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Abstract

This work presents a gossip-based protocol, termed
QuickPeer, which builds and maintains latency-aware over-
lay topologies. Such topologies are useful for sev-
eral distributed applications, like distributed online gam-
ing, context-aware P2P applications and QoS-aware pub-
lish/subscribe systems. The distinctive feature of QuickPeer
is that it can manage large scale overlay topologies pro-
viding each host in the overlay with its closest or furthest
neighbour, according to network distance (RTT), in few gos-
sip rounds. We present experimental results that prove that
QuickPeer is a scalable and robust solution for large-scale
latency-aware overlay topology management.

Keywords: Epidemic algorithms, Network-aware topol-
ogy management, Virtual coordinates, Peer-to-Peer sys-
tems, Internet

1 Introduction

Recent years have witnessed a growing interest in the
area of application-layer overlay protocols and peer-to-peer
(P2P) systems. Examples include popular file-sharing ap-
plications [15, 29], end-to-end multicast [16, 7], multimedia
streaming applications [5, 19] as well as publish/subscribe
systems [4, 6, 23].

In P2P systems, nodes maintain logical connections to
a small subset of other participating nodes (typically called
neighbors). These connections define the topology of the
overlay network, which is usually built on top of exisit-
ing network infrastructure providing end-to-end connectiv-
ity (i.e., IP). Building and maintaining scalable overlay net-
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works that organize many thousands of nodes is a challeng-
ing task. Two main approaches have been proposed to deal
with this problem. On the one hand, structured overlays
[28, 24, 27, 30] organize nodes in hierarchical structures
that enable scalable and efficient generic key lookup of dis-
tributed information; however, structured overlays do not
support well highly transient nodes and complex queries on
distributed content. On the other hand, unstructured over-
lays [11, 18, 15, 7] do not impose additional structuring on
participating nodes, and exhibit better resilience to failures
and highly transient peer populations1.

In this paper, we study the topology management prob-
lem in unstructured overlay networks. In particular, we
present a protocol, termed Quick-Peer, that can effec-
tively build and maintain large scale latency-aware overlay
topologies. Such topologies reflect the underlying IP-level
network topology, and provides each peer with the knowl-
edge of the closest (or furthest) neighbour, according to net-
work distance (i.e., latency), present in the overlay network
at a given time.

QuickPeer is an epidemic or gossip-based protocol. Epi-
demic protocols have shown to be a robust and scalable so-
lution for information dissemination [12], resource moni-
toring [26] and distributed state management [10].

This paper is structured as follows. Section 2 introduces
the latency-aware overlay topology construction problem
and introduces QuickPeer. Section 3 defines the experimen-
tal setup and presents simulation results proving QuickPeer
scalability and adaptiveness to dynamic environmental con-
ditions. In section 4 we discuss related work. Finally, Sec-
tion 5 concludes the paper.

1usually called churning in P2P jargon.



do forever
wait(∆t)
neighbour = view.selectPeer()
send(myView,neighbour)
peerView = receive()
update(myView,peerView,trimPolicy)

(a) Active thread

do forever
peerView = receive()
send(myView,peerView.sender)
update(myView,peerView,trimPolicy)

(b) Passive Thread

Figure 1. QuickPeer protocol pseudo-code.

2 Latency-aware topology management

2.1 System Model

In our model, peers communicate via message ex-
changes, exploiting the connectivity provided by an under-
lying routed network (i.e., the Internet). Each peer knows
a set of other peers (its neighbours) that defines its view
of the system. Since we consider networks of large size,
partial membership information at each peer is required for
scalability and manageability purposes.

Network distance between peers is modeled using the
Vivaldi network coordinate system [9]. This system cre-
ates an accurate geometric model where a point in multi-
dimensional space is assigned to each peer in the overlay
network. In this virtual space, Euclidean distance between
two points predicts, with good accuracy, network round-trip
time (RTT) between peers in the overlay network, without
requiring all-pairs RTT probes. Each peer in the overlay
has an associated peer identifier (PID), which contains the
peer’s IP address and port and its virtual coordinates.

In our model, we consider a dynamic overlay network,
where peers may join or leave the network at any time.

2.2 The QuickPeer algorithm

QuickPeer (QP) is an epidemic protocol that, within few
gossip rounds, provides each peer with the closest (or fur-
thest) peer identifiers (PIDs) available in the overlay. The
basic idea underlying the protocol, inspired by the work pre-
sented in [17], is as follows. Each peer maintains a fixed-
size view containg k PIDs. The view is sorted according to
the network distance estimates provided by Vivaldi coordi-
nates. So, at any time, the first position in the view holds
the closest peer known so far.

