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IntroductionIntroduction
Why study atmospheric waves in a course on numerical modelling?

Successful numerical modelling requires a good understanding
of the system under investigation and its solutions.

Waves are important solutions of the atmospheric system.

Waves can be numerically demanding!

(E.g. acoustic waves
have high frequencies and large phase speeds
=> short time step in numerical integrations with

explicit time-stepping schemes.)
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Introduction (2)Introduction (2)

If a wave type is not of interest and a numerical nuisance then
filter these waves out, i.e. modify the governing equations such
that this wave type is suppressed.

How?
To know how, we need to have a good understanding of the
wave solutions and of which terms in the equations are
responsible for the generation of the individual wave types.

Question: How do the modifications to the governing equations to
eliminate unwanted wave types affect the wave types
we want to retain and study?

Also: How do other commonly made approximations (e.g. hydro-
static approximation) affect the wave solutions?
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How are we going to address these questions?

Ideally, we have to study analytically the wave solutions
of the exact set of governing equations for the atmosphere
first.

Then we introduce approximations and study their effect on
the wave solutions by comparing the new solutions with the
exact solutions.

Problem with this approach:
Governing equations of the atmosphere are non-linear
(e.g. advection terms) and cannot be solved analytically in general!

We linearize the equations and study here the linear wave
solutions analytically.

Introduction (3)Introduction (3)
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Question
Are these linear wave solutions representative of the
non-linear solutions?

Answer
Yes, to some degree.

Non-linearity can considerably modify the linear solutions
but does not introduce new wave types!

Therefore, the origin of the different wave types can be
identified in the linearized system and useful methods of
filtering individual wave types can be determined and
then adapted for the non-linear system.

Introduction (4)Introduction (4)
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Objectives of this courseObjectives of this course

• Discuss the different wave types which can be present in
the atmosphere and the origin of these wave types.

• Derive filtering approximations to filter out or isolate
specific wave types.

• Examine the effect of these filtering approximations and
other commonly made approximations on the different
wave types present in the atmosphere.

Method:Method:

Find analytically the wave solutions of the linearized basic
equations of the atmosphere, first without approximations.

Introduce approximations later and compare new solutions
with the exact solutions.
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Definition of basic wave properties (1)

Mathematical expression for a 2-dimensional harmonic wave

  tmzkxiAtzx  exp),,(

Amplitude A

Wave numbers
zx L

m
L

k
 2

,
2

 Wave lengths zx LL ,

Wave vector ),( mkK 


Frequency
T
 2

 Period T

Dispersion relation ( , , )k m parameters of the system
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Definition of basic wave properties (2)

  tmzkxiAtzx  exp),,(

Phase: tXKtmzkx  


),( zxX 


where

is perpendicular to the wave fronts.K


Wave fronts or phase lines
= lines of constant phase

(that is, all .whichfor consttXKX  


)

C


Phase velocity = velocity of wave fronts.

0 
Dt
XD

K
Dt
D


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

C




x

z

Lx

Lz

K

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
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Definition of basic wave properties (3)

Horizontal phase velocity
xc

k




m
cz


Vertical phase velocity

Dispersive waves are waves with a phase velocity that depends
on the wave number.

Group velocity ),(
mk

Cg 








Energy is transmitted with the group velocity.

Waves travel with the phase velocity.

Ccc zx


),( !!!!!!

Wave packet is a superposition of individual waves.
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Basic EquationsBasic Equations

(4)
Dt

D
z
w

yx
u )(lnv 













Continuity equation:

Dt
pD

Dt
TD )(ln)(ln  (5)Thermodynamic equation:

x
p

f
Dt
Du






1

v

y
p

fu
Dt
D






1v

z
p

g
Dt
Dw






1

(1)

(2)

(3)

Momentum equations:

We use height (z) as vertical coordinate.

Equation of state: p RTComplemented by
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Remarks:

(1) All source/sink terms are omitted in eqs (1)-(5)

(2) Total time derivative is defined as

z
w

yx
u

tDt
D
















 v

(3)
pc

R
 , where R is the ideal gas constant

and cp the heat capacity at constant pressure

(4) Setting 0
Dt
Dw gives familiar set of equations in

hydrostatic approximation

We don’t make the hydrostatic approximation at present!
It will be discussed later in detail.
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We would like to find analytically the wave solutions
for the basic equations (1)-(5).

Can we do this?

No! Basic equations are non-linear partial differential
equations!

We have to linearize the basic equations (1)-(5) by using the
perturbation method and solve the linearized system analytically.
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Introduce first some simplifications:

Question: Has this simplification serious consequences
for the wave solutions?

Coordinates are now only (x, z, t)!

Change of variable: Replace T by ln where


 









p
p

T 0 (potential temperature)

Dependent variables (unknowns) are now u, v, w, ρ, p, Θ
and they are functions only of x, z and t.

Simplification: Neglect variation in y )0..( 



y
f

ge0


y

Answer: Yes! The Rossby wave solution has been suppressed!! Rossby
waves can only form if the Coriolis parameter f changes with latitude.
(Detailed discussion of Rossby waves will follow later in this course.)
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Now we linearize the set of equations (1)-(5) by using the perturbation method.

Basic assumptions of perturbation theory are:
a.) The basic state variables must themselves satisfy the governing equations.
b.) Perturbations must be small enough to neglect all products of perturbations.

Perturbation Method

All field variables are divided into 2 parts:
1) a basic state part
2) a perturbation part (= local deviation from the basic state)

u 0u u+

Non-linear equations are reduced to linear differential equations in the
perturbation variables in which the basic state variables are specified
coefficients.

=>
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Consider small perturbations on an initially motionless
atmosphere, i.e. basic state winds (u0,v0,w0)=0

),,(0 tzxuuuu 
),,(vvvv 0 tzx
),,(0 tzxwwww  

),,()(0 tzxz  
),,()(0 tzxpzpp 
),,()(0 tzxz  

000 ,, p define the basic atmospheric state and satisfy .0
0 g

z
p





Apply perturbation method to basic equations (1)-(5)

Inserting into (1)-(5) and neglecting products of perturbations gives
linearized basic equations.



Atmospheric Waves 16

Linearized basic equations
Perturbations (δu, δv, etc.) are now the dependent variables!

