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| ntroduction |

Why study atmospheric waves in a course on numerical modelling?

Successful numerical modelling requires a good understanding
of the system under investigation and its solutions.

Waves are important solutions of the atmospheric system.

Waves can be numerically demanding!

(E.g. acoustic waves
have high frequencies and large phase speeds
=> ghort time step in numerical integrations with
explicit time-stepping schemes.)
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Introduction  (2)

If awave typeisnot of interest and a numerical nuisance then
filter these waves out, i.e. modify the governing equations such

that this wave type I's suppressed.

How?

To know how, we need to have a good understanding of the
wave solutions and of which terms in the equations are
responsible for the generation of the individual wave types.

Question: How do the modifications to the governing equations to
eliminate unwanted wave types affect the wave types

we want to retain and study?

Also: How do other commonly made approximations (e.g. hydro-
static approximation) affect the wave solutions?
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Introduction  (3)

How are we going to address these questions?

|deally, we have to study analytically the wave solutions
of the exact set of governing eguations for the atmosphere
first.

Then we introduce approximations and study their effect on
the wave solutions by comparing the new solutions with the
exact solutions.

Problem with this approach:
Governing eguations of the atmosphere are non-linear
(e.g. advection terms) and cannot be solved analytically in general!

We linearize the equations and study here the linear wave
solutions analytically.
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Introduction  (4)

Question

Arethese linear wave solutions representative of the
non-linear solutions?

Answer
Y es, to some degree.

Non-linearity can considerably modify the linear solutions
but does not introduce new wave types!

Therefore, the origin of the different wave types can be
Identified in thelinearized system and useful methods of
filtering individual wave types can be determined and
then adapted for the non-linear system.
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Objectives of this course |

 Discussthe different wave types which can be present in
the atmosphere and the origin of these wave types.

o Derivefiltering approximationsto filter out or isolate
specific wave types.
« Examine the effect of these filtering approximations and

other commonly made approximations on the different
wave types present in the atmosphere.

M ethod: |

Find analytically the wave solutions of the |linearized basic
equations of the atmosphere, first without approximations.

| ntroduce approximations later and compare new solutions
with the exact solutions.
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Definition of basic wave properties (1)

Mathematical expression for a 2-dimensional harmonic wave
¥(x zt)= A-exp|i(kx+mz-ot)|

Amplitude A

Wave numbers k=—"—-, m=—"7 Wave lengths |L

X1 y4

Wave vector |K = (k, m)

Frequency o =2T—” Period T

Dispersion relation o (k, m, parameters of the system)

Atmospheric Waves 7



Phase:

Definition of basic wave properties (2)

¥ (x,z1t) = A-exp|i(kx+mz-ot)

¢ =kx+mz—ot=K- X —ot

Wave fronts or phase lines

= lines of constant phase
(that is, all X for which K - X —ot = const. )

Kis perpendicular to the wave fronts.

De - DX

Phase velocity C = velocity of wave fronts. c
—_rr _ K. LZ /
Dt DE K
=C
ok om
( ) —
LX

where X = (x, 2)
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Definition of basic wave properties (3)

Horizontal phase velocity C, =

_o
Kk
o

Vertical phasevelocity C, =

1 (c,,c,)=C !

X1 vz

Dispersive waves are waves with a phase vel ocity that depends

on the wave number.

Wave packet is a superposition of individual waves.

Group velocity  |C, (ao— ao_)

ok = om

Energy is transmitted with the group velocity.

Waves travel with the phase velocity.
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We use height (z) as vertical coordinate.

Continuity eguation:

Thermodynamic eguation: ‘

(Du_4-_100

Dt 0 OX

Momentum eguations; < m+ fu= _Llop
- | Dt p oy

Dw_ q=_1cp

. Dt p 0Z

8u+av+8w: D(Inp)

OX oy 0z Dt

D(InT) _ _D(Inp)
Dt Dt

Complemented by | Equation of state: | |p= pRT

(1)
(2)
3)

(4)

()
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Remarks:

(1) All source/sink terms are omitted in egs (1)-(5)

(2) Tota time derivativeis defined as
D 0 0 0 0

, where Risthe ideal gas constant
and ¢, the heat capacity at constant pressure

(4) Setting PW _ o Uivesfamiliar set of equationsin
Dt hydrostatic approximation

‘ We don't make the hydrostatic approximation at present!
It will be discussed later in detalil.
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We would like to find analytically the wave solutions
for the basic equations (1)-(5).

Can we do this?

No! Basic eguations are non-linear partial differential
equations!

We have to linearize the basic equations (1)-(5) by using the
perturbation method and solve the linearized system analytically.

Atmospheric Waves 12



|ntroduce first some simplifications:

Change of variablee ReplaceT by |®@ =1ng

where

0 = T[&j (potential temperature)
P

0 of

Coordinates are now only (X, z, t)!

Question: Has this ssimplification serious conseguences
for the wave solutions?

Simplification: Neglect variationiny

Answer: Yes! The Rossby wave solution has been suppressed!! Rossby
waves can only form if the Coriolis parameter f changes with latitude.
(Detailed discussion of Rossby waves will follow later in this course.)

Dependent variables (unknowns) are now u, v, w, p, p, ®
and they are functions only of x, zand t.
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Now we linearize the set of equations (1)-(5) by using the perturbation method.

Perturbation M ethod ‘

All field variables are divided into 2 parts:
1) a basic state part
2) a perturbation part (= loca deviation from the basic state)

u:.+-

Basic assumptions of perturbation theory are:
a.) The basic state variables must themselves satisfy the governing equations.
b.) Perturbations must be small enough to neglect all products of perturbations.

Non-linear equations are reduced to linear differential equations in the
=> | perturbation variablesin which the basic state variables are specified
coefficients.
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Apply perturbation method to basic equations (1)-(5) |

Consider small perturbations on an initially motionless
atmosphere, i.e. basic state winds (Ug,V,,W;)=0

U= U, + 06U = du(X, zt)

V =V, + 0V =0V(X, zt)

W= W, + oW = ow(X, z,1)

p = po(2)+p(X, z,1)

P=py(2)+p(x z1)

O =0,(2) +00(X, z,1)

Pos Py, ®y define the basic atmospheric state and satisfy e —gP,-

Inserting into (1)-(5) and neglecting products of perturbations gives
linearized basic equations.
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Linearized basic equations

Perturbations (éu, dv, etc.) are now the dependent variables!

oo 0[] g
ot OX\ P,

dov fou =0
ot

OOW O [ op —B@—95®=0
ot 0z\ p, Po

0 [ op 65u+85w_5_w_0
ot\ p, OX oz H,
000 + Bow =0
ot -

No advection terms | eft!

Here:

B =

%(In 6,) static stability

4
HO

%,
=——(In
82( Po)

density scale height

For this set of equationsit is now possible to find the

wave solutions analytically.
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Introduction of tracer parameters

Trick to help us save work and make sensible approximations | ater.

Introduce tracer parameters

n,, N, Ny and n, to “mark”
individual termsin the equations
who'’s effect on the solutions we
want to investigate.

