Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: Chapter 4 - P Richardson, stochastic processes shown as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> X </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mtext> , n = 0,1,2,3 . . . </mtext> </mrow> </math>, limiting probabilties shown as matricies, MARKOV CHAINS can be time reversable, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mmultiscripts> <mtext> X </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mtext> = i </mtext> </math> then the process is said to be "in state i at time n", MARKOV CHAINS are stochastic processes, a one-step transition probability can become an n step transition probability, matricies which have intermediate states known as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> transient states

S = I + PtS </mtext> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> X </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mtext> , n = 0,1,2,3 . . . </mtext> </mrow> </math> if <math xmlns="http://www.w3.org/1998/Math/MathML"> <mmultiscripts> <mtext> X </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mtext> = i </mtext> </math>, stochastic processes and are denoted by the set of nonnegative integers {0,1,2,3. . . }, the process is said to be "in state i at time n" or a one-step transition probability, an n step transition probability which can be computed by <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> Chapman-Kolmogorov
Equations

 </mtext> <mmultiscripts> <sum/> <mtext> k=0 </mtext> <mtext> ∞ </mtext> </mmultiscripts> <mtext> </mtext> <mmultiscripts> <mtext> P </mtext> <mtext> ik </mtext> <mtext> n </mtext> </mmultiscripts> <mtext> 



For all n, m>= 0, all i,j </mtext> </mrow> </math>, MARKOV CHAINS develop into limiting probabilties