Here:

)(ln 0z
B




 static stability

No advection terms left!

density scale height

)(ln1
0

0


zH 


0

0

0

0
v

0v

00

00

0





























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

























wB
t

H
w

z
w

x
u

t

g
p

B
p

zt
w

uf
t

p
x

f
t
u



















For this set of equations it is now possible to find the
wave solutions analytically.
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Introduction of tracer parameters

Trick to help us save work and make sensible approximations later.

Introduce tracer parameters
n1, n2, n3 and n4 to “mark”
individual terms in the equations
who’s effect on the solutions we
want to investigate.

These tracers have the value 1 but
may individually be set to 0 to
eliminate the corresponding term.

For example n4 = 0 =>
hydrostatic approx. to pressure field.

)21(0

)20(0

)19(0

)18(0v

)17(0v

0
1

0
2

0
3

0
4

0






















































wB
t

H
wn

z
w

x
u

t
n

gpBnp
zt

wn

uf
t

p
x

f
t
u


















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Find wave solutions for system of linearized equations (17)-(21):Find wave solutions for system of linearized equations (17)-(21):

Boundary conditions:

For simplicity we assume the atmosphere to be unbounded in x and z.

Remarks:
a.) The full solution is the appropriate Fourier sum of terms of this form over all

wave numbers k. We study here only individual waves.
b.) If the frequency is complex we have amplifying or decaying waves in time.

We study only “neutral” waves, so σis assumed to be real.

Since the coefficients f, B, g & H0 of the system (17)-(21) are
independent of x & t, the solutions can be written in the from

F(z) exp{i(kx + σt)} .

Wave solutions:





)}(exp{)(v̂v
)}(exp{)(̂

tkxiz
tkxizuu


Each dependent variable

(perturbation) is of this form:
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Inserting )}(exp{)(v̂v)},(exp{)(̂ tkxiztkxizuu   etc.
into eqs (17)-(21) gives the following set of ordinary differential
equations in z (derivatives only in z!):

)26(0ˆˆ

)25(0ˆˆˆ
ˆ

)24(0ˆˆˆ
ˆ

)23(0ˆv̂

)22(0
ˆ

v̂ˆ

0

1

0
2

0
3

0
4

0

















wBi

w
H
n

w
dz
d

uikin

g
p

Bn
p

dz
d

win

ufi

pikfui
















No x and t dependencies left! Operators ∂/∂x and ∂/∂t have been
replaced by ik and iσ, respectively.

).(̂and),(̂),(̂),(̂),(v̂),(̂ zzzpzwzzu Dependent variables are now
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Solve system of equations (22)-(26) forSolve system of equations (22)-(26) for

:)(̂and),(̂),(̂),(̂),(v̂),(̂ zzzpzwzzu 

Strategy:

Find solution of this equation, i.e. and the dispersion
relationship σ(k, m, parameters of the system).

)(̂zw

Insert this solution for back into (22)-(26) to obtain
solutions for the remaining dependent variables.

)(̂zw

Derive from this set of equations a differential equation in
only one of the dependent variables: .)(̂zw

Step 1:

Step 2:

Step 3:
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)26(0ˆˆ

)25(0ˆˆˆ
ˆ

)24(0ˆˆˆ
ˆ

)23(0ˆv̂

)22(0
ˆ

v̂ˆ

0

1

0
2

0
3

0
4

0



















wBi

w
H
n

w
dz
d

uikin

g
p

Bn
p

dz
d

win

ufi

p
ikfui












From (22) and (23) we obtain

)28(
ˆ

v̂

)27(
ˆˆ

0
22

0
22






p
f

ifk

p
f

ku







Inserting û from (27) into (25),
using (26) and the relation

00
2

00

ˆˆ1ˆˆ1ˆ









p
cp

p
, where is the Laplacian speed of sound,0RTc 

)29(0
ˆˆˆ
0

22

2

2
2

0

1
2 























p
f

k
c
n

iw
H
n

Bnw
dz
dtransforms (25) into

)31(0ˆ)(
ˆˆ 2

4
0

3
0









wngB

p
Bni

p
dz
d

i 






Using (26) to eliminate
from (24) gives

̂

Deriving from (22)-(26) a differential equation only inDeriving from (22)-(26) a differential equation only in )(̂zw 11
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For simplicity we consider only constant (mean) values of B, H0
and c which are related by 0

2 /1/ HcgB  .

In general the coefficients B, H0 and c are (known) functions of z.

)29(0
ˆˆˆ
0

22

2

2
2

0

1
2 





















 p

f
k

c
niw

H
nBnw

dz
d

)31(0ˆ)(
ˆˆ 2

4
0

3
0









wngBpBnip

dz
di 







Computing from (29) and inserting into (31) leads to the following
second order ordinary differential equation governing the height variation of ŵ

0/̂p

0)(̂)()(
0

1
232

2
22

2
2

4
0

1
322

2





































 zw

H
n

BnBn
c
n

f
k

ngB
dz
d

H
n

nnB
dz
d




(32)
Finished step 1 !!!!

Deriving from (22)-(26) a differential equation only inDeriving from (22)-(26) a differential equation only in )(̂zw 22
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Solutions of equation (32)Solutions of equation (32)

0)(̂)()(
0

1
232

2
22

2
2

4
0

1
322

2





































 zw

H
n

BnBn
c
n

f
k

ngB
dz
d

H
n

nnB
dz
d




(32)

Solution 1: 0 Not a wave!

Inserting σ= 0 into (22)-(26) gives for the winds:

p
xf

p
f
ikwu 




 


00

1v
ˆ

v̂and0ˆˆ , i.e. geostrophic motion.

Solution 2: zw 0ˆ Lamb wave

This solution will be discussed later in detail.

