CONSTANT RATE INFUSIONS – RULES CATTLE, SHEEP & GOAT

- Need to know two doses:
 - Loading eg. Xylaline 0.05 mg/kg IM, Ketamine 5 mg/kg IV & Lidocaine 1mg/kg
 - CRI eg. Xylaline 0.05mg/kg/hr & Ketamine 5 mg/kg/hr
 - Lidocaine 1mg/kg/hr
 - Fluid rate for surgery 5-10 ml/kg/hr
- Choices:
 - Use formula –
 - Made easy rule:
 - 60mg of any drug in 1L
 - X Flow Rate in ml/kg/hr delivers X mcg/kg/min of drug

Drug (mg) = [Infusion rate of the drug (mg/kg/hour) ÷Fluid infusion rate (ml/kg/hour)] x diluent volume (ml)

Formula for CRI

 $M = \frac{(D) (W) (V)}{(R) (16.67)}$

M = number of mg of dnug to add to delivery fluid D = dosage of drug in mcg/kg/min W = patient body weight in kg V = volume in ml of delivery fluid R = rate of delivery in ml/hr 16.67 = conversion factor

CRI Drug (mg) = [Infusion rate of the drug (mg/kg/hour) ÷Fluid infusion rate (ml/kg/hour)] x diluent volume (ml)

MAINTENANCE DATE = 1.2 ml/kg/by SUDCICAL DATE = 5.10 ml/kg/by

$\frac{1}{10000000000000000000000000000000000$			
DRUG	CONCENTRATION	DOSE	CALCULATION
		Sheep/goat	(infusion rate 5ml/kg/hr)
Xylazine	2omg/ml	0.05mg/kg/hr	(0.05/5) x 1000 = 10mg <u>= 0</u> .5mls
Ketamine	100mg/ml	5mg/kg/hr	(5/5) x 1000 = 1000 = 10 <u>mls</u>
Lidocaine	20mg/ml	1mg : /kg/<u>hr</u>	(1/5) x 1000 = 200 = 10mls
Calculated of Drip Rate in drops per sec - (ml/min x drip factor)/60 = drops/sec			
iokg Sheep drop/sec =_(50kg x 5ml/kg/hr x 20 drops/ml) / (60min/hr x 60sec/min) = 1.4d/se			

Volume of loading dose of Xylazine was found to be 0.02ml

Therefore, a 10 ml stock solution of 1mg/ml (0.1%) was prepared.

 $V_1C_1 = V_2C_2$

V₁ * 20 = 10 * 1

V₁= 0.5

9.5ml saline was added to 0.5ml xylazine to create a 0.1% solution of Xylazine

New Volume using 0.1% solution $=\frac{0.05*8.4}{1}$ = 0.42 ml

Determining drops per second for an 8.4kg sheep:

$$\frac{8.4 * 5 * 20}{3600} = 0.23 \ drops \ per \ second \ (about \ 1 \ drop \ every \ 4 \ seconds - diff \ cult \ to \ control)$$

Pediatric drip line changed drip rate in calculation to 60 drops/ml

New drip rate:

$$\frac{8.4 * 5 * 60}{3600} = 0.7 \ drops \ per \ second = 2 \ drops \ every \ 3 \ seconds$$