Surgery Lab Drug Calculation Table: Hernia Repair

Sex: Female Species: Caprine

Breed: Anglo Nubian mix

AGE: 4 months ID: Kid Rock

BCS: 1.5-2/5

Temperature: 39.5 °C (normal) Pulse: 136 beats/min) Slightly

elevated

Respiration rate: (28 breaths/min)

normal

MM: (Pink/moist) normal CRT: (<2 secs) normal

ASA grade: 2

Calculating CRI

Step 1

Step 2

CONSTANT RATE INFUSIONS (CRI) – HOW? The Rules

Need to know two doses plus one rate:

Loading dose (mg/kg)

CRI dose (mg/kg/hr)

Fluid rate (ml/kg/hr)

Step 3

CRI Drug (mg) = [Infusion rate of the drug (mg/kg/hour) ÷Fluid infusion rate (ml/kg/hour)] x diluent volume (ml)					
MAINTENANCE RATE = 1-2 ml/kg/hr SURGICAL RATE = 5-10 ml/kg/hr					
DRUG	CONCENTRATION	DOSE Sheep/goat	CALCULATION (infusion rate 5ml/kg/hr)		
Xylazine	2omg/ml	0.05mg/kg/hr	(0.05/5) x 1000 = 10mg = 0.5mls		
Ketamine	100mg/ml	5mg/kg/hr	(5/5) x 1000 = 1000 = 10 mls		
Lidocaine	20mg/ml	1mg /kg/hr	(1/5) x 1000 = 200 = 10mls		
Calculated of Drip Rate in drops per sec - (ml/min x drip factor)/60 = drops/sec					

CALCULATIONS

Type of drug	Dose (mg/kg)	Conc. (mg/ml)	Weight / kg	Volume (ml)	Time given
Sedative/Anaesthetic					
Step 1: Loading dose/CRI dose					
Xylazine	0.05	20 (2%)	8.4	$V = \frac{0.05 \times 8.4}{20} = 0.021$	
Ketamine	5	100 (10%)	8.4	$V = \frac{5 \times 8.4}{100} = 0.42$	
Lidocaine	1	20 (2%)	8.4	$V = \frac{1 \times 8.4}{20} = 0.42$ Same volume was used for lumbosacral epidural.	
Lidocaine toxic dose	10	20 (2%)	8.4	$V = \frac{10 \times 8.4}{20}$ = 4.2 Half toxic dose= 2.1 ml	

Loading dose and CRI dose is the same for this Lab.

Dilution for Xylazine to new concentration of 1mg/kg and volume of 10 ml.

$$V1 = \frac{10 \times 1}{20} = 0.5 \text{ ml. Add } 9.5 \text{ml of normal saline to make up volume.}$$

Fluid rate for short procedures = 10 ml/kg/hr

Fluid rate for long procedures= 5 ml/kg/hr. (Used in this lab)

Normal infusion set:20 drops =1ml Paediatric infusion set: 60 drops=1ml One bag of sodium chloride=1000 ml

Surgery Lab Drug Calculation Table: Hernia Repair

Step 2: Fluid rate

Drug	Conc. (mg/ml)	Dose (ml/kg/hr)	Infusion rate (5ml/kg/hr)
Xylazine	20	0.05	$V = \frac{0.05}{5} \times 1000 = 10 \rightarrow \frac{10}{20} = 0.5 \text{ml}$
Ketamine	100	5	$V = \frac{5}{5} \times 1000 = 1000 \rightarrow \frac{1000}{100} = 10 \text{ml}$
Lidocaine	20	1	$V = \frac{1}{5}x1000 = 200 \rightarrow \frac{200}{20} = 10$ ml

Step 3: Calculation of drip rate

Normal line =
$$\frac{8.4 \text{kg} \times 5 \text{mg/kg/hr} \times 20 \text{drops/ml}}{60 \times 60} = \frac{840}{3600} = 0.233 \text{ drops/sec}$$
Paediatric line =
$$\frac{8.4 \text{kg} \times 5 \text{mg/kg/hr} \times 60 \text{drops/ml}}{60 \times 60} = \frac{2520}{3600} = 0.7 \text{ drops/sec}$$
To ensure that the drip rate is accurate remove volume equivalent to the volume of drugs to be placed in