Further solutions: For zw  0ˆand0 we have to solve

0ˆ)(
ˆ

)(
ˆ

0

1
232

2
22

2
2

4
0

1
322

2




































 w

H
n

BnBn
c
n

f
k

ngB
dz
wd

H
n

nnB
dz

wd




(32a)
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Dispersion relationship (of 4th order in the frequency σ)

   
2

0

1
32

0

1
232

2
22

2
2

4
2

4
1





























H
n

nnB
H
n

BnBn
c
n

f
k

ngBm



(33)

Finding wave solutions of equation (32a)Finding wave solutions of equation (32a)

0ˆ)(
ˆ

)(
ˆ

0

1
232

2
22

2
2

4
0

1
322

2



































 w

H
n

BnBn
c
n

f
k

ngB
dz
wd

H
n

nnB
dz

wd




(32a)

(32b) has the form of a wave equation and, since we consider the fluid to
be unbounded in z, )exp(~ imzw  is solution if m fulfills

Setting
















 z

H
n

nnBzwzw
0

1
32 )(

2
1

exp)(~)(̂ leads to a simpler

differential equation for )(~ zw with no first derivatives

    0~
4
1~ 2

0

1
32

0

1
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2
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2
2
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2







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
































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H
nBnBn
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f
kngB

dz
wd




(32b)
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Final form of the solution for the perturbation δwFinal form of the solution for the perturbation δw

From   tkxizwtzxw   exp)(̂),,(

with
















 z

H
n

nnBzwzw
0

1
32 )(

2
1

exp)(~)(̂

and )exp(~ imzw 

Finished step 2 !!!

The remaining dependent variables are obtained from eqs. (25)-(29)
by inserting




ˆ(26)intoˆ.)2

/̂(29)intoˆ.)1 0

w

pw 

0

0

0

/̂(25)intoˆandˆ.)5

v̂(28)into/̂.)4

ˆ(27)into/̂.)3











wu

p

up

Step 3:

we finally obtain as solution for the perturbationδw:

  tmzkxiz
H
n

nnBw  
















 exp)(

2
1

exp
0

1
32 (34)

Free travelling wave in x and z with an amplitude changing exponentially with height!
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Exact Solutions of the Linearized
Equations

Exact Solutions of the Linearized
Equations

By setting the tracer parameters to 1 (n1 = n2 = n3 = n4 = 1) in the solution we
have derived (i.e. in the dispersion relationship (33) and in the expression for
δw (34)) we obtain directly the solution for the exact linearized equations:

From (33) with  0
2 /1/ HcgB

dispersion relationship for the exact linearized equations:

2
0

2

2

22

22
2

4
1)(
Hcf

gBk
m 










(36)

From (34) =>  )(exp
2

exp
0

tmzkxi
H
zw  









 (36a)

Amplitude of exact solution grows exponentially with height.
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Solutions of the dispersion relationship (36)Solutions of the dispersion relationship (36)

Re-arranging (36) gives a 4th order polynomial inσ:
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pair of inertial-gravity waves

pair of acoustic waves

4 solutions:
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Closer examination of the solutions (38) and (39)Closer examination of the solutions (38) and (39)

1, 2

2
0

2

2
0

2
2 

c
gBH

gB
f

H
cgBf (40)

2 2 2 2
2
02 2 2 2 2

, 22
0 2 2 2 2

2
0

1
4

41 1
1 1

2 4 1
4

g a

c k gB f m
H

f c k m
H

f c k m
H



                    
      

     
    


(38)

(39)


X

With (40) => X << 1.
Use Taylor expansion of to first order in X around X= 0:X1

 2

2
11 XO

X
X 

11

By using the following inequalities, valid for typical values of the system
parameters , H0 , g , B and c
in the atmosphere of the Earth, we can simplify expressions (38) and (39).

4 1( 10 )f s  ( 7 )km 2( 9.8 / )m s 5 1( 10 )m  ( 300 / )m s
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Closer examination of the solutions (38) and (39)Closer examination of the solutions (38) and (39) 22
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






 2

0

2222

4
1
H

mkcaEquation (39) simplifies to (39a)
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Closer examination of the simplified solution (38a)Closer examination of the simplified solution (38a)

00and0For  gfB  , i.e. in a system with zero static stability
and no rotation these waves can’t form!

=> Restoring forces (responsible for bringing the displaced air parcels
back to the equilibrium location) for this wave type are the buoyancy
force and the Coriolis force (inertial force). => These waves are called

inertial-gravity wavesinertial-gravity wavesinertial-buoyancy waves or, more commonly,

11

2
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22

2
0

222

2

4
1

4
1

H
mk

H
mfkgB

g













 (38a)
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Closer examination of the simplified solution (38a)Closer examination of the simplified solution (38a) 22
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 (38a)(38a)Short wave limit:
For short waves in the horizontal (i.e.
for large k) expression (38a) reduces
to

2
0

22

2
2

4
1
H

mk

kgB
g


 (41)

No Coriolis parameter f in (41)!
These waves are too short to be
(noticeably) modified by rotation,
i.e. pure (internal) gravity waves!
Restoring force is the buoyancy force.

These waves form only in
stable stratification (for B > 0)!
For neutral stratification (B=0)

=> , i.e. no waves!
For unstable stratification (B < 0)

=> is imaginary,
no waves!

0g

g

)(ln 0z
B



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Closer examination of the simplified solution (38a)Closer examination of the simplified solution (38a) 33
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
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(41)(41)

Very short wave limit:

 2 2 2
0. . such that 1/ 4i e k k m H 

is called buoyancy frequency or Brunt-Väisälä frequency
(often denoted by N).

gB

Buoyancy frequency is the upper limit to frequency of gravity waves!

gBg From (41) =>
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Some properties of pure (internal) gravity waves

22 mk

kgB
g


 (41a)

=> dispersion relationship
of gravity waves in
this type of fluid is:

Slope of phase lines
),( mkK 


Wave vector is perpendicular to phase lines, so is
parallel to the phase lines.

( , )K m k


2 2

| |
cos

| |
gzK e k

K gBk m


 




   



 


(= angle αto the local vertical ))1,0(ze


waves with have vertical phase lines
waves with small have almost horizontal phase lines

g

g

gB


 


1

We neglect the term in (41) for the following discussion.
This is equivalent to assuming that the basic state density does not change
with z ( ), i.e. the basic state is incompressible.

 2
04/1 H

0)ln( 0 dzd 
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Since .),(and|| cccmkKKc gg
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

Group velocity is perpendicular to phase velocity !gc


c


Dispersive waves:
Horizontal and vertical phase speeds depend on the wave numbers.

Transversal waves: Particle path is parallel to the wave fronts.

Example: Lee waves

Some properties of pure (internal) gravity waves 2

gc


c


From J.R.Holton:
An Introduction
to Dynamic
Meteorology

Idealized cross section for internal gravity wave
showing phases of p, T & winds.
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Closer examination of the simplified solution (38a)Closer examination of the simplified solution (38a) 44
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 (38a)(38a)
Long inertial-gravity waves

These waves are influenced by
the rotation of the earth.
Their frequency is given by (38a).