These tracers have the value 1 but
may individually be set to 0 to
eliminate the corresponding term.

For example n,=0 =>
hydrostatic approx. to pressure field.

OU _ g5y 2| 9P ~0 (17)
ot OX\ Py
9N | tsu _0 (18)
oW O (| op op
n + <nB—-0g60 =0 (19)
@ ot 62(/30) Po
0| op oou  Oow OW
M| — |+ + <n— =0 (20
ot [poj oX 0z H, (20)
990 ., Bow ~0 (21)
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Find wave solutions for system of linearized equations (17)-(21): I

Boundary conditions:

For simplicity we assume the atmosphere to be unbounded in x and z.

Wave solutions:

Since the coefficientsf, B, g & H, of the system (17)-(21) are
Independent of x & t, the solutions can be written in the from
F(2) exp{i(kx + ot)} .
Each dependent variable
(perturbation) is of thisform:

Su = U(2) - exp{i(kx + ot)}
&V = (2) - exp{i (kx + ot)}

Remarks:

a.) The full solution isthe appropriate Fourier sum of terms of this form over all
wave numbers k. We study here only individual waves.

b.) If the frequency is complex we have amplifying or decaying wavesin time.
We study only “neutral” waves, so ¢ IS assumed to bereal.
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Inserting su =0(z) -exp{i(kx+ot)}, ov = (2) - exp{i(kx+ot)} etc.
Into egs (17)-(21) givesthe following set of ordinary differential
eguationsin z (derivativesonly in z!):

A

o0 — 70 +1K -0 (22)

Po
oV + fa -0 (23

n,ioW-+ pj—nng—g(:)zo (24)
Po Po

nioc L +iki+ - W- 2w =0 (25)
Po H,

0O+ BW -0 (26)

No x and t dependencies left! Operators d/0x and d/ot have been
replaced by ik and io, respectively.

Dependent variables are now 0(2), ¥(2), W(z), p(z), p(2), and O(2).
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Solve system of equations (22)-(26) for |
0(2), ¥(2), W(2), P(2), p(2), and B(2):

Strategy:

Step 1: Derive from this set of equations a differential equation in
~ only one of the dependent variables. Ww(z).
Find solution of this equation, i.e. Ww(z) and the dispersion

Step 2 _ .
relationship o(k, m, parameters of the system).

Insert this solution for Ww(z) back into (22)-(26) to obtain
solutions for the remaining dependent variables.
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Deriving from (22)-(26) a differential equation only in \f\/(Z)I H

From (22) and (23) we obtain ol Fo ik P _0 (22)
ok f) Lo
U=-— (27) ioV+ fO =0 (23
Gz_fzpo d( B ¢ ;
i |fk ﬁ n4|G\i\\/+E(£j—n38£—g®:O (24)
V:_62_.|:2 (28) A Po 0
Po nzio—£+ik0+(;jz\iv—:1 W =0 (25)
. A . pO 0
Inserting U from (27) into (25), i e By _0 (26

using (26) and the relation

N

1p p 1 p p

6_1P b _1D
Yy Po Po C Py Po

, where ¢ = ,/yRT, isthe Laplacian speed of sound,

A

transforms (25) into d\;\,{an_:l]WHG[nz B 'S j P _o (29)

dz

Using (26) to eliminate ®
from (24) gives

2 2 2
0 cc o°—1°)p,

i(‘)’d[pj—iGBn3p+(gB—n462)W=O (31
az\{ p, Po
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Deriving from (22)-(26) a differential equation only in \f\/(Z)I ﬂ

B
2 A
dW+[an—nl W+ia£n§— Zk Zj P _o (29)
dz 0 Po

c° o°—f

iad( pj—ican3 P +(gB—Nn,o°)W_ =0 (31
dz\ p, Po

K ————

In general the coefficients B, H, and c are (known) functions of z
For simplicity we consider only constant (mean) values of B, H,
and c which arerlated by B+g/c’>=1/H, .

Computing P/p, from (29) and inserting into (31) leads to the following
second order ordinary differential equation governing the height variation of W

;dz d k? n n, || .
o dzzJ{B(nz_r‘s)—l_rlllo dz+(95—n402)(62_fz_é]_an(an_HZ]}V_V(Z)Z

Finished step 1 111!
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Solutions of equation (32)

d? n |d ) k? n,
G{dzzJ{B(nfnS)_l—ljoler(gB_np )(02_ fz_czj (an—HO)}w(z) 0)

(32)
Solutionl: =0 Notawave!
Inserting o = 0 Into (22)-(26) gives for the winds:
U=Ww=0 and V= kP = ov= ii5p , 1.e. geostrophic motion.
' po fp, OX

Solution2: W=0 Yz Lambwave
This solution will be discussed later in detail.

Further solutionss For o #0 and W#0Vz we haveto solve

d*w dw k2 n, n .
dZ |:B(n 3) HO:|dZ+|:(gB n46 )( 2 f2 o Czj_BnB(an _HO]:|W_O
(32a)
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Fnding wave solutions of equation (32a)

(32a)
Setting W(2) = W(Z)exp{ 1{5(% ne,)—:ll}z} leads to asimpler

differential equation for W(z) with no first derivatives

el oyl ) o oo

(32b) has the form of a wave eguation and, since we consider the fluid to
be unbounded in z, woc exp(imz) issolution if mfulfills

o = (o8 o[ - ) en- ) 2 mim)- @}2(33)

Dispersion relationship (of 4th order in the frequency o)
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Final form of the solution for the perturbation ow I

From ow(x,z,t) =W(z)- exp{i (kx+ crt)}
with W(2) = w(2) exp{— ;{B(n2 -n,)— :Il}z}

0
and W oc exp(imz)

we finally obtain as solution for the perturbation ow:

SW oc exp{— ;{ B(M, (M) —E‘}} ;} -expli (kx+mz+ot);  (34)

Free travelling wave in x and z with an amplitude changing exponentially with height!
Finished step 2 !!!
Step 3.
The remaining dependent variables are obtained from egs. (25)-(29)
Dy INserting 1y into (29) = plp, 3.) Plp, into (27) = O

2)W into(26)=>®  4) Plp, into(28) =V
5.) 0 and Winto (25) = A/p,
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Exact Solutions of the Linearized
Equations

By setting the tracer parametersto 1 (n, = n, = ny; =n, = 1) in the solution we
have derived (i.e. in the dispersion relationship (33) and in the expression for
ow (34)) we obtain directly the solution for the exact linearized equations:

From (33) withB+g/c*=1/H, =

dispersion relationship for the exact linearized equations.

m

2 _ kz(gB—Gz)+62 1

2 2
o —f

C

2

4H °

(36)

Z
= )
From (34) => i feS eXp{ZH

0

}-exp{i (kx+mz +ot) |} (363)

Amplitude of exact solution grows exponentially with height.

