Standard Reduction Potential

The potential generated by a reduction half-reaction at an electrode measured relative to the standard hydrogen electrode under standard condition (temperature of 25 °C, ion concentration of 1 M and partial pressure of gas at 1 atm).

E^o_{red} measured the ease of reduction under standard conditions.

Example : Reduction

 $E^{\circ}_{red} E^{\circ}_{Cu^{2+}/Cu}$

 $E^{\circ} = + 0.34 V$

 $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$

Standard electrode potential is the potential difference produced when a half cell of an element is connected to <u>Standard Hydrogen</u> <u>Electrode</u> (S.H.E) under standard conditions (i.e. a temperature of 25 °C, ion concentration of 1M, partial pressure of gas of 1 atm)

- By convention, all Standard Electrode Potentials are written as Standard Reduction Potential, E°_{red}
- SHE is used as a reference electrode and is arbitrarily assigned a standard reduction potential of 0 volt.

The more positive E^o_{red} (or less negative), the easier the species undergo reduction.

Example :

 $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s) \qquad E^{\circ} = -0.76 \text{ V}$ $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) \qquad E^{\circ} = +0.34 \text{ V}$ $Cu^{2+} \text{ is easier to be reduced than } Zn^{2+}.$ Example :

$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s) \qquad E^{\circ} = -0.76 V$$

 $Na^+(aq) + e^- \longrightarrow Na(s) = -2.71 V$

Zn²⁺ is easier to be reduced than Na^{+.}

To obtain the standard oxidation potentials, the reduction half-reactions are reversed and the sign of E^o changes.

- The more –ve the E°_{red} value, the greater tendency for the reverse reaction (oxidation) to occur or
- The more +ve E^o_{ox} (or less -ve), the easier the species undergo oxidation.

$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$$
 $E^{\circ} = -0.76 V$ $E^{\circ}_{ox} = +0.76 V$

 $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$ $E^{\circ} = + 0.34 \text{ V}$ $E^{\circ}_{ox} = - 0.34 \text{ V}$

Cu²⁺ is easier to be reduced than Zn^{2+.}

Zn is easier to be oxidised than Cu.

Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E^o.

Example :

 $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) \qquad E^{\circ} = + 0.34 V$

$$2Cu^{2+}(aq) + 4e^{-} \longrightarrow 2Cu(s) = + 0.34 V$$

Standard Reduction Potentials

Potential (V)		Reduction Half-Reaction		
+2.87	Strongest	$F_2(g) \rightarrow 2 e^- \longrightarrow 2 F^-(aq)$		
+1.51	oxidising	$\operatorname{MinO}_4^{-}(aq) + 8 \operatorname{H}^+(aq) + 5 \operatorname{e}^- \longrightarrow \operatorname{Mn}^{2+}(aq) + 4 \operatorname{H}_2O(l)$		
+1.36	agent	$\operatorname{Cl}_2(g) + 2 e^- \longrightarrow 2 \operatorname{Cl}^-(aq)$		
+1.33	-	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$		
+1.23		$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$		
+1.06		$Br_2(l) + 2 e^- \longrightarrow 2 Br^-(aq)$		
+0.96		$NO_3^{-}(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$		
+0.80		$Ag^+(aq) + e^- \longrightarrow Ag(s)$		
+0.77		$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$		
+0.68		$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$		
+0.59		$MnO_4^{-}(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^{-}(aq)$		
+0.54		$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$		
+0.40		$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$		
+0.34		$\operatorname{Cu}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cu}(s)$		
0 [define	ed]	$2 \operatorname{H}^+(aq) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g)$		
-0.28		$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$		
-0.44		$\operatorname{Fe}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Fe}(s)$		
-0.76		$\operatorname{Zn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Zn}(s)$		
-0.83		$2 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(aq)$		
-1.66		$Al^{3+}(aq) + 3 e^{-} \longrightarrow Al(s)$		
-2.71		$Na^+(aq) + e^- \longrightarrow Na(s)$ Strongest		
-3.05		$Li^+(aq) + e^- \longrightarrow Li(s)$ reducing agent		

Standard Reduction Potentials for many electrodes have been measured and tabulated.