Long wave limit (k —> 0): 202 fk
g  

Waves with are pure inertial waves.
(Not influenced by buoyancy force.)

f

* Dispersive waves.
* Numerical nuisance because of their large phase speeds!

* Small frequency but large horizontal phase speeds!

 0||
|| k

k k
f

k
c


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Dispersion DiagramDispersion Diagram ck(k)ck(k)
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From J. S. A. Green: Dynamics lecture notes
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
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2222
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mkca (39a) RTc Here
(Laplacian) speed of sound.

is the adiabatic

For very short waves in the horizontal  :)4/1that(such 2
0

22 Hmk 

cka  => phase speed is the speed of sound!
These waves transmit pressure perturbations with the adiabatic speed of sound,
i.e. type of waves with dispersion relationship (39a) are acoustic waves.

Very short acoustic waves:
* are non-dispersive, i.e. ck is the same for all k.
* have group velocity = phase velocity (in the horizontal)
* are longitudinal waves (particle path is perpendicular to wave fronts)
* have vertical phase lines ( since ), i.e. horizontal propagation.1cos 

)!
4

1
neglected(

||
cos 2

0
22 H

ck

mk
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a
 




Closer inspection of equation (39a): acoustic wavesCloser inspection of equation (39a): acoustic waves 11
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Closer inspection of equation (39a): acoustic wavesCloser inspection of equation (39a): acoustic waves 22

Long acoustic waves (long in the horizontal, i.e. very small k):
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
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222
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These long acoustic waves
* are dispersive
* have large horizontal phase speeds
* have almost horizontal phase lines ( ),

i.e. almost vertical propagation

o90
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Dispersion curves of acoustic waves
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Acoustic waves are a numerical problem because of their
high frequency and large phase speed.

It would be good if we could filter them out of the system.

How?

By modifying the basic equation such that they don’t support
this wave type.

Acoustic waves are a numerical problem because of their
high frequency and large phase speed.

It would be good if we could filter them out of the system.

How?

By modifying the basic equation such that they don’t support
this wave type.
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Simplified solutions to the linearized equations:
Filtering approximations

Simplified solutions to the linearized equations:
Filtering approximations

Now we will make use of the tracer parameters (n1, n2, n3, n4) we had introduced
when we derived the solution of the linearized basic equations.

We will introduce approximations to the linearized basic equations (17)-(21) by
setting individual tracers to 0 in the equations to eliminate the corresponding terms.
By setting these tracers to 0 also in the derived solution we immediately obtain the
solution for the modified equations.

We will learn how to modify the linearized basic equations so that they don’t
support acoustic waves and/or gravity waves anymore as solutions.
The physical principles behind these approximations can then be extended to
achieve the same for the non-linear equations.

We will also investigate the impact the hydrostatic approximation to the pressure
field has on the different wave types and determine conditions under which it is valid.
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Acoustic waves occur in any elastic medium.
Elastic compressibility is represented by in the continuity equation.
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 This term can be removed from (20)

by setting n2= 0.
Setting n2= 0 in ( 33) immediately
gives the dispersion expression for
the modified set of equations.

But we have to be careful!!!

The elimination of acoustic wavesThe elimination of acoustic waves (1)(1)
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The elimination of acoustic wavesThe elimination of acoustic waves (2)(2)

In eq. (32) n2 and n3 occur in the combination (n2-n3) which
vanishes in the exact equation (i.e. when n1= n2= n3= n4 =1).

=> We have to set always n2 = n3!

Anelastic approximation is n2=0 & n3=0!

=> A spurious term will arise in (32) if we set n2 to zero but not
n3 or vice-versa!
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The elimination of acoustic wavesThe elimination of acoustic waves (3)(3)

Setting n2= n3= 0 and n1 = 1 = n4 in (33)

This dispersion relation has only 2 roots in σnot 4 as (33) => only one wave type left!
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This is identical to the
dispersion relation for
inertial-gravity waves
(38a)!

No acoustic waves!
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Inertial-gravity waves are not distorted by anelastic approximation.
Acoustic waves have been eliminated!

Consequently:
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The elimination of acoustic wavesThe elimination of acoustic waves (4)(4)

Under what conditions is it OK to make the anelastic approximation?

Compare (46) with the exact dispersion relation (36):
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When can we neglect 2

2

c


in (36)?

Re-arrange (36):
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The elimination of acoustic wavesThe elimination of acoustic waves (5)(5)

It is OK to make the anelastic approximation if the frequencies of the
remaining waves are much smaller than the acoustic frequency.

This condition is satisfied for inertial-gravity waves!

Acoustic filtered equations can be used with confidence for a
detailed study of inertial-gravity waves in the atmosphere
(e.g. for modelling of mountain gravity waves).

=>

=>
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The hydrostatic approximationThe hydrostatic approximation 11

How does the hydrostatic approximation to the pressure field affect
the inertial-gravity waves and the acoustic waves?

When is it alright to make this approximation?

In the linearized momentum eq. (19)
the vertical acceleration is represented
by , since we assumed the basic
state to be at rest. => set n4=0!

tw  /
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0
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0
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
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
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
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
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
 gpBnp
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wn

(19)

Hydrostatic approximation = neglect of the vertical
acceleration Dw/Dt in vertical momentum equation (3). z

p
g

Dt
Dw






1

(3)

Questions we are going to address:
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The hydrostatic approximationThe hydrostatic approximation 22

Validity criterion:
From the dispersion relation (33)

we see that the term containing n4 can be neglected if gB2

Hydrostatic approximation is OK for waves with
frequencies much smaller the the buoyancy frequency!

=>
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=>
Hydrostatic approximation affects acoustic waves and very short gravity waves.
Inertial waves and long gravity waves are unaffected.

This condition is
* satisfied for inertial waves (f 2 << gB)
* not satisfied for very short gravity waves
* not satisfied for acoustic waves

 2 k
g gB 

 !,2 mkgBa 
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Validity domain of the hydrostatic approximation (H.A.)
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Consequently, inertial-gravity waves will be distorted in the
hydrostatic pressure field unless !)4/(1 2

0
22 Hmk 

The hydrostatic approximationThe hydrostatic approximation 33

Dispersion relationship in hydrostatic system:
Setting n4=0 and n1=n2=n3=1 in (33) and using B+g/c2=1/H0 gives:
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(49) looks like the dispersion relation
for inertial-gravity waves (38a)
but k2 is missing in the denominator!
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=> Hydrostatic approximation should not be used if horizontal and vertical
length scales in the system are of comparable magnitude (Lx ~ Lz).