Atmospheric Waves 26



Solutions of the dispersion relationship (36) I

Re-arranging (36) gives a4th order polynomial ino:

o=’ fe+c’| kKP+n' + 12 +c’|k°gB+f?| m’ + 12 =0
4H, 4H,

4 solutions:

4c2{kng+f2(m2+ L H

4H? 38)
)

05:%{f2+c2£k2+mz+4;2ﬂ ]@ 1—

0

4

\ {f 2 +cz£k2 +m® +
pair of inertial-gravity waves

4c{kng+ f Z(mz + 4|_1| zﬂ
0§=1{f2+02[k2+mz+ 12]} ]@ 1 ° (39)
2

0

2
- : f2+c® k®>+m’+ 12
pair of acoustic waves 4H
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Closer examination of the solutions (38) and (39) I H

By using the following inequalities, valid for typical values of the system
parameters f (~10*s™), Hy(= 7km), g (= 9.8m/s%), B (10°m™) and ¢ (~ 300m/s)
In the atmosphere of the Earth, we can smplify expressions (38) and (39).

2 2 2
f?<< gB<<C—2 , j << gBI;IO <<1 |(40)
H, gB C
1]
2 ., .0, 2 . ) 4c kgB+f(m+ OZH (38)
Gg’aZE fe+c k“+m +4H2 1¥ (1- =
i \ {f2+c (kz } (39)

.

= X
With (40) => X<<1.

Use Taylor expansion of vi— x to first order in X around X= 0:

ﬂ=1—§+o(x2)
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Closer examination of the solutions (38) and (39) I J

H (59
i |

. X
Replacing +v1- X by 1—3 In (38) gives

k°gB + fz(m2+4i|2]
ol zl{f2+cz[k2+m2+ 12]}X ~ ; o/ (388
2 4H0 2 k2+m2+

4H;

1
Equation (39) simplifiesto aazcz[k2+m2+ ] (39)

Atmospheric Waves 29



Closer examination of the ssmplified solution (38a) H

o2 4s) (38

For B=0and f =0 => o, =0, l.e. Inasystem with zero static stability
and no rotation these waves can’'t form!

=> Restoring forces (responsible for bringing the displaced air parcels

back to the equilibrium location) for this wave type are the buoyancy
force and the Coriolisforce (inertial force). => These waves are called

Inertial-buoyancy waves or, more commonly, inertial-gravity waves I
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Closer examination of the ssmplified solution (38a) ﬂ

‘ Short wave limit: ‘

For short waves in the horizontal (i.e.
for large k) expression (38a) reduces
to

A gBk?
2~

kK?+m?’ + 12 (41)

4H

gBk® + fz[m2+ 1

q
x

k?+m?+

4H;

No Coriolis parameter f in (41)!
These waves are too short to be
(noticeably) modified by rotation,
I.e. pure (internal) gravity waves!

Restoring force is the buoyancy force.

These wavesformonly in
stable stratification (for B > 0)!
For neutral stratification (B=0)
=> |o, =0/, I.e. no waves!
For unstable stratification (B < 0)
=> |0 |ISImaginary,
no waves!

0
B=—(néo
2 noy)
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Closer examination of the simplified solution (38a) I ﬂ

‘Very short wave limit: ‘
. k suchthat k®>>nt +1/(4H;)

From (41) => |, = +/gB

g

JoB s called buoyancy frequency or Brunt-V&isd & frequency
(often denoted by N).

Buoyancy frequency is the upper limit to frequency of gravity waves!
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Some properties of pure (internal) gravity waves| |1

We neglect the term 1/(4H?2) in (41) for the following discussion.
Thisis equivalent to assuming that the basic state density does not change
withz (dIn(p,)/dz=0), i.e. the basic state isincompressible.

=> digpersion relationship [
of gravity wavesin o == 9BK || (419)
this type of fluid is: VK2 +

Slope of phaselines (=angle atotheloca vertica € =(01))

Wave vector K =(k,m) isperpendicular to phaselines, 0 K, =(-mk) is
parallel to the phase lines.

K, -8 Kk o

=> COS¢t = —+—2 _1o|

K. | Jkeim2 /oB

- waves with o =+,/gB have vertical phase lines
waves with smal o, have amost horizontal phase lines
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Some properties of pure (internal) gravity waves| |2

Group velocity Cy isperpendicular to phase velocity ¢

2
ég (56 56) i@ m —km

ok om \/(k2 +rr12)3 ’\/(k2+m2)3

Since ¢||K and K =(k,m) L&, => ¢, L¢.

Dispersive waves.
Horizontal and vertical phase speeds depend on the wave numbers.

Transversal waves: Particle path is parallel to the wave fronts.

|dealized cross section for internal gravity wave

From J.R.Holton: _ _
An Introduction showing phases of p, T & winds.
to Dynamic
Meteorol ogy
Example: Lee waves
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Closer examination of the ssimplified solution (38a) I ﬂ

1
Bk?+ f?| m*+
ok 1+ 1o

0

Long inertial-gravity waves

Q
N

Q
—~
O8]
0
&

K?+m” +

These waves are influenced by
the rotation of the earth.
Their frequency is given by (38a).

AH;

Long wave limit (k—> 0): o

Waveswith o =+f are pureinertial waves.
(Not influenced by buoyancy force.)

* Small frequency but large horizontal phase speedd!
|(7 | _ f k—0

K K

= ?> 0
* Digpersive waves.

* Numerical nuisance because of their large phase speeds!
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Dispersion Diagram I c (k) I

10000

1000

=
S
[S/w] psads sseud euoziioH

| , | N , : _o_ 2z 1
10000 1000 100 10 KT K
Horizontal Wavelength [km] o
k — 100,0(C, ) =100, (?) __]-’Ioglo (k)

From J. S. A. Green: Dynamics lecture notes Atmospheric Waves 36




Dispersion curves for inertial-gravity waves

10000

1000

=
S
[S/w] psads sseud euoziioH

I [ ] \If [ ] [ ]
1000 100 10
Horizontal Wavelength [km]

m
vertical wavelength

k ——
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Closer inspection of equation (39a): acoustic waves I H

Here c= /yRT isthe adiabatic
(Laplacian) speed of sound.

2
0

ol =~ cz[k2 +m’+ 41 ] (399)

For very short wavesin the horizontal (such that k* >>m® +1/ (4H02)) :

o, =~ £ck| => phase speed is the speed of sound!

These waves transmit pressure perturbations with the adiabatic speed of sound,
|.e. type of waves with dispersion relationship (39a) are acoustic waves.

Very short acoustic waves.

* are non-dispersive, i.e. ¢, Isthe same for all k.

* have group velocity = phase velocity (in the horizontal)

* are longitudinal waves (particle path is perpendicular to wave fronts)

* have vertical phase lines ( since cosa = 1), i.e. horizontal propagation.

CoSct = K cK (neglected :IZ!)

k2+m2 |Ga| 4 0
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Closer inspection of equation (39a): acoustic waves I ﬂ

ol =~ cz[k2 +m’+ 41 ] (399)

2
0

L ong acoustic waves (long inthe horizontal, i.e. very small k):

1
Fork >0 oi~c’|m +
( 4H§j

These long acoustic waves

* aredispersive

* have large horizontal phase speeds

* have amost horizontal phase lines (a — 90° ),
I.e. aAmost vertical propagation
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Dispersion curves of acoustic waves

10000

1000

l
W
o
o

=
S
[S/w] psads sseud gsuioz1i0H

=
o

I [ ] I f [ ] [ ]
1000 100 10
Horizontal Wavelength [km]

k ——
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Acoustic waves are anumerical problem because of their
high freqguency and large phase speed.

