities of exceedance and the
reliability of those probabilities.

In Figure 9.24, in terms of cost the plans are ranked,
from best to worst, B, C and A. In terms of the 90 reliable
probability, they are ranked A, B and C, but at the 50 
percent reliability level the ranking is A, C and B.

If the plan evaluation process has difficulty handling all
this, it may indicate the need to focus the uncertainty
analysis effort on just what is deemed important,
achievable and beneficial. Then, when the number of alter-
natives has been narrowed down to only a few that appear
to be the better ones, a more complete uncertainty analy-
sis can be performed. There is no need and no benefit in
performing sensitivity and uncertainty analyses on all
possible management alternatives. Rather one can focus on
those alternatives that look most promising, and then
carry out additional uncertainty and sensitivity analyses
only when important uncertain performance indicator
values demands more scrutiny.

5.2. Distinguishing Differences Between
Performance Indicator Distributions

Simulations of alternative water management infrastruc-
ture designs and operating policies require a comparison
of the simulation outputs – the performance measures or
indicators – associated with each alternative. A reasonable
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question to ask is whether the observed differences are
statistically significant. Can one really tell whether one 
alternative is better than another, or whether the observed 
differences are explainable by random variations attribut-
able to variations in the inputs and the way the system
responds?

This is a common statistical issue that is addressed by
standard hypothesis tests (Devore, 1991; Benjamin and
Cornell, 1970). Selection of an appropriate test requires
that one first resolve what type of change one expects in
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the variables. To illustrate, consider the comparison of
two different operating policies. Let Y1 denote the set of
output performance variable values with the first policy,
and Y2 the set of output performance variable values of
the second policy. In many cases, one would expect one
policy to be better than the other. One measure might 
be the difference in the mean of the variables; for exam-
ple, E[Y1] 	 E[Y2]. Alternatively one could check the
difference in the median (50th percentile) of the two
distributions.

In addition, one could look for a change in the 
variability or variance, or a shift in both the mean and
the variance. Changes described by a difference in the
mean or median often make the most sense, and many
statistical tests are available that are sensitive to such
changes. For such investigations parametric and non-
parametric tests for paired and unpaired data can be
employed.

Consider the differences between ‘paired’ and ‘unpaired’
data. Suppose that the meteorological data for 1941 to
1990 is used to drive a simulation model generating data as
described in Table 9.11.

Here there is one sample, Y1(1) through Y1(50), for
Policy 1, and another sample, Y2(1) through Y2(50), for
Policy 2. However, the two sets of observations are not
independent. For example, if 1943 was a very dry year,

probability maximum performance target will be exceeded
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Figure 9.24. Tradeoffs among cost, probabilities and the
reliability or confidence level of those probabilities. The
relative ranking of plans with respect to the probability of
exceeding the desired (maximum limit) target may depend 
on the reliability or confidence associated with that
probability.
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Figure 9.23. Two plans showing ranges of
probabilities, depending on the reliability, that
an uncertain desired maximum (upper limit)
performance target value will be exceeded.
The 95% reliability levels are associated with
the higher probabilities of exceeding the
desired maximum target. The 5% reliability
levels are associated with the more desirable
lower probabilities of exceeding the desired
maximum target. Plan A with reduced
probabilities of exceeding the upper limit costs
more than Plan B.
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then we would expect both Y1(3) for Policy 1 in that year
and Y2(3) for Policy 2 to be unusually small. With such
paired data, one can use a paired hypothesis test to 
check for differences. Paired tests are usually easier than
the corresponding unpaired tests that are appropriate in
other cases. For example, if one were checking for a
difference in average rainfall depth between the periods
1941 to 1960 and 1961 to 1990, then one would have
two sets of independent measurements for the two peri-
ods. With such data, one should use a two-sample
unpaired test. 

Paired tests are generally based on the differences
between the two sets of output, Y1(i) � Y2(i). These are
viewed as a single independent sample. The question is
then whether the differences are positive (say Y1 tends to
be larger then Y2) or negative (Y1 tends to be smaller), or
whether positive and negative differences are equally
likely (there is no difference between Y1 and Y2).

Both parametric and non-parametric families of
statistical tests are available for paired data. The common
parametric test for paired data (a one-sample t test)
assumes that the mean of the differences

X(i) � Y1(i) � Y2(i) (9.21)

are normally distributed. The hypothesis of no difference
is rejected if the t statistic is sufficiently large, given the
sample size n.

Alternatively, one can employ a non-parametric test
and avoid the assumption that the differences X(i) are
normally distributed. In such a case, one can use the
Wilcoxon Signed Rank test. This non-parametric test
ranks the absolute values |X(i)| of the differences. If the

sum S of the ranks of the positive differences deviates
sufficiently from its expected value, n(n � 1)/4 (were
there no difference between the two distributions), one
can conclude that there is a statistically significant 
difference between the Y1(i) and Y2(i) series. Standard
statistical texts have tables of the distribution of the 
sum S as a function of the sample size n, and provide a
good analytical approximation for n > 20 (for example,
Devore, 1991). Both the parametric t test and the non-
parametric Wilcoxon Signed Rank test require that the
differences between the simulated values for each year
be computed.

6. Communicating Model Output
Uncertainty

Spending money on reducing uncertainty would seem
preferable to spending it on ways of calculating and
describing it better. Yet attention to uncertainty commu-
nication is critically important if uncertainty analyses and
characterizations are to be of value in a decision-making
process. In spite of considerable efforts by those involved
in risk assessment and management, we know very little
about how to ensure effective risk communication to 
gain the confidence of stakeholders, incorporate their
views and knowledge, and influence favourably the
acceptability of risk assessments and risk-management
decisions.

The best way to communicate concepts of uncertainty
may well depend on what the audiences already know
about risk and the various types of probability distributions
(e.g. density, cumulative, exceedance) based on objective
and subjective data, and the distinction between mean or
average values and the most likely values. Undoubtedly
graphical representations of these ways of describing
uncertainty considerably facilitate communication.

The National Research Council (NRC, 1994)
addressed the extensive uncertainty and variability 
associated with estimating risk and concluded that risk
characterizations should not be reduced to a single 
number or even to a range of numbers intended to 
portray uncertainty. Instead, the report recommended
that managers and the interested public should be given
risk characterizations that are both qualitative and 
quantitative, and both verbal and mathematical.

Table 9.11. Possible flow data from a fifty-year simulation.

1941

1942

1943

1944

1989
1990 Y2  (50)

Y2  (49)
Y1  (50)
Y1  (49)

Y2  (  4)

Y2  (  3)

Y2  (  2)

Y2  (  1)

Y1  (  4)

Y1  (  3)

Y1  (  2)

Y1  (  1) E0
20
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In some cases, communicating qualitative information
about uncertainty to stakeholders and the public in 
general may be more effective than providing quantitative
information. There are, of course, situations in which
quantitative uncertainty analyses are likely to provide
information that is useful in a decision-making process.
How else can tradeoffs such as those illustrated in 
Figures 9.10 and 9.27 be identified? Quantitative 
uncertainty analysis can often be used as the basis of
qualitative information about uncertainty, even if the
quantitative information is not what is communicated to
the public.

One should acknowledge to the public the widespread
confusion regarding the differences between variability
and uncertainty. Variability does not change through
further measurement or study, although better sampling
can improve our knowledge about it. Uncertainty reflects
gaps in information about scientifically observable phe-
nomena.

While it is important to communicate prediction
uncertainties and the reliabilities of those uncertainties, it
is equally important to clarify who or what is at risk, 
the possible consequences, and the severity and irre-
versibility of an adverse effect should a target value, 
for example, not be met. This qualitative information is 
often critical to informed decision-making. Risk and
uncertainty communication is always complicated by the
reliability and amounts of available relevant information
as well as how that information is presented. Effective
communication between people receiving information
about who or what is at risk, or what might happen 
and just how severe and irreversible an adverse effect
might be should a target value not be met, is just as
important as the level of uncertainty and the reliability
associated with such predictions. A two-way dialogue
between those receiving such information and those
providing it can help identify just what seems best for a
particular audience.

Risk and uncertainty communication is a two-
way activity that involves learning and teaching.
Communicators dealing with uncertainty should learn
about the concerns and values of their audience, their 
relevant knowledge and their experience with uncertainty
issues. Stakeholders’ knowledge of the sources and 
reasons for uncertainty needs to be incorporated into assess-
ment and management and communication decisions. By
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listening, communicators can craft risk messages that better
reflect the perspectives, technical knowledge and concerns
of the audience.

Effective communication should begin before impor-
tant decisions have been made. It can be facilitated in
communities by citizen advisory panels, which can give
planners and decision-makers a better understanding of
the questions and concerns of the community, and an
opportunity to test their effectiveness in communicating
concepts and specific issues regarding uncertainty.

One approach to make risk more meaningful is to
make risk comparisons. For example, a ten parts-per-
billion target for a particular pollutant concentration is
equivalent to ten seconds in over thirty-one years. If this
is an average daily concentration target that is to be
satisfied ‘99%’ of the time, then this is equivalent to an
expected violation of less than one day every three
months.

Many perceive the reduction of risk by an order of
magnitude as though it were a linear reduction. A better
way to illustrate orders of magnitude of risk reduction 
is shown in Figure 9.25, in which a bar graph depicts 
better than words that a reduction in risk from one in a
1,000 (10�3) to one in 10,000 (10�4) is a reduction of
90% and that a further reduction to one in 100,000 (10�5)
is a reduction tenfold less than the first reduction of 90%.
The percent of the risk that is reduced by whatever
measures is a much easier concept to communicate than
reductions expressed in terms of estimated absolute risk
levels, such as 10�5.

Risk comparisons can be helpful, but they should be
used cautiously and tested if possible. There are dangers
in comparing risks of diverse character, especially when
the intent of the comparison is seen as reducing a risk
(NRC, 1989). One difficulty in using risk comparisons is
that it is not always easy to find risks that are sufficiently
similar to make a comparison meaningful. How is one 
to compare two alternatives that have two different costs
and two different risk levels, for example, as shown 
in Figure 9.23? One way is to perform an indifference
analysis (Chapter 10), but that can lead to differing results
depending who performs it. Another way is to develop
utility functions using weights, where, for example
reduced phosphorus load by half is equivalent to a 25%
shorter hydroperiod in that area, but again each person’s
utility or tradeoff may differ.
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At a minimum, graphical displays of uncertainty can
be helpful. Consider the common system performance
indicators that include:

• time-series plots for continuous time-dependent indi-
cators (Figure 9.26 upper left),

• probability exceedance distributions for continuous
indicators (Figure 9.26 upper right),

• histograms for discrete event indicators (Figure 9.26
lower left),

• overlays on maps for space-dependent discrete events
(Figure 9.26 lower right).

The first three graphs in Figure 9.26 could show, in
addition to the single curve or bar that represents the
most likely output, a range of outcomes associated with a
given confidence level. For overlays of information on
maps, different colours could represent the spatial extents
of events associated with different ranges of risk or
uncertainty. Figure 9.27, corresponding to Figure 9.26,
illustrates these approaches for displaying these ranges.

7. Conclusions

This chapter has provided an overview of uncertainty and
sensitivity analyses in the context of hydrological or water
resources systems simulation modelling. A broad range of
tools are available to explore, display and quantify the
sensitivity and uncertainty in predictions of key output
variables and system performance indices with respect to
imprecise and random model inputs and to assumptions
concerning model structure. They range from relatively

1000

800

600

400

200

0

10-3 10-4 10-5 10-6

E0
20

72
5r

risk level
e.g. probability of exceedance

Figure 9.25. Reducing risk (x-axis) by orders of magnitude is not
equivalent to linear reductions in some risk indicator (y-axis).
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Figure 9.26. Different types of displays
used to show model output Y or system
performance indicator values F(Y).
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simple deterministic sensitivity analysis methods to more
involved first-order analyses and Monte Carlo sampling
methods.

Because of the complexity of many watersheds or river
basins, using Monte Carlo methods for uncertainty analy-
ses may be a very large and unattractive undertaking. It 
is therefore often prudent to begin with the relatively
simple deterministic procedures. These, coupled with a
probabilistically based first-order uncertainty analysis
method, can help quantify the uncertainty in key output
variables and system performance indices, and the
relative contributions of uncertainty in different input
variables to the uncertainty in different output variables
and system performance indices. These relative contribu-
tions may differ depending upon which output variables
and indices are of interest.

A sensitivity analysis can provide a systematic assess-
ment of the impact of parameter value imprecision on
output variable values and performance indices, and of
the relative contribution of errors in different parameter
values to that output uncertainty. Once the key variables
are identified, it should be possible to determine the
extent to which parameter value uncertainty can be
reduced through field investigations, development of 
better models and other efforts.
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Model calibration procedures can be applied to 
individual catchments and subsystems, as well as to 
composite systems. Automated calibration procedures
have several advantages, including the explicit use of 
an appropriate statistical objective function, identification
of those parameters that best reproduce the calibration
data set with the given objective function, and the esti-
mations of the statistical precision of the estimated
parameters.

All of these tasks together can represent a formidable
effort. However, knowledge of the uncertainty asso-
ciated with model predictions can be as important to
management decisions and policy formulation as are 
the predictions themselves.

No matter how much attention is given to quantifying
and reducing uncertainties in model outputs, uncertain-
ties will remain. Professionals who analyse risk, managers
and decision-makers who must manage risk, and the
public who must live with risk and uncertainty, have
different information needs and attitudes regarding risk
and uncertainty. It is clear that information needs differ
among those who model or use models, those who make
substantial investment or social decisions, and those who
are likely to be affected by those decisions. Meeting those
needs should result in more informed decision-making,
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Figure 9.27. Plots of ranges of possible
model output Y or system indicator values
F(Y) for different types of displays.
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but this comes at a cost that should be considered along
with the benefits of having this sensitivity and uncertainty
information.
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