(For example in convective scale models.)
It is OK for Lx > Lz. (For example if Lx ≥100km and Lz ~10km.)
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The hydrostatic approximationThe hydrostatic approximation 44

(49) represents only one pair of waves
and these are (distorted) inertial-gravity waves.

Acoustic waves seem to have been filtered out by making the
hydrostatic approximation.
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(49)

Yes!
Are there any (acoustic) waves with ?0w

In fact, only acoustic waves for which have been filtered out!
These are all vertically propagating sound waves (i.e. with m > 0).

0w

Waves with are not represented by (49), because we had assumed
when we derived the dispersion relationship (33) (on which (49)

is based) from the differential equation (32)!

0w
0̂w
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Solutions of equation (32)Solutions of equation (32)
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(32)

Solution 1: 0 Not a wave!

Inserting σ= 0 into (22)-(26) gives for the winds:

p
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v̂and0ˆˆ , i.e. geostrophic motion.

Solution 2: zw 0ˆ Lamb wave

This solution will be discussed later in detail.

Further solutions: For zw  0ˆand0 we have to solve
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11
Reminder
(slide 23)
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The Lamb waveThe Lamb wave 11

We examine now the case .,0ˆ zw 
In this case (32) is redundant. To obtain the frequencies of possible waves
for this case we have to go back to eqs (29) and (31) and insert .0̂w
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(51)

Solution 1: 0
ˆ

0



p

is a trivial solution because with 0̂w =>

0ˆˆˆˆ  vu , i.e. perturbations of all variables vanish.

Solution 2: 0 , which is the geostrophic mode mentioned previously.

Wave solutions we obtain from
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The Lamb waveThe Lamb wave 22
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(52b)

In an anelastic system (n2=n3=0) these waves can’t form.
They are a form of acoustic waves.

Dispersion relationship: (from (52c) by setting n2=n3=1 )
2222 kcf  (53)

Phase speed:
* for short waves: cck  (like for very short acoustic waves)

* for very long waves:
k
f

ck  (like for inertial waves)

222
22 kcfnn  (52c)
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The Lamb waveThe Lamb wave 33

Structure of the Lamb wave:

0
ˆ

0
3 





 




p

Bn
z

(52b)(52b)

From (52b) with n3=1 =>
Bze
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 tkxiBz eep 
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0

This wave is a pressure perturbation propagating only horizontally (m=0).

* Lamb waves have been observed in the atmosphere after violent explosions
like volcanic eruptions and atmospheric nuclear tests.

* They are of negligible physical significance.
* Can be suppressed by anelastic approximation. However, they are not more of
a numerical problem than long inertial-gravity waves since largest phase speeds
are comparable to the phase speeds of inertial waves.
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And from equations (22)-(26) with =>0̂w Wave only in x!
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Dispersion curve of the Lamb wave
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Gravity waves were filtered out in older models of the large-scale dynamics of
the atmosphere because they can cause numerical problems (long waves have
large phase speeds!) They are not filtered out in modern models anymore.

Filter: Set local rate of change of divergence to zero => no gravity waves!

We demonstrate this on a simplified system:

1.) Start from linearized basic equations (17)-(21).
2.) Make hydrostatic approximation (n4=0!)
3.) Filter out all acoustic waves by making the

anelastic approximation (n2=n3=0!)
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5.) Eliminate δΘand δw by simple algebraic
manipulations of (19)-(21).

=> system of 3 equations in the unknowns δu, δv, δp/ρ0.

Filtering of gravity wavesFiltering of gravity waves 11

4.) Assume the atmosphere to be incompressible,
i.e. 0 0

0 0

1 1
0 0

z H z
 


 

    
 

n1=0!
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Filtering of gravity wavesFiltering of gravity waves 22
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We need to introduce the divergence
into these equations.
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Filtering of gravity wavesFiltering of gravity waves 33

These equations have the dispersion relationship

For n5=1 => 2

2
22

m
kgBf 

Setting n5= 0 eliminates this inertial-gravity wave solution!
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(49)

Compare to dispersion relation in the hydrostatic system (49):

These waves are (distorted) inertial-gravity waves!
(Distorted because of hydrostatic approximation and incompressibility approx. n1=0)

Suppressing local rate of change of divergence “kills” the inertial-gravity waves!
=>
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(54)
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Filtered Rossby Waves (Planetary Waves)Filtered Rossby Waves (Planetary Waves) 11

This was previously the σ≡0 solution.

Now we let the field vary in meridional direction too, i.e. !0


y

=> back to 3-dimensional system (x,y,z)
Coriolis parameter f varies now with latitude.

To simplify the problem: * make anelastic approximation
* make hydrostatic approximation
* set local rate of change of divergence = 0
=> no acoustic and no gravity waves!
* set n1=0 (i.e. incompressible atmosphere)
* make β-plane approximation to f:

yfyy
y
fyfyf 

 000 )()()(
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p
p ~
0





Filtered Rossby WavesFiltered Rossby Waves 22

With these approximations one obtains from the linearized 3d basic
equations the following equation for the pressure perturbation

For β= 0 => σ= 0!
So this wave type can only exist
when the Coriolis parameter varies
with latitude!

Try waves as solutions:   tmzlykxip exp~

Inserting into (55) gives
dispersion relationship:
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Filtered Rossby WavesFiltered Rossby Waves 33
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Rossby waves don’t occur in pairs of eastward and
westward propagating waves, as do acoustic waves
and inertial-gravity waves.
There are only westward propagating Rossby waves!
(westward relative to the mean zonal flow)

So far we have always assumed the mean flow
to be zero. For a constant basic zonal flow u0
the frequency observed at the ground is the
Doppler-shifted frequency σ’= σ+ u0k =>

Frequency observed at ground:
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=> zonal phase speed observed
at the ground is:
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Rossby waves propagate westward relative to
the mean flow. Relative to the ground they
usually move eastward (when u0>0 and u0>|ck| ).
They become stationary relative to the ground
(i.e. cx= 0) if k, l and m fulfill the condition
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Filtered Rossby WavesFiltered Rossby Waves 44

Rossby waves are dispersive:
- long zonal and meridional waves are fastest!
- for short zonal Rossby waves such that  gBfmlk /2

0
222 

20 k
ucx


 20 k

ucg




phase velocity: group velocity:

=> Group velocity is opposite in direction to phase velocity!
(with respect to the mean flow u0)

Rossby waves pose no numerical problem because they have quite large
periods (of the order of days) and don’t move very fast (typically with ~10m/s).
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t0
t1

t2

Perturbation vorticity field and induced velocity field
(dashed arrows) for a meridionally displaced chain of
fluid parcels. Heavy wavy line shows original pertur-
bation position, light line westward displacement of
the pattern due to advection by the induced velocity.