It would be good if we could filter them out of the system.

How?

By modifying the basic equation such that they don’t support
this wave type.
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Simplified solutions to the linearized equations:
Filtering approximations

We will learn how to modify the linearized basic equations so that they don’t
support acoustic waves and/or gravity waves anymore as solutions.

The physical principles behind these approximations can then be extended to
achieve the same for the non-linear equations.

We will also investigate the impact the hydrostatic approximation to the pressure
field has on the different wave types and determine conditions under which it isvalid.

Now we will make use of the tracer parameters (n,, n,, ns, n,) we had introduced
when we derived the solution of the linearized basic equations.

We will introduce approximations to the linearized basic equations (17)-(21) by
setting individual tracersto O in the equations to eliminate the corresponding terms.
By setting these tracersto 0 also in the derived solution we immediately obtain the
solution for the modified equations.
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The elimination of acoustic wavesl M

Acoustic waves occur in any elastic medlum
Elastic compressibility is represented by 9% in the conti nuity equation.

ot
0 oo, 0 5p 0 a7 This term can be removed from (20)
o o4 =0 @7 py setting n,= 0.
v Setting n,= 0 in ( 33) immediately
el =0 @8) gives the dispersion expression for
the modified set of equations.
O, O [5pj BP_gs0-0 (19)
ot 0z\ py Po
(0(op)), dou_ asw_ Sw _, 20) But we have to be careful!!!
2ot p, ox 0z H, -
99 | Bsw =0 (21
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The elimination of acoustic wavesl QI

In eg. (32) n, and n; occur in the combination (n,-n;) which
vanishes in the exact equation (i.e. when n,;= n,= n,=n, =1).

a n|d N LS LU | P
G{d22+|:BHO:|dZ+(gB_n4G )(az—fz_czj_BnB(an_H W(z)=0

: (32)
=> A spurious term will arisein (32) iIf we set n, to zero but not
i !
n, or vice-versal o0 {5_pj 0 (5
OX\ Py
=> | Wehaveto set dwaysn, = n,! %+ fsu -0 (8)

n4@+i » —nB5—p—gé®:O 19)
ot 0z\ p, 0

Anelastic approximation is n,=0 & n,=0!

o (O[], 9% aow oW o o
Dt p, ) ox 6z 'Hy
999 | Bsw -0 (21

ot
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The eimination of acoustic wav&el QI

Settingn,=n,=0andn, =1=n,1n (33)

ot () oo

(33)

k* 1
oc’—f? 4H;

Thisdispersion relation has only 2 rootsin ¢ not 4 as (33) => only one wave type | eft!

=> m° =(gB-o?)

(46)

gB k2 n .I: Z(mZ 4 4|:1'| zj '(Ij'hISISIdenteIICa| to ;he
_ 2 _ 0 ispersion relation for
(46) | <=> | 0" = 2 (47) inertial-gravity waves
RRTIY (38)!
No acoustic waves!

Consequently:
Inertial-gravity waves are not distorted by anelastic approximation.

Acoustic waves have been eiminated!
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The eimination of acoustic wavesl (4)

Under what conditionsis it OK to make the anelastic approximation?

Compare (46) with the exact dispersion relation (36):

k? 1 , k*(gB-0?) 1
2 . 2 . — L
(46) m —(gB o (62_ fzj 4H02 m 212 4H02 (36)

2
O

CZ

When can we neglect In (36)7?

1 K(f2-gB) o2

Re-arrange (36): k2+m2+4H2+ o712 _Cz:O
0

2

(Z—Z can be neglected in (36) if o2<< cz[k2+m2+4|i2j

— 0/
~

= o 2 (399
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The elimination of acoustic wavesl QI

—~ Itis OK to make the anelastic approximation if the frequencies of the
remaining waves are much smaller than the acoustic freguency.

This condition is satisfied for inertial-gravity waves!

Acoustic filtered equations can be used with confidence for a

detailed study of inertial-gravity waves in the atmosphere
(e.g. for modelling of mountain gravity waves).
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The hydrostatic approximation I H

Questions we are going to address:

How does the hydrostatic approximation to the pressure field affect
the inertial-gravity waves and the acoustic waves?

When isit alright to make this approximation?

Hydrostatic approximation = neglect of the vertical rg=— 1lop 3
acceleration Dw/Dt in vertical momentum equation (3). t p 0Z

In the linearized momentum eq. (19)

the vertical acceleration is represented n, @+ 0 [Sp] _ n35@_ go® =0
by asw/ ét , since we assumed the basic ot ) oz\ p, Po (19
stateto be at rest. => set n,=0!
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The hydrostatic approximation I ﬂ

Validity criterion:
From the dispersion relation (33)

o bl e 3]

C

we see that the term containing n, can be neglected if o’ << QB

Hydrostatic approximation is OK for waves with
frequencies much smaller the the buoyancy frequency!

=>

Thisconditionis
* satisfied for inertial waves (f 2 << gB)
* not satisfied for very short gravit Waves a, —=— gB )
* not satisfied for acoustic waves | o > B Vk m)

Hydrostatic approximation affects acoustic waves and very short gravity waves.
|nertial waves and long gravity waves are unaffected.
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Validity domain of the hydrostatic approximation (H.A.)
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The hydrostatic approximation I ﬂ

Dispersion relationship in hydrostatic system:
Setting n,=0 and n,=n,=n,=1in (33) and using B+g/c*=1/H, gives:

gBk® + 2 m* + 12
aH.

o2 = —— (49)
m+-———
4H, gBk2+f2[m2+4H2j
(49) looks like the dispersion relation o2~ I °Z  (38a)
for inertial-gravity waves (38a) K+mi+- =
but k? is missing in the denominator! 0

Consequently, inertial-gravity waves will be distorted in the
hydrostatic pressure field unless k* <<m®+1/(4H?) |

Hydrostatic approximation should not be used if horizontal and vertical

length scales in the system are of comparable magnitude (L ~ L;).
(For example in convective scale models.)

ItisOK for Ly > L. (For exampleif Ly >100km and Lz ~10km.)
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The hydrostatic approximation I ﬂ

gBk? + 2| m’ + 12
4H ;

m° +
4H02

(49) represents only one pair of waves
and these are (distorted) inertial-gravity waves. |°

2

(49)

Acoustic waves seem to have been filtered out by making the
hydrostatic approximation.

In fact, only acoustic waves for which Sw# 0 have been filtered out!
These are all vertically propagating sound waves (i.e. with m> 0).

Waves with dw = 0 are not represented by (49), because we had assumed
Ww#£ 0 when we derived the dispersion relationship (33) (on which (49)
IS based) from the differential equation (32)!

