ELECTROCHEMISTRY – NERNST EQUATION

A. Objective Questions (5 marks)

1. Determine the equilibrium constant, K_{eq} at 25°C for the reaction

2. What is the electrode potential for the half-reaction below at pH 4?

	$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$	$E^{\circ} = +1.77 V$	
A.	+1.48 V	В.	+1.53 V
C.	+1.62 V	D.	+1.69 V

3. The electromotive force (e.m.f) of a Daniell cell, $Zn(s) | Zn^{2+}(aq) | | Cu^{2+} | Cu(s)$ can be increased by

- A. increasing the concentration of copper ions.
- B. increasing the concentration of zinc ions.
- C. Enlarging the surface area of the electrodes.
- D. increase the pressure of the hydrogen gas.
- 4. The following redox reaction occurs in the voltaic cell shown below.

 $2MnO_4(aq) + 8H^+(aq) + 3Cu(s) \longrightarrow 2MnO_2(s) + 4H_2O(l) + 3Cu^{2+}(aq)$

What is the potential of the cell at 25° C when $[MnO_4^-] = 0.20$ M, $[Cu^{2+}] = 0.003$ M and $[H^+] = 0.10$ M?

A.	+1.15 V	В.	+1.00 V
C.	+0.23 V	D.	+1.50 V

5. The relationship between electrode potential and the concentration of ions is given by the following Nernst Equation:

 $\mathbf{E}_{cell} = \mathbf{E^{\circ}}_{cell} - \frac{0.0592}{n} log \frac{[oxidised \ ion]}{[reduced \ ion]}$

The standard e.m.f for the cell $Pt(s) | Pt^{2+}(aq, 1 M) || Au^{3+}(aq, 1M) || Au(s) is +0.20 V$. If the concentration of Pt^{2+} ions is increased by 2 M whilst reducing the concentration of Au^{3+} by 0.80 M, what will be the new cell potential?

A.	+0.12 V	B	. +0.17 V

C. +0.19 V D. +0.22 V

B. Subjective Questions

1. Refer to the reaction below

 $3H_2O_2(aq) + 6H^+(aq) + 2Au(s) \longrightarrow 2Au^{3+}(aq) + 6H_2O(l)$

- (i) Identify the reducing agent and oxiding agent for the reaction.
- (ii) Determine the pH of the half-cell if emf of the cell is + 0.2711 V
 - $[Au^{3+}] = 0.25 \text{ M}, \text{ and } [H_2O_2] = 1.50 \text{ M}$
- (iii) If the concentration of [Au³⁺] is increased, what would happen to the emf of the cell ? Explain

[Given $\mathbf{E}^{\circ}_{Au^{3+}|Au} = +1.50 \, \mathbf{V}$; $\mathbf{E}^{\circ}_{H_2O_2|H_2O} = +1.77 \, \mathbf{V}$]

[10 marks]

ANSWERS

1.	2.	3.	4.	5.
С	B	Α	Α	С

NO.	PART	SUGGESTED ANSWER
1.	(i)	Reducing agent : Au 1 mark
		Oxidising agent : H ₂ O ₂
	(ii)	$\mathbf{E}^{\circ}_{cell} = \mathbf{E}^{\circ}_{cathode} - \mathbf{E}^{\circ}_{anode}$ 1 mark
		$=\mathbf{E}^{\circ}_{\mathbf{H}_{2}\mathbf{O}_{2} \mathbf{H}_{2}\mathbf{O}}-\mathbf{E}^{\circ}_{\mathbf{Au}^{3+} \mathbf{Au}}$
		= +1.77 V - 1.50 V
		= + 0.27 V 1 mark
	(iii)	$E_{cell} = E_{cell}^{\circ} - \frac{0.0592}{n} \log Q$
		$\mathbf{E}_{cell} = \mathbf{E}_{cell}^{\circ} - \frac{0.0592}{n} \log \frac{[Au^{3+}]^2}{[H_2O_2]^3 [H^+]^6} \qquad \boxed{1 \text{ mark}}$
		$0.2711 \text{ V} = 0.27 \text{ V} - \frac{0.0592}{6} \log \frac{(0.25)^2}{(1.50)^3 [\text{H}^+]^6} \qquad \mathbf{n} = 6 \checkmark 1 \text{ mark}$
		$\log \frac{(0.25)^2}{(1.50)^3 [\text{H}^+]^6} = -0.1115$
		$\frac{(0.25)^2}{(1.50)^3 [\text{H}^+]^6} = 10^{-0.1115}$
		$[H^+] = 0.5368 M$ 1 mark
		$pH = -log [H^+]$
		$= -\log 0.5368$
		= 0.27
	(iv)	If the concentration of Au^{3+} is increased, Q increases, log Q increases.
		Therefore, emf or E_{cell} decreases. 1 mark
		TOTAL = 10