Absolute vorticity ηis given
by η= ζ+ f ,where ζis the
relative vorticity and f the
Coriolis parameter.

At t1 we have a meridional dis-
placement δy of a fluid parcel:
η1 = ζ1 + f1= f0 (because of conservation of absolute vorticity!)

=> yy
y
fff  

 101 =>

ζ1>0 for δy<0, i.e. cyclonic for southward
displacement

ζ1<0 for δy>0, i.e. anticyclonic for north-
ward displacement

Meridional gradient of f resists meridional displacement and provides
the restoring mechanism for Rossby waves.

A Rossby wave is a periodic vorticity
field which propagates westward and
conserves absolute vorticity.

From J.R.Holton: An
Introduction to Dynamic
Meteorology

Assume that at time t0:
ζ=0 => η0 = f0.

Rossby Wave Propagation
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Dispersion curve of Rossby wave
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Rossby waves are not distorted by the hydrostatic approximation.
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Surface waves are waves on a boundary between two media.
Examples: - waves on air-water interface

- waves on an inversion

The fluid motion and the boundary shape must be determined simultaneously.

x

z

(1)

(2)
free surface h(x,t)

rigid boundary at z = 0

h

Boundaries constrain our system now:
- rigid horizontal boundary at the bottom (z=0)
- free surface above ( at z=h(x,t) )

“Free surface”: surface shape is free to respond to the motion within the fluid
and is not known ‘a priori’.

We work again only in 2d: (x,z) , i.e. neglect again variation in y )!0( 


y
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Equations governing the motion inside the fluid layer:
We study only waves with small amplitude (small perturbations),
i.e. linearized equations can be used. We use equation (32a):

0ˆ)(
ˆ

)(
ˆ

0

1
232

2
22

2
2

4
0

1
322

2



































 w

H
n

BnBn
c
n

f
k

ngB
dz
wd

H
n

nnB
dz

wd




(32a)
Simplifications / approximations:

2.) Filter out acoustic waves, i.e. set n2= 0 in (57), but only after we have
seen how this affects the equations of the boundary conditions!!!

3.) Assume the pressure to be constant above the free surface.

No hydrostatic approximation at this stage! Carry n4 along for future use.
No incompressibility approximation at this stage either! Carry n1 along as well.

1.) Assume unstratified fluid, i.e. static stability B = 0 => (32a) reduces to

0ˆˆˆ
2
2

22

2

4
0

1
2

2












 w

c
n

f
kn

dz
wd

H
n

dz
wd


 (57)
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Boundary conditions:
a.) Particles cannot cross the boundary between the two fluids!

b.) The two fluids must stay together and not separate at their common
boundary. This is ensured by imposing continuity of the velocity
component perpendicular to the boundary across the boundary.

Conditions a.) and b.) state that particles adjoining the surface follow the
surface contour, i.e. the surface is a material boundary.
These are kinematic conditions. We need a dynamic condition too.

c.) The pressure in the two fluids must be equal at the common boundary
(continuity of pressure).

Expressed in mathematical terms:

0)),((  txhz
Dt
D

a.) & b.) at boundary ),( txhz  =>
Dt
Dh

hw )(

At a flat and rigid boundary (h=constant in space and time) w≡0.
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Expressed in mathematical terms (continuation):

c.) Continuity of pressure: ).,(at21 txhzpp 

we assume to be constant in space and time.2p

=> ).,(at01 txhz
Dt
Dp



We will call p1 simply p from now on.

=> The following set of non-linear boundary conditions has to be fulfilled:

(i) 0at0  zw

(ii) ),(at txhz
Dt
Dh

w 

),(at0 txhz
Dt
Dp (iii)

1 2 at ( , )
Dp Dp

z h x t
Dt Dt

 
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Boundary conditions (i), (ii) & (iii) have to be linearized.

=>

=>

=>

(i) 0at0  zw

(ii) ),(at txhz
Dt
Dh

w 

),(at0 txhz
Dt
Dp

(iii)

non-linear boundary conditions: linearized boundary conditions :

(i) 0at0  zw

(ii) hHz
t
hw  


 at

hHzwg
p

t









at
0

(iii)

Insert into (i), (ii) & (iii) and neglect products of perturbations.

Assume small perturbations on a fluid at rest with constant mean depth H:
,)(,)(,,,vv, 00   zpzpphHhwwuu

0
0 g

z
p 



0 0
pp

w
t z
 


 

 
With hydrostatic balance for the basic state, i.e.

Linearizing (iii) gives
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Condition (iii) can be shown (with the help of (29) and 0
2 /1/ HcgB  )

to be equivalent to

Now we filter out the acoustic waves:
Anelastic approximation is n2= n3= 0
Boundary condition (iii) (eq. (58)) contains (n1-n2)!
Therefore, if n2=0 we must set also n1=0 in (iii) to avoid
spurious solutions because of an inconsistent approximation!

(58)

Assume wave form for the perturbations:
      etc.,exp)(̂,expˆ tkxizwwtkxihh  

=> (i) 0at0ˆ  zw

(ii) hHzhiw   atˆˆ

(iii) hHzw
f

k
g

H
nn

dz
wd 
















 at0ˆ
ˆ

22

2

0

21



Atmospheric Waves 73

Surface Gravity WavesSurface Gravity Waves 77

We have to solve now the set of equations given by:

Equation (57) + boundary conditions (i), (ii) & (iii)
with n2= n3= 0 in (57) and in (iii) (equation (58))

and with n1= 0 only in (iii)!

It is possible to solve above set for all wave numbers.
We study long and short waves independently.