Are there any (acoustic) waves with Sw=07

Y es!
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Reminder : :
dide23) Sol utions of equation (32)| H

d? n |d ) k? n,
G{dzzJ{B(nfnS)_l—ljoler(gB_np )(02_ 7T ] (an_HO]}W(Z) 0)

(32)
Solutionl: =0 Notawave!
Inserting o = 0 Into (22)-(26) gives for the winds:
U=Ww=0 and V= kP = ov= ii5p , 1.e. geostrophic motion.
' po fp, OX

Solution2: W=0 Yz | Lamb wave
This solution will be discussed later in detail.

Further solutions; For o #0 and W#0 vz wehaveto solve

‘(’jw {B(n n,) - HE‘;V{(QB n,o )( zszz—nij—Bng(an—:fﬂWﬂ
z’ 0 - ¢ °/4(329)
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The Lamb wave I

We examine now the case w=0, vz

In this case (32) is redundant. To obtain the frequencies of possible waves
for this case we have to go back to egs (29) and ;31) and insert w=0.

2 A
9 e B, - wriof 2o K| P g (29) of oK P —0 (50)
dz H, ¢ o’—17)p, ~ ¢ o°—1?)p,
=>
. d{ p) . p 2y & _ o) C
|a£(p—oj—|an3p—o+(gB—n4a )W =0 (31 G(E_anjpﬁzo (51)
p - °
Solution 1. =0

Isatrivia solution becausewith w=0 =>

Po

A A

U=V=0=p=0,i.e perturbations of all variables vanish.

Solution 2: o =0 , which isthe geostrophic mode mentioned previously.

e 2
L‘;_ 2k =0 (523
o7
Wave solutions we obtain from * 5 .
(__anj b_o )
G

oz Po Atmospheric Waves 54




The Lamb wave I

k2
@_Gz_fzzo (524) & @g:@f2+c2k2 (52c)

A

9 P _o (520
(52 @jpo |-

In an anelastic system (n,=n,=0) these waves can’t form.
They are aform of acoustic waves.

Dispersion relationship: (from (52c) by setting n,=n,=1)
o’=f?+c’k® (53

Phase speed.
* for short waves; |G, ®£C| (likefor very short acoustic waves)

* for very long waves:|c, ~ i% (likefor inertial waves)
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The LambwaveI (ai_a@jﬂzo (520) |
Z Po

Structure of the Lamb wave:

. 5p |
P z il ol Bz i (kx+ot)
From (52b) withn,=1=> — = e” s e’ -e
Po Po _
And from equations (22)-(26) with w=0 => Waveonly inx!
0| o) 1( 0
ou = — 62 : ’ ,O: 5 P , N=o0wWw=560=0
kC IOO po C ,00

Thiswave is a pressure perturbation propagating only horizontally (m=0).

* Lamb waves have been observed in the atmosphere after violent explosions
like volcanic eruptions and atmospheric nuclear tests.

* They are of negligible physical significance.

* Can be suppressed by anelastic approximation. However, they are not more of

a numerical problem than long inertial-gravity waves since largest phase speeds

are comparabl e to the phase speeds of inertial waves.
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Dispersion curve of the Lamb wave
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Filtering of gravity Wavesl H

Gravity waves were filtered out in older models of the large-scale dynamics of
the atmosphere because they can cause numerical problems (long waves have
large phase speeds!) They are not filtered out in modern models anymore.

Filter: Set local rate of change of divergence to zero => no gravity waves!

We demonstrate this on a simplified system: ou_ .o . E[ip] _0 (17)
ot OX\ p,
1.) Start from linearized basic equations (17)-(21). oSy
2.) Make hydrostatic approximation (n,=0!) el =0 {18
3.) Filter out al acoustic waves by making the oow_ 0 £5pj 5p _
. . : (4>— —|— ——-0go® =0 (19)
anel astic approximation (n,=n,=0!) ot 0z\ p, @Bpo
4.) Assume the atmosphere to be incompressible, ®9 %P |, oU OOW oW 4 (o)
: op 1 1 op _ ot\ p, oX 0z H,
.6 —2=0& —=-—""=0s N,=0!
0z Ho o 02 % + BSw _0 (21)

5.) Eliminate 6® and 6w by simple algebraic
manipulations of (19)-(21).

=> gystem of 3 equations in the unknowns du, dv, dp/p,.
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Filtering of gravity Wavesl ﬂ

oou o[ op We need to introduce the divergence
——fov+ —| — | =0 ou oV

D=—+— Intothese equations.
ot X\ pg P o eq
ooV
_ —+ fou =0
== ot D= since 9V _ 5 pecauseof -2 =01
ot 0z*\ p, OX Therefore, applyi to momentum eguations
X (first two equations).
2
@@_ o, 0" (3p)
ot oX  OX°\ pg
R o New tracer Ns for local rate of
=> ot ox | — change of divergence.
2
o 0 : 5p) BD -0
ot 0z° \ p,

Atmospheric Waves 59



Filtering of gravity Wavesl ﬂ

These equations have the dispersion relationship

k2
o| f?-np*+gB— |=0| (54
{ Meg ™ +9 mz} (54)
2
Forn;=1 => o’=f*+0gB—;
m 2
o’ = SR + f?
Compare to dispersion relation in the hydrostatic system (49). m?2 + 12
4H ;
(49)

These waves are (distorted) inertial-gravity waves!
(Distorted because of hydrostatic approximation and incompressibility approx. n,=0)

Setting n.= O eliminates this inertial-gravity wave solution!

=>
Suppressing local rate of change of divergence “kills’ the inertial-gravity waves!
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Thiswas previously the ¢ = 0 solution.

Now we let the field vary in meridional direction too, i.e. |— # 0!

=> pack to 3-dimensional system (X,y,2)
Coriolis parameter f varies now with latitude.

To simplify the problem: | « make anelastic approximation

* make hydrostatic approximation

* et local rate of change of divergence=0
=> N0 acoustic and no gravity waves!

* set n,=0 (i.e. iIncompressible atmosphere)
* make S-plane approximation to f:

f(y) ~ f(yo)%(yo)-yz f 4By
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With these approximations one obtains from the linearized 3d basic
eguations the following equation for the pressure perturbation op =D

6(0*p o2p 262D .op &
2t 2t . 2 +p—=0 (55
o\ ox® dy° 9gBoz OX
Try waves as solutions; P o< expli (kx+1y+ mzDot )]
Inserting into (55) gives
dispersion relationship: Forf=0 => ¢ =0!
e BK So this wave type can only exist
o =0 > I .
K212 4 f, when the Coriolis parameter varies
B with |atitude!
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Rossby waves don’t occur in pairs of eastward and
westward propagating waves, as do acoustic waves

and inertial-gravity waves.

There are only westward propagating Rossby waves!