the infusion bag.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Antibiotics							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Type of Drug	Dose	Conc.	Weight /	Volume (ml)	Time given		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(mg/kg)	(mg/ml)	kg				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pen Strep	20,000	200,000 <i>IU</i>	8.4	$V = 20,000 \times 8.4$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					200,000			
Flunixin 1.1 $50 (5\%)$ 8.4 $V = \frac{1.1 \times 8.4}{50}$ $= 0.1848 (0.2)$ Reversal / Emergency Tolazoline $4 \times (0.05)$ $100 (10\%)$ 8.4 $V = \frac{4(0.05) \times 8.4}{100}$ $= 0.0168 (0.02)$ Atropine 1.8 15 8.4 $V = \frac{1.8 \times 8.4}{15} = 1.008$ Epinephrine 0.2 $1 (0.1\%)$ 8.4 $V = \frac{0.2 \times 8.4}{1}$ $= 1.68$ Toxic dose for Lidocaine 10 $20 (2\%)$ 8.4 $V = \frac{10 \times 8.4}{20}$ $= 4.2$ Half toxic dose 2.1 ml Other drugs Diazepam 2.4 10 8.4 $V = \frac{2.4 \times 8.4}{10} = 2$					= 0.84			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Flunixin	1.1	50 (5%)	8.4	$V = \frac{1.1 \times 8.4}{1}$			
					50			
Tolazoline $4 \times (0.05)$ $100 (10\%)$ 8.4 $V = \frac{4(0.05) \times 8.4}{100}$ $= 0.0168 (0.02)$ Atropine 1.8 15 8.4 $V = \frac{1.8 \times 8.4}{15} = 1.008$ Epinephrine 0.2 $1 (0.1\%)$ 8.4 $V = \frac{0.2 \times 8.4}{1}$ $= 1.68$ Toxic dose for Lidocaine 10 $20 (2\%)$ 8.4 $V = \frac{10 \times 8.4}{20}$ $= 4.2$ Half toxic dose $= 2.1$ ml Other drugs Diazepam 2.4 10 8.4 $V = \frac{2.4 \times 8.4}{10} = 2$			D 1/E		= 0.1848 (0.2)			
Atropine 1.8 15 8.4 $V = \frac{1.8 \times 8.4}{15} = 1.008$ Epinephrine 0.2 1 (0.1%) 8.4 $V = \frac{0.2 \times 8.4}{15} = 1.68$ Toxic dose for Lidocaine 2.4 10 8.4 $V = \frac{10 \times 8.4}{20} = 4.2$ Half toxic dose = 2.1 ml Other drugs $V = \frac{2.4 \times 8.4}{10} = 2$	m 1 1	4 (0.05)			4(0.05) 0.4			
Atropine 1.8 15 8.4 $V = \frac{1.8 \times 8.4}{15} = 1.008$ Epinephrine 0.2 1 (0.1%) 8.4 $V = \frac{0.2 \times 8.4}{15} = 1.68$ Toxic dose for Lidocaine 2.4 10 8.4 $V = \frac{10 \times 8.4}{20} = 4.2$ Half toxic dose= 2.1 ml Other drugs $V = \frac{10 \times 8.4}{10} = 2$	Tolazoline	4 x (0.05)	100 (10%)	8.4	$V = \frac{4(0.05) \times 8.4}{1}$			
Atropine 1.8 15 8.4 $V = \frac{1.8 \times 8.4}{15} = 1.008$ Epinephrine 0.2 1 (0.1%) 8.4 $V = \frac{0.2 \times 8.4}{1} = 1.68$ Toxic dose for Lidocaine 10 20 (2%) 8.4 $V = \frac{10 \times 8.4}{20} = 4.2$ Half toxic dose = 2.1 ml Other drugs Diazepam 2.4 10 8.4 $V = \frac{2.4 \times 8.4}{10} = 2$								
Toxic dose for Lidocaine	A	1.0	1.5	0.4	= 0.0168 (0.02)			
Toxic dose for Lidocaine	Atropine	1.8	15	8.4	$V = \frac{1.0 \times 0.1}{15} = 1.008$			
Toxic dose for Lidocaine	Epinephrine	0.2	1 (0.1%)	8.4	0.2×8.4			
					$V = \frac{1}{1}$			
					= 1.68			
		10	20 (2%)	8.4	$V = \frac{10 \times 8.4}{1}$			
					20			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lidocaine				= 4.2			
Diazepam 2.4 10 8.4 $V = \frac{2.4 \times 8.4}{10} = 2$								
			1.0	0.4	24 × 04			
	Diazepam	2.4	10	8.4	$V = \frac{2.4 \times 8.4}{1.000000000000000000000000000000000000$			
					10			
Ketamine 24 100 (10%) 8.4 24 × 8.4	Vatamine	24	100 (10%)	Q /1	24 × 84			
Ketamine 24 100 (10%) 8.4 $V = \frac{24 \times 8.4}{100}$	Ketaninie	24	100 (10%)	0.4	$V = \frac{24 \times 0.4}{100}$			
= 2.016								
_ 2.010					_ 2.010			

Surgery Lab Drug Calculation Table: Hernia Repair