0ˆ
ˆˆ

22

2

4
0

1
2

2




 w
f

k
n

dz
wd

H
n

dz
wd


 (57a)

(i) 0at0ˆ  zw

(ii) hHzhiw   atˆˆ

hHzw
f

k
g

dz
wd







 at0ˆ
ˆ

22

2

(58a)(iii)

=>
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1.) Long waves
11 0  kHandkH , i.e. horizontal scale >> vertical scale

=> It is OK to make the hydrostatic approximation
(n4= 0 in (57a)). => 0

ˆˆ

0

1
2

2


dz
wd

H
n

dz
wd

(57b)

From (ii) Hzhiw  atˆˆ  => 













 

2
exp),(


 tkxitxh

.andbetween90ofshiftPhase 0 wh 

.0at0i.e.,00   zwz  (i) ok!

Solution:
(for n1=1)  

0

0

1( , , ) exp

1

z
H

H
H

ew x z t i kx t

e

     


(59)
Verify by
inserting
into (57b)!

ŵ
(̂ )w z
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Solution (59) has also to fulfill the boundary condition (iii) (equation (58a)).

Hzw
f

kg
dz
wd 


 at0ˆˆ

22

2


(58a)(iii)

0

0

1
(̂ )

1

z
H

H
H

e
w z

e








Insert into (58a) and evaluate at z = H.

2 2 2
0

0

1 exp
H

f gH k
H


  

     
  

(59a)

dispersion relationship for long surface gravity waves

=>
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Examples: * long waves on a boundary layer inversion (H ~ 1km)
travel with ck ~ 100m/s

* long waves on ocean surface (H ~ 4km)
travel with ck ~ 200m/s

(tsunamis generated by underwater earthquakes)

gH
k
f

k
ck  2

2
From (59a) with Taylor
expansion of exp(-H/H0)
around H/H0= 0 =>

Phase speed of long
surface gravity waves
in a shallow layer.

(Shallow layer, much shallower than density scale height)
Case H << H0

2 2 2
0

0

1 exp Hf gH k
H


  

     
   (59a)(59a)

Closer examination of (59a):Closer examination of (59a):
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These waves have a phase speed of about 260m/s
for a density scale height H0 of 7km.

Phase speed of long surface gravity
waves in a deep layer.02

2

gH
k
f

k
ck 



From (59a) we obtain in this case for the phase speed

Case H >> H0

(Deep layer, much deeper than density scale height)

2 2 2
0

0

1 exp
H

f gH k
H


  

     
  

(59a)(59a)
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3.) Phase speed in a deep layer looks a bit like the phase speed of the Lamb wave

2
2

2

c
k
f

ck  only 2c 0gH , but these terms are of similar magnitude!

Remarks:

1.) In a shallow layer
(H << H0)

In a deep layer
(H >> H0)

Always the smaller of the two depths!

gH
k
f

ck  2

2

02

2

gH
k
f

ck 

2.) In an incompressible fluid (n1=0) the phase speed is given by the expression
for the shallow layer (because the density scale height ).
These long surface waves are often referred to as ‘shallow water waves’.
The corresponding ‘shallow water equations’ are extensively used for
designing and testing of numerical schemes.

0H 
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2.) Short waves
11 0  kHandkH , i.e. horizontal scale << vertical scale!

Hydrostatic approximation not OK!

Effect of rotation can be neglected!
=>

Solution can be shown to be: (verify by inserting into (57a) and (58a)!)


    tkxi

H
Hz

n
kH
kz

w  






 
 exp

2
exp

sin
sinh

0
1 (60)

With the dispersion relationship )tanh(2 kHgk

For very large kH: k
g

cgk k 2
ck≈40m/s for Lx=1km,
i.e. much slower than
long waves!

Example for this wave type: Ripples on a pond.

.0at0i.e.,00   zwz  (i) ok!
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Why do we have to take an extra look at the equatorial region?

What is different at the equator from other latitudes?

Coriolis parameter is zero and changes sign. !0but0 




y
f

f

Since we have not assumed anywhere when we derived the
wave solutions of the linearized basic equations, the equatorial
waves should be “contained” in these solutions (we just have to
let f 0 ), or maybe not?!

0f

No, f 0 in the solutions we have derived is not sufficient
to find all equatorial waves!
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Why have we not found the special equatorial waves?

When we allowed variation with y to study Rossby waves
we filtered out acoustic waves and inertial-gravity waves!

We neglected variations in the meridional direction ( )
when we studied inertial-gravity waves and acoustic waves.

No Rossby waves in this case because β= 0 !

0 y
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Away from the equator this is ok!
Acoustic waves, inertial-gravity waves and Rossby waves
are (nearly) independent solutions because the restoring
mechanisms responsible for these 3 wave classes are well
developed and distinct.

Near the equator this is no longer true (because the Coriolis force is weak
& changes sign) and hybrid wave types can occur (mixed Rossby-gravity
waves).

=> we have to study Rossby waves and inertial-gravity waves together!

Acoustic waves can be filtered out.
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To study equatorial waves we
* use the sallow water equations (i.e. 2d-problem (x,y)!)
* make the equatorial β-plane approximation: f ≈f0+βy =βy
* linearize again about a state at rest (basic state wind ≡0)

v 0

v
0

v
0

u h
y g

t x
h

y u g
t y

h u
H

t x y

 

 

  

 
  

 
 

  
 

   
      

(61)=>



Atmospheric Waves 86

Equatorial WavesEquatorial Waves 55

Assuming waves in x-direction for the perturbations:

 ˆˆ ˆ( , v, ) ( ( ), v( ), ( ) ) expu h u y y h y i kx t       

Inserting into system of equations (61) leads to the following
2-order ordinary differential equations for )(v̂ y

0v̂
v̂ 22

2
2

2

2











gH
yk

k
gHdy

d 

 (62)

Change to non-dimensional forms of y, k and σ:

222222 ,, 


gH
gH

k
gH

y 



Atmospheric Waves 87

Equatorial WavesEquatorial Waves 66

With these new variables (62) has the form

0)(v̂
v̂ 222
2

2







  




d
d (63)

Because the equatorial β-plane approximation is not valid
beyond ±300 away from the equator we have to confine
the solutions close to the equator if they are to be good
approximations to the exact solutions.

=> boundary condition:

||largefor0v̂  (63a)
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0)(v̂
v̂ 222
2

2







  




d
d (63)

Find solutions for (63) + boundary condition (63a).