(westward relative to the mean zonal flow)

So far we have always assumed the mean flow
to be zero. For a constant basic zonal flow u,
the frequency observed at the ground is the
Doppler-shifted frequency ' = o+ ugk  =>

SR A
K* +17+m* 2
gB
Freguency observed at ground:
K
o' =U,K— b >
K2 412 4P 1o
gB

=> zonal phase speed observed :
at the ground is: Rossby waves propagate westward relative to
the mean flow. Relative to the ground they
C, =U,— p —|=> usually move east_ward (wher_m Up,>0 and u,>|c ).
K2 412 4 to They become stationary relative to the ground
gB (i.,e.c,=0) if k, | and mfulfill the condition

k?+12+m*f’/(gB) = B /u,

63



Rossby waves are dispersive:
- long zonal and meridional waves are fastest!
- for short zonal Rossby waves such that k* >> 17+ m*f?/(gB)

phase velocity: group velocity:
p p
CXZUO_F Cg:u0+F

=> Group velocity i1s opposite in direction to phase velocity!
(with respect to the mean flow u,)

Rossby waves pose no numerical problem because they have quite large
periods (of the order of days) and don’t move very fast (typically with ~10m/s).
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0 From J.R.Holton:; An

Rossby Wave Propagation | -~ |"  |ntroduction to Dynamic

7. Meteorology

A Rossby wave isaperiodic vorticity |
field which propagateswestwardand =~ =
conserves absolute vorticity. | :

Absolute vorticity n isgiven
byn=_+f wherelisthe

relative vorticity andf the
Al Perturbation vorticity field and induced velocity field
Coriolis parame_ter. _ (dashed arrows) for a meridionally displaced chain of
Assume that at time tO' fluid parcels. Heavy wavy line shows original pertur-
=0 => 1, =f,. bation position, light line westward displacement of
Att, we have a meridional dis- the pattern due to advection by the induced velocity.

placement oy of afluid parcel:
n, = ¢, + f,= 1, (because of conservation of absolute vorticity!)

-

(>0 for 6y<0, i.e. cyclonic for southward
=> 4’1: fo—flz—@5y:_ﬁ5y => dlsplacement
oy ;<0 for 8y>0, i.e. anticyclonic for north-

N ward displacement
Meridional gradient of f resists meridional displacement and provides

the restoring mechanism for Rossby waves. Atmospheric Waves 65




Dispersion curve of Rossby wave
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Rossby waves are not distorted by the hydrostatic approximation.
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Surface Gravity Wavesl 1}

Surface waves are waves on a boundary between two media.

Examples: - waves on air-water interface

z | 2) - wWaves on an inversion
/\ free surface h(xt)
> T

v rigid boundary at z= 0
We work again only in 2d: (X,2) , i.e. neglect again variation iny ((’?EO!)
y

Boundaries constrain our system now:

- rigid horizontal boundary at the bottom (z=0)
- free surface above ( at z=h(x,t) )

“ Free surface” : surface shape is free to respond to the motion within the fluid
and is not known ‘apriori’.

The fluid motion and the boundary shape must be determined simultaneously.
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Surface Gravity Waves I ﬂ

Equations governing the motion inside the fluid layer:

We study only waves with small amplitude (small perturbations),
|.e. linearized equations can be used. We use equation (32a):

R A L Er iR G
z’ 3 o - C /) (323)

Simplifications / approximations.

1.) Assume unstratified fluid, i.e. static stability B = 0 => (32a) reducesto
d*Ww @) dw kK*  0)).

_ Ww=0 of

dz2 H, dz @)7[6 - f2 czj 59

2.) Filter out acoustic waves, i.e. set n,= 01in (57), but only after we have

seen how this affects the equations of the boundary conditions!!!
3.) Assume the pressure to be constant above the free surface.

No hydrostatic approximation at this stage! Carry n, along for future use.

No incompressibility approximation at this stage either! Carry n, along as well.
Atmospheric Waves 68




Surface Gravity Waves I ﬂ

Boundary conditions:

a)

Particles cannot cross the boundary between the two fluids!

b))

The two fluids must stay together and not separate at thelr common
boundary. Thisis ensured by imposing continuity of the velocity
component perpendicular to the boundary across the boundary.

Conditions a.) and b.) state that particles adjoining the surface follow the
surface contour, i.e. the surface is a material boundary.

These are kinematic conditions. We need a dynamic condition too.

C.)

Expressed in mathematical terms:
a)&b.) DEt(z— h(x,t)) =0 at boundary z=h(xt) =>/w(h)=—

The pressure in the two fluids must be equal at the common boundary
(continuity of pressure).

Dh
Dt

At aflat and rigid boundary (h=constant in space and time) w=0.
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P, we assume to be constant in space and time.

=>

We will call p, ssimply p from now on.

Surface Gravity Waves I ﬂ

Expressed in mathematical terms (continuation):
c.) Continuity of pressure: p,=p, a z=h(xt).

DB _ PP 4 5 x )

Dt Dt

Dp,
Dt

-0 a z=h(xt).

=> The following set of non-linear boundary conditions has to be fulfilled:

(1)
(i1)
(iii)

w=0 a z=0

PP_o a z=hxt)
Dt
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Surface Gravity Waves I ﬂ

Boundary conditions (i), (ii) & (iii) have to be linearized.
Assume small perturbations on afluid at rest with constant mean depth H:
U=0ou, v=9ov, wW=06w, h=H +6h, p=p,(2)+p, p=p,(2)+p,

Insert into (i), (i1) & (iii) and neglect products of perturbations.

non-linear boundary conditions:

s

linearized boundary conditions :

() w=0 & 2-0 => (1) Sw=0 a z=0

y _Dnh ~ e ~ ash )

(i) W=7, & z=h(xn) => (i) jew=== & 2=H +on

i) 2P 95

I — = = = ——=(0gow a Z:H_|_5h
oo p 8p0:O

Linearizing (iii) gives ?Jréw—

0z

With hydrostatic balance for the basic state, i.e.

0
ﬂ: _gpoﬁ

0z
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Surface Gravity Waves I ﬂ

Assum(? wave form for the perturbations:
sh=nhexp|i (kx+ot)], Sw=wW(2) expli(kx+ot)] etc.

=> () W=0 a z=0

(i) W=ioch a z=H+6sh
Condition (iii) can be shown (with the help of (29) and B+g/c*=1/H, )
to be equivalent to

(iii)

dw ~
dz

2
{nll__ln2+g K }W:O a z=H+sh |(58)

2 2

Now we filter out the acoustic waves:
Anelastic approximation isn,=n;=0

Boundary condition (iii) (eg. (58)) contains (n,-n,)!
Therefore, if n,=0 we must set also n,=01n (iii) to avoid

spurious solutions because of an inconsistent approximation!
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Surface Gravity Waves I

1

We have to solve now the set of eqguations given by:

and with n,= 0 only in (iii)!

Equation (57) + boundary conditions (i), (i1) & (iiI)
with n,= ny= 0 1n (57) and in (iii) (equation (58))

(1)
=> (ii)

(iii)
\

d®W n dw K2

n,oc

w=0

(57a)

dZ H,dz ' o®-f?

w=0 a z=0

W=ich a z=H+dh

dv“v_ 'S
dz J

> 1:2\iv=0 a z=H+5oh
G_

(58a)

It is possible to solve above set for all wave numbers.
We study long and short waves independently.
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Surface Gravity Waves | ﬂ

‘, |.e. horizontal scale >> vertical scale

=> It is OK to make the hydrostatic approximation | __ d*Ww _ n, dw _
(n,=0in(57a)). dz> H, dz
| (57h)
Sol ution: .
= 1-e° .
(for n,=1) SW(X, Z,t) o o= exp[| (kX-|—Gt):| (59)
yerify byA efo _1
insertingw —
into (57b)! = W(z) —=2-0, i.e. Sw=0at z=0. (I) Ok!