Stronger oxidising agent	0	R	Stronger reducing agent
	l		↓ ↓

THE USES OF STANDARD REDUCTION POTENTIAL (S.R.P) VALUES

- 1. To show the relative oxidising and reducing power of different species.
- 2. To calculate standard cell potential (standard e.m.f.)
- **3.** To predict spontaneous redox reaction

1. To show the relative oxidising and reducing power of different species.

	Ox ag	idising ent		Reducing agent	E ^o red (\	/)
Increasing strength of oxidising agent		Ni ²⁺ (<i>a</i> : 2H ⁺ (<i>a</i> : Cl ₂ (g)	q) + 2 $e^{-} \rightarrow$ q) + 2 $e^{-} \rightarrow$ + 2 $e^{-} \rightarrow$	Ni(s) : H ₂ (g) : 2Cl ⁻ (aq)	-0.25 : 0.00 : +1.36	More +ve
	Ni	i ²⁺ < H⁺	⁺ < Cl ₂	Cl⁻ < ŀ	H₂ < Ni	
Increasing strength of oxidising agent			rength of	Increasir reducing	ng strength of	

The more positive E°_{red}, the stronger the oxidising agent. The more negative E°red, the stronget the reducing agent

Note !

For a reducing agent to supply electrons, the oxidation reaction must occur in the reverse direction.

	Reducing agent	Oxidation	- E ^o _{red} E ^o _{ox} (V)
agent Jagent	Ni(s) -	$\rightarrow \operatorname{Ni}^{2+}(aq) + 2e^{-}$	+0.25
reducing	H ₂ (g) -	$\rightarrow 2H^+(aq) + 2e^-$	0.00
ofr	2ČI⁻(<i>a</i>	$q \rightarrow Cl_2(g) + 2e^-$	-1.36

2. To calculate standard cell potential (standard e.m.f)

Electromotive Force (emf)

- Water only spontaneously flows one way in a waterfall.
- Likewise, electrons only spontaneously flow one way in a redox reaction—from higher to lower potential energy.

ELECTROMOTIVE FORCE (EMF)

- The potential difference between the anode and cathode in a cell is called the electromotive force (emf).
- It is also called the cell potential, and is designated *E*_{cell}.
- Cell potential at standard conditions is known as Standard Cell Potential and is calculated using formula:

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$

Determine the E°_{cell} for a voltaic cell which is based on the following two standard half-reactions :

$$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s) \qquad E^{\circ} = -0.403 V$$
$$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s) \qquad E^{\circ} = -0.126 V$$

Solution

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$
$$= E^{o}_{Pb^{2+}/Pb} - E^{o}_{Cd^{2+}/Cd}$$
$$= -0.126 - (-0.403)$$
$$= + 0.277 \text{ V}$$

3. To Predict Spontaneous Redox Reaction

By calculating the E^o, determine whether Br⁻ ion can reduce I₂ under standard conditions.

$$2Br^{-}(aq) + I_{2}(s) \longrightarrow Br_{2}(l) + 2I^{-}(aq)$$

$$I_2(s) + 2e^- \rightarrow 2I^-(aq) = +0.53 V$$

 $Br_2(l) + 2e^- \rightarrow 2Br^-(aq) = +1.07 V$

Note :

In predicting the spontaneity of a reaction, anode and cathode is based on equation given, not based on E^o.

Solution :

$$cx / anode$$

$$2Br^{-}(aq) + l_{2}(s) \longrightarrow Br_{2}(l) + 2l^{-}(aq)$$

$$red / cathode \qquad \uparrow$$

$$cathode (red) : l_{2}(s) + 2e^{-} \rightarrow 2l^{-}(aq)$$

$$anode (ox) : 2Br^{-}(aq) \rightarrow Br_{2}(l) + 2e^{-}$$

$$Overall: 2Br^{-}(aq) + l_{2}(s) \longrightarrow Br_{2}(l) + 2l^{-}(aq)$$

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$

$$= E^{o}_{l_{2}/l^{-}} - E^{o}_{Br_{2}/Br^{-}}$$

$$= 0.53 - 1.07$$

$$= -0.54 V$$

$$F^{o}_{cell} = L^{o}_{cathode} = L^{o}_{cathode}$$