,2,1,0where12  nnEn

Solutions are possible only for discrete values of E
(discrete spectrum):

E
Remark: Equation (63) is of the same form

as the Schrödinger equation for
a quantum particle in a 1-dim.
harmonic potential x2:

0)()( 2
2

2




xxE
dx
d

Solutions of (63)+boundary condition (63a) exist only for

,2,1,0where1222  nn

 (64)

dispersion relationship
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Solutions for are given by)(v̂ 

,2,1,0where)(
2

expv)(v̂
2

0 







 nH n 

Here Hn is the Hermite polynomial of order n.
10 H 21 H  122 2

2  H 

Exercise: Insert the solution for n=1 into (63) and verify that it indeed fulfills
this equation and the boundary condition (63a) only if (64) for n=1 is satisfied.

N

S

0

n = 0 n = 1 n = 2

λ )(v̂ 

n = 5 n = 10
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Inspection of the dispersion relationship (64):

0)12( 23   n(64) <=> (65)

Cubic equation in the frequencyω. We expect 3 distinct roots.
Find roots first for the case that 0n

For 0 => 122,1  n 03 &
For 0 we can find good approximations to the 3 roots by

considering the cases
22 ~   ||&

Why?

ω

μ=0
μ>0

  )12()( 23 nf

To see why
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0)12( 23   n (65)(65)

 || =>  3 2 2 1n      

=> neglect ω3 in (65) =>
1223 


n

 (67)

Back to dimensional variables k andσ:

(67) <=> westward propagating Rossby
wave (one for each n = 1, 2, 3, …)

3
2 (2 1)

k
n

k
gH

 




(66) <=>
pair of gravity waves
(one pair for each
n = 1, 2, 3, … )

1,2 2

(2 1)
1

n
gH k

k gH
 

  

22 ~  =>  2 2if 1 , 1  

=> neglect μin (65) => 122
2,1  n (66)

 3 2| | , | 2 1 |n       
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

Equatorial WavesEquatorial Waves 1111

From T Matsuno (1966)
“Quasi-geostrophic Motions
in the Equatorial Area”,
Journal Met. Soc. of Japan.
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Case n = 0 : 0)12( 23   n (65)(65)

Dispersion relationship (65) can be factorized
2( )( 1) 0      

Root 1:  This root is not acceptable because a division by
ω- μis required in deriving (62) from (61)!

Root 2:
2

1 1
2 4
 

   1 2

41 1
2

gH k

gH k


 
    

 
(68)<=>

2

2 1
2 4
 

   Root 3: 2 2

4
1 1

2
gH k

gH k



 

     
(69)<=>
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1 2

4
1 1

2
gH k

gH k



 

     
(68)

2 2

4
1 1

2
gH k

gH k



 

     
(69)

eastward moving gravity waves

=> called mixed Rossby-gravity waves
(westward moving)

10 gH k   
= frequency of shallow water gravity waves,
i.e. this is a gravity wave

This is some kind of a Rossby-type wave
because for 20 0   

 2/1

2  gH0kFor
(as for gravity waves)

For large k kgH1

 1/ 2

1 gH 0kFor

For large k
k
 2

(as for Rossby waves)
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Equatorial WavesEquatorial Waves 1414
From T Matsuno (1966)
“Quasi-geostrophic Motions
in the Equatorial Area”,
Journal Met. Soc. of Japan.
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 
2

0v( , , ) v exp exp
2

yx y t i kx t
gH

 
 

        

Equatorial WavesEquatorial Waves 1515

Structure of mixed Rossby-gravity waves:

From (61) we obtain:

Phase shift of 900

between δu and δv
& between δh and δv!

( , , ) ( , ) v( , , )uu x y t i A k y x y t   

)
2

(exp


ii 

( , , ) ( , ) v( , , )hh x y t i A k y x y t   

n=0
=>

N

S

y

x

Plan view of horizontal velocity
and height perturbation associated
with an equatorial Rossby-gravity
wave. (Adapted from Matsuno,1966)
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Equatorial WavesEquatorial Waves 1616

Equatorial Kelvin WavesEquatorial Kelvin Waves
= Waves with zero meridional velocity everywhere, i.e. 0v 

( Reminder: Lamb waves 0w  )

Only “ + ” in (71) is valid solution, “ - ” violates the β-plane approximation
(sinceδu in (70) is growing not decaying with y in this case!)

Solution:  2
0( , , ) exp exp ( )

2
k

u x y t u y i kx t
 


    
 

(70)

gH kwith dispersion relationship (71)

In this case equation (63) is redundant!
Derive solutions from set of linearized shallow water equations (61) with
& boundary condition (solution must be confined close to the equator).

0v 

Kelvin waves move only eastward! (non-dispersive)=> gHck 
phase speed of shallow
water gravity waves! They are a form of gravity waves.=>
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 From T Matsuno (1966)
“Quasi-geostrophic Motions
in the Equatorial Area”,
Journal Met. Soc. of Japan.
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Equatorial WavesEquatorial Waves 1818

Structure of equatorial Kelvin waves:

Plan view of horizontal velocity and height perturbations
associated with an equatorial Kelvin wave.

(Adapted from Matsuno, 1966)

(70)

0v  Meridional force balance is
an exact geostrophic balance
between u and the meridional
pressure gradient.
Existence of Kelvin waves is
thanks to the change in sign of
Coriolis parameter at equator!
Zonal force balance is that of
an eastward moving shallow
water gravity wave.

Ocean Kelvin waves along
coastlines are more common
than atmospheric Kelvin waves.

( , , ) ( , ) ( , , )h x y t A k u x y t  

  tkxiy
k

utyxu 

 






 exp

2
exp),,( 2

0
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Equatorial WavesEquatorial Waves 1919
Characteristics of the dominant observed Kelvin and Rossby-gavity
waves of planetary scale in the atmosphere:

Form J. R. Holton: An Introduction to Dynamic Meteorology

Kelvin waves Rossby-gravity waves
Period 15 days 4-5 days

Zonal wave number 1-2 4

Average phase speed
relative to the ground +25 m/s -23 m/s

Observed when
mean flow is easterly westerly

Discovered by Wallace & Kousky
(1968)

Yanai & Maruyama
(1966)

Vertical wavelength 6-10 km 4-8 km

These waves play an important role in the generation of the quasi-biennial oscillation
(QBO) in the zonal wind of the equatorial stratosphere.

End of lecture on Equatorial Waves
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The EndThe End

Thank you very much for your attention.Thank you very much for your attention.