From (ii)) W=ich a z=H| => 5h(x,t)ocexp{i(kx+at+7;ﬂ

Phase shift of 90° between sh and 6w.
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(iii)

| nsert

=>

Surface Gravity Waves I ﬂ

Solution (59) has also to fulfill the boundary condition (iii) (equation (58a)).

d\fv_g k?
dz oc’—f°

w=0 a =z

= H

(58a)

o’ = f%+gHk* {1— exp[

0

)

(59a)

o Into (58a) and evaluate at z = H.

dispersion relationship for long surface gravity waves
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Surface Gravity Waves I ﬁl
o 0 o?=f?+gH K 1-exp _H
‘ Closer examination of (59a): I 0 H

CaseH << H,
‘ (Shallow layer, much shallower than density scale height)

From (59a) with Taylor £ Phase speed of long
expansion of exp(-H/Hy) ¢ =— 9 .+ \/2+ gH surface gravity waves
around H/H,=0 => K in ashallow layer.

Examples. * long waveson a boundary layer inversion (H ~ 1km)
travel with ¢, ~ 100m/s

* long waves on ocean surface (H ~ 4km)
travel with ¢, ~ 200m/s

(tsunamis generated by underwater earthquakes)
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Surface Gravity Waves I £|

CaseH >> H,
(Deep layer, much deeper than density scale height)

o f 2 Phase speed of long surface gravity
Ck=—7"=1=L — gHO .
k K waves in adeep layer.

These waves have a phase speed of about 260m/s
for a density scale height H, of 7km.

Atmospheric Waves 77



Surface Gravity Waves I EI
Remarks:

1) In a shallow layer In adeep layer
(H<<H),)) (H>>H,)

f? f?
C == ?+gﬂ C =% F+gH_0

Always the smaller of the two depths!

2.) | In'an incompressible fluid (n,=0) the phase speed is given by the expression
for the shallow layer (because the density scale height H, = ).

These long surface waves are often referred to as ‘ shallow water waves'.
The corresponding ‘shallow water equations’ are extensively used for
designing and testing of numerical schemes.

3.) Phase speed in adeep layer looks a bit like the phase speed of the Lamb wave

2
ck=i1/L—2+cz only ¢* «— gH, , but these terms are of similar magnitude!
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Dispersion curve of long surface gravity wavesin adeep layer —
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Surface Gravity Waves I EI
2.) Short waves

kH >>1 and kH,>>1, I.e horizontal scale << vertical scalée!

Hydrostatic approximation not OK!

=>

Effect of rotation can be neglected!

Solution can be shown to be: (verify by inserting into (57a) and (58a)!)

sinh(kz) z—H
sin(kH) ex'“{”l

~— ——

— 20,0, j.e Sw=0at z=0. (I) Ok!

OW o —O

]exp[i (x+ot)] (60)

0

With the dispersion relationship |o* = gk tanh(kH)

2 L gk - .19 &= 40m/sfor L,=1km,
For very largekH: o = 9% => G~ " | e much slower than
long waves!

Example for this wave type: Ripples on a pond. Atmospheric Waves 80




Dispersion curve of short surface gravity waves —
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Equatorial Waves |

Why do we have to take an extralook at the equatorial region?
What is different at the equator from other latitudes?

Coriolis parameter is zero and changes sign. | f = 0 but a = 0!

oy
Since we have not assumed anywhere f = 0 when we derived the
wave solutions of the linearized basic eguations, the equatorial
waves should be “ contained” in these solutions (we just have to
let f —0), or maybe not?!

No, f — 0 inthe solutions we have derived is not sufficient
to find all equatorial waves!
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Equatorial Waves l El

Why have we not found the special equatorial waves?

We neglected variations in the meridional direction (6/oy = 0)
when we studied inertial-gravity waves and acoustic waves.
No Rossby wavesin this case because f = 0!

When we allowed variation with y to study Rossby waves
we filtered out acoustic waves and inertial-gravity waves!
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Equatorial Waves l El

Away from the equator thisis ok!

Acoustic waves, inertial-gravity waves and Rossby waves
are (nearly) independent solutions because the restoring

mechanisms responsible for these 3 wave classes are wel |
developed and distinct.

Near the equator thisis no longer true (because the Coriolis force is weak

& changes sign) and hybrid wave types can occur (mixed Rossby-gravity
waves).

‘ => we haveto study Rossby waves and inertial-gravity waves together!

Acoustic waves can be filtered out.
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Equatorial Waves l EI

To study equatorial waves we
* usethe sallow water equations (i.e. 2d-problem (x,y)!)
* make the equatorial S-plane approximation: f = f+fy =4y
* linearize again about a state at rest (basic state wind = 0)

(OSu ooh

—— — BYSV +g— =0
ot Py : OX
05V osh
=> | T BYyou +g—= =0 (61)
ash H(aa‘u 85\/]:0
Lot ox oy
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Equatorial Waves l El

Assuming waves in x-direction for the perturbations:
(Su, 8v, 5h)=(U(y), U(y), h(y) ) -exp[i(k<+ot)]

Inserting into system of equations (61) leads to the following
2-order ordinary differential equationsfor v(y)

27 2 2.,2
d \2/+ 9 2 8B BY oo (62)
dy gH o gH

Change to non-dimensional formsof y, kand o :
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Equatorial Waves l M

With these new variables (62) has the form

2N
3/1\2/+(a)2—y2+ﬁ—12j\7(l):0 (63)
W

Because the equatorial f-plane approximation is not valid
beyond +30° away from the equator we have to confine
the solutions close to the equator if they are to be good
approximations to the exact solutions.

=> poundary condition:

vV >0 for large|A| | |(639)
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Equatorial Waves l m

Find solutions for (63) + boundary condition (63a).

9V (w2 2B 22 )oy=0  (63)
dA? @

AN J
Y

E
Remark: Equation (63) is of the same form
as the Schrodinger equation for g
a quantum particlein a 1-dim.
harmonic potential x?:

Solutions are possible only for discrete values of E
(discrete spectrum): E =2n+1 where n=0,1,2,---

+(E-x*)¥(x) =0

X2

Solutions of (63)+boundary condition (63a) exist only for

0’ - p?+£=2n+1 where n=0,1,2,--- | (64)
0]
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Solutions for V(4) aregiven by
2

V(4) =V, expi—%]- H,(2) where n=0,1,2,---

Here H,, isthe Hermite polynomial of order n.
Ho=1 H,=21 H,=2(24>-1)

b c:> —

‘0><‘ . — T .
A % < — (1)

]

A

N=0 n=1n=2 n=>5 n=10

Exercise: Insert the solution for n=1 into (63) and verify that it indeed fulfills
this equation and the boundary condition (63a) only if (64) for n=1 is satisfied. | g4
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|nspection of the dispersion relationship (64).