At bootstrap time, QP views needs to be initialized with a
random sample of nodes taken from the whole overlay. For
this purpose, QP relies on a peer randomizer, i.e., an epi-
demic protocol that builds and maintains an approximately
random-graph overlay topology. In this work, we adopted
the Newscast protocol [18] as a peer randomizer. Starting
from a first random snapshot, QP basically evolves the mir-
rored overlay towards the desired latency-aware topology.

In order to evolve the topology, peers exchange views in
an epidemic fashion. Periodically, each peer actively selects
a neighbour and starts a view exchange process (see pseu-
docode in Figure 1). Once the remote peer’s view has been
received, it is merged with the local one. Note that this
merge operation preserves the ordering of the local view,
i.e., newly received PIDs are sorted according to the dis-
tance from the local peer coordinates.

After the views have been merged, a trimming policy se-
lects the k PIDs (out of the possible 2k) that are kept in the
local view. Currently, QP supports two distinct trimming
policies:

1. ClosePolicy(k): selects the first k PIDs in the view
(i.e., the closest neighbours seen so far);

2. CloseFarPolicy(k): selects the first and the last k/2
PIDs in the view (i.e., the closest and furthest neigh-
bours seen so far).

Merging and trimming operations described above are
performed in the update() method shown in Figure 1.

QP uses distinct picking strategies to select the neigh-
bour for the view exchange, according to which trimming
policy is in use. When ClosePolicy is used, the neighbour
is picked in the first half of the view only (i.e., among the
first k/2 PIDs). Experimental results [17] show that this
strategy leads to faster convergence to a latency-aware opti-
mal overlay. In contrast, when the CloseFarPolicy is used,
the neighbour is selected randomly from the whole view.

Note that QuickPeer lets each node exchange at most
once for each gossip round (actively or passively). This
ensures that, on the average, all peers exchange views the
same number of times during a QuickPeer session.

2.3 Failure detection

QuickPeer detects failed nodes at picking time. If a
neighbour selected for the view exchange does not answer a
probe message in a limited amount of time, it is considered
failed and its PID is removed from the view. In case of mas-
sive node failures, however, the second half of the view will
still be populated with references to failed peers, since the
picking “cleans” only the first half of the view. To overcome
this limitation, QuickPeer periodically triggers a cleanView
procedure that probe peers that appear in the second half of



the view. The frequency at which this procedure is activated
may be adaptively tuned to limit the network traffic gener-
ated by the probes.

3 Evaluation

We validate QuickPeer effectiveness in building latency-
aware overlay topologies using simulation. Experiments are
run on Peersim, a Java-based cycle-driven simulator devel-
oped in the Bison project [2]. We consider three different
network sizes: 212, 213 and 214 nodes. Network topologies
are generated with the Brite Internet topology generator [3],
using the Waxman algorithm on a flat router model. The
output of this phase is a weighted graph, where weights rep-
resents latencies between routers in the generated topology.
We then run all-pairs shortest paths on the generated graph
to obtain a matrix of RTT distance between all pairs of
routers in the network. Creating RTT matrix offline speeds
up simulations and allows us to simulate larger networks. A
Vivaldi simulation is then ran offline on this data to build
the static, five-dimensional coordinates used in QuickPeer
experiments.

The QuickPeer view size k is set to 40 in all the experi-
ments discussed in this section. An instance of the Newscast
protocol boostraps the QuickPeer views at beginning of the
simulations2.

Our experiments focus on the evaluation of the following
QuickPeer aspects:

1. protocol scalability: how well the protocol scales as
the network size increase;

2. robustness: how QuickPeer reacts to fluctuations in the
peer population.

All the results presented here have been averaged over
10 simulation runs.

3.1 Static scenario

In this section we present experiments that evaluates
QuickPeer scalability and convergence rate in static over-
lays (i.e., no nodes joining or leaving the networks). We
presents results obtained using two distinct view trimming
policies: ClosePolicy and CloseFarPolicy. These results
show that QuickPeer scales well and is fast in constructing
optimal, large-scale latency-aware topologies.

We measured the convergence of the protocol in terms
of optimal nodes achieved over time (in cycles). A node
becomes “optimal” when it discovers and collects its clos-
est (and furthest, when CloseFarPolicy is used) neighbour
identifier (PID) in its local view.

2Newscast view size is also set to 40
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Figure 3. QuickPeer convergence perfor-
mance for each network size. The CloseFar
policy is used to trim the node views. Two
kinds of optimality are considered: close
convergence (black line) and far convergence
(dotted line).

3.1.1 ClosePolicy

Figure2 presents the QuickPeer convergence performance
using the ClosePolicy trimming policy with parameter k