DRUGS FOR PEPPY

LOADING DOSE:

Drugs	Dose/ Concentration	Calculations	Volume per site	Withdrawal Time	Route & Comments
Anaesthetic/ Sedative		$\frac{\textit{Weight x Dose}}{\textit{Concentration}}$			
Lidocaine	Toxic dose: 2% of 10 mg/kg	$\frac{103x10}{20} = 51.5 \text{ ml}$	Loading dose: 5.2 ml in jugular vein	4 days for meat 3 days for milk	IV for loading dose SC for splash dose
	Recommended dose for cow: (half toxic dose) 2% of 5 mg/kg	Maximum Vol can be administered: $\frac{103 \times 5}{20} = 25.8 \text{ ml}$	Splash dose: average 4 ml per splash		Onset: 15 min Duration: 60 min Note: Splash dose of Lidocaine was administered
	Recommended Loading dose for cow: 2% of 1 mg/kg	Loading dose: $\frac{103 \times 1}{20} = 5.2 \text{ ml}$	17		intermittently when the animal exhibited signs of pain over the incision site.
		Splash dose: 10 ml Lidocaine + 10 ml Saline = 20 ml mixture			

Xylazine	Recommended Loading dose 2% of 0.05 mg/kg	Loading Dose: $\frac{103 \times 0.05}{20} = 0.26 \text{ ml}$	Loading Dose: 0.26 ml	4 days for meat 1 days for milk	IM Onset: 10 min Duration: 45 min
Ketamine	Recommended Loading Dose 10% of 5 mg/kg	Loading Dose: $\frac{103 \times 5}{100} = 5.2 \text{ ml}$	Loading Dose: 5.2 ml	3 days for meat 3 days for milk	IM Onset: 10 min Duration: 45 min
NSAID					
Flunixin meglumine	Initial Dose: 5% of 2.2 mg/kg	Initial Dose: $\frac{103 \times 2.2}{50} = 4.5 \text{ ml}$	Initial Dose: 4.5 ml	4 days for meat 1.5 days for milk	Onset: Within 2 hours Duration: 24-36 hours
Antibiotic					
Penicillin Streptomycin	Initial Dose: 200,000 IU/ml of 20,000 IU/kg	Initial Dose: $\frac{103 \times 20,000}{200,000} = 10.3 \text{ ml}$	Initial Dose: 10.3 ml	30 days for meat 10 days for milk	IM Duration: 72 hours

Reversal Drugs:

Drugs	Dose/Concentration		Volume	Route & Comments
Atropine	0.54 mg/ml of 0.04 mg/kg	$\frac{0.04 \times 103}{0.54} = 7.6 \text{ ml}$	7.6 ml	IV/IM Used for Bradycardia (less than 38 bpm)
Epinephrine	0.1 % of 0.02 mg/kg	$\frac{0.02 \times 103}{1} = 2.06 \text{ ml}$	2.1 ml	IM
				Used for anaphylactic shock Signs include respiratory depression, excess salivation, urticaria, rhinitis, facial and limb oedema
Tolazoline	10 % of 0.1 mg/kg – 0.2 mg/kg (Recommended 2-4 times xylazine dose)	Lower Limit: $\frac{0.1 \times 103}{100} = 0.103 \text{ ml}$	Lower Limit = 0.10 ml	IV slowly Used to reverse xylazine. If signs of xylazine toxicity (brodycordia bypotonoian and
		Upper limit = $\frac{0.2 \times 103}{100}$ = 0.206 ml	Upper limit = 0.21 ml	(bradycardia, hypotension and respiratory depression) are seen administer the lower limit, 0.1 ml. If signs continue after some time add 0.1 ml or less to reach the upper limit. BUT do not cross the upper limit.

CONTINUOUS INFUSION RATE:

CRI (drug/mg) = {Infusion Rate of drug (mg/kg/hr) ÷ Fluid Infusion Rate (ml/kg/hr)} × Diluent Volume (Saline bag ml)

Xylazine CRI (drug/mg) = $\{0.05 \text{ (mg/kg/hr)} \div 5.0 \text{ (ml/kg/hr)}\} \times 1000 \text{ (ml)} = 10 \text{ mg}$

Volume of Xylazine to be added to Saline bag using 20 mg/ml = 10 mg ÷ 20 mg/ml = 0.5 ml Xylazine

Ketamine CRI (drug/mg) = $\{0.05 \text{ (mg/kg/hr)} \div 5.0 \text{ (ml/kg/hr)}\} \times 1000 \text{ (ml)} = 1000 \text{ mg}$

Volume of Ketamine to be added to Saline bag using 100 mg/ml = 1000 mg ÷ 100 mg/ml = 10 ml Ketamine

Lidocaine CRI (drug/mg) = $\{1 \text{ (mg/kg/hr)} \div 5.0 \text{ (ml/kg/hr)}\} \times 1000 \text{ (ml)} = 200 \text{ mg}$

Volume of Lidocaine to be added to Saline bag using 20 mg/ml = 200 mg \div 20 mg/ml = 10 ml Lidocaine

DRIP RATE:

Drip rate = {Weight of animal (kg) \times Fluid rate (ml/kg/hr) \times Drip factor (drop/ml)} \div {60 (min/hr) \times 60 (seconds/min)}

Drip rate = $\{103 \text{ (kg)} \times 5 \text{ (ml/kg/hr)} \times 20 \text{ (drop/ml)}\} \div \{60 \text{ (min/hr)} \times 60 \text{ (seconds/min)}\} = 2.8 \sim 3 \text{ drop/second}$