(64) <=> o’ —(u°+2n+Dw+u=0 (65
Cubic equation in the frequency w. We expect 3 distinct roots.
Find roots first for the case that [N#0

For u=0 => @,,=v2n+1 & w,=0

For | 1 # O] we can find good approximations to the 3 roots by
considering the cases

0)2...”2 & - f(@)fo®-(u?+2n+Do+ u

pn=0
Why’? , “>O
To seewhy mmp —— —
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a)s—(u2+2n+l)a)+,u:OI (65)

0’ ~u® => u<<|a)3|,u<<|(u2+2n+1)a)| (if w°>1, H2>1)

=>neglect in (65) => @, , = J_r\/uz +2n+1 | (66)

lo|<<p = &° <<(u2+2n+1)a)+u

=> neglect w3 in (65) =>

U

W3

- u’+2n+1

(67)

Back to dimensional variablesk and o

(66) | <=> |0y, =1+/gH k-\/1+

[(2n+1)

k2 JogH

(67) | <=> |93 = ,B’B (;n+1)
k* +

="

pair of gravity waves
(one pair for each
n=123,...)

westward propagating Rossby
wave (oneforeachn =1, 2, 3, ...)
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1)

From T Matsuno (1966)
“Quasi -geostrophic Motions
in the Equatorial Area’,

Journal Met. Soc. of Japan.

7~ 7 S
//////
///// //
3 j— n*® 3,/ // // .
e —=7 _ -~~~ westward moving
n - 7 .

S gravity waves
|

1 p
%) n=1 Rossby waves
T |——r
% i Vo2t 3 4
T zona wave number ——

-
A

-2

eastward moving
gravity waves

-3
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Case n=0: 0)3—(,u2+2n+1)a)+,u=OI (65)

Dispersion relationship (65) can be factorized
(0—-u)(@*+ou—-1)=0

Root1: @ =u Thisroot isnot acceptable because a division by

w - 1 1srequired in deriving (62) from (61)!

2
g [u gHk 45
. = —— - —I—l = = — 1 1
Root 2: @ 5 4 <=>\0, 5 ( +\/ +\/97Hk2j (68)

2
M U JgHK 4B
Root 3 (0= + g 1= “2=—T£1‘J“Jg?kzj -
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For largek o, > —+/OHK
(68) | |oy=—"—"7—|1+ [1+ 4p ///’ 1
2 JOH k?

\For k—0 o-l—>—(\/giH,B)1/2
p=0 = o,=-gHk

= frequency of shallow water gravity waves, eastward movi ng gravity waves
I.e. thisisagravity wave

For largek o, —>€

gHK (as for Rossby waves)
(69)| |0, = ——[1 \/ ]
JOHK?

2
Th PR \For k—0 62—>+(w/gHﬂ)U
IS 1S SOMe Kind O a ROSY-1ype wave .
becausefor =0 = &, =0 (asfor gravity waves)

=> called mixed Rossby-gravity waves

(westward moving)
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Rossby-gravity wave
~J= 0 /

. % Rossby waves

1 N 2 3 a
n=2

zona wave number ——

eastward moving
gravity waves

From T Matsuno (1966)
“Quasi -geostrophic Motions
in the Equatorial Area”,
Journal Met. Soc. of Japan.
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Structure of mixed Rossby-gravity waves.

- 5v(x,y,t):v0exp[— By )exp[i(kx+at)]

=> 2./ gH

. /A
From (61) we obtain: '=explin) I

ou(x,y,t) =1 A (o.,k)-y-6v(x y,t) Phase shift of 90°
_ . between du and dv
ohx.y.) =LA o.k) y-ovix 1) & between 5h and 4V!

.| Plan view of horizontal velocity

| and height perturbation associated
with an equatorial Rossby-gravity

| wave. (Adapted from Matsuno,1966)

Atmospheric Waves 96



Equatorial Waves l M

= Waves with zero meridional velocity everywhere, i.e. [GU=10
( Reminder: ow=0)

In this case equation (63) is redundant!
Derive solutions from set of linearized shallow water equations (61) withov =0
& boundary condition (solution must be confined close to the equator).

Solution: pk

20

5u(x,y,t):uoexp(— yzjexp[i(kx—crt)] (70)

with dispersion relationship | =+4/gH k| | (72)

Only “ +” in (71) isvalid solution, “ - " violates the S-plane approximation
(sincedu in (70) is growing not decaying with y in this case!)

=> | C, =+4/gH Kelvin waves move only eastward! (non-dispersive)
phase speed of shallow | —, | They are a form of gravity waves.
water gravity waves!
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-1

B

From T Matsuno (1966)
“Quasi -geostrophic Motions
in the Equatorial Area’,

Journal Met. Soc. of Japan.

7 7 7
”s 7 S
® //////
° //// .
- -~ 7
B ar2m" 7 westward
T .22-7 77 gravity waves
I L’)’/
~ Rossby-gravity wave
-—g = 0
n= Rossby waves
! a= 21 ! ]
N 1 2 3 a
\\,* zonal wave number
NN,

Kelvin wave

gravity waves
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Structure of equatorial Kelvin waves.

(70) du(x, y,t) =u, exp(— 2’8 £ yzjexp[i (kx—ot)]

ov=0
oh(x,y,t)= Alo,k)ou(x,y,t)

o)

— Equator E
- - | Zonal force balance is that of

| Plan view of horizontal velocity and height perturbations
associated with an equatorial Kelvin wave.
(Adapted from Matsuno, 1966)

Meridional force balanceis
an exact geostrophic balance
between u and the meridional
pressure gradient.

Existence of Kelvin wavesis

- | thanks to the change in sign of

Coriolis parameter at equator!

an eastward moving shallow
water gravity wave.

Ocean Kelvin waves along
coastlines are more common
than atmospheric Kelvin waves.
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Characteristics of the dominant observed Kelvin and Rossby-gavity
waves of planetary scale in the atmosphere:

Kelvin waves Rossby-gravity waves

Period 15 days 4-5 days

Zonal wave number 1-2 4

Vertical wavelength 6-10 km 4-8 km

Average phase speed

relative to the ground +25m/s -23 m/s

Observed when westerl

mean flow is easterly y

Discovered by Wallace & Kousky Yanal & Maruyama
(1968) (1966)

Form J. R. Holton: An Introduction to Dynamic Meteorology

These waves play an important role in the generation of the quasi-biennial oscillation
(QBO) in the zona wind of the equatorial stratosphere.

End of lecture on Equatorial Waves Atmospheric Waves 100




SUMMARY OF WAVESIN A COMPRESSIBLE ATMOSPHERE
10000

1000

l
W
o
o

=
S
[S/w] psads sseud gsuioz1i0H

C,
10
1C — ] 1 ] 1
?ﬁ;ﬂc 20000 1000 100 10
grevity Horizontal Wavelength [km]
Lamb wave —
Rossby wave —— k ——

surface gravity —— Atmospheric Waves 101



The End l
Thank you very much for your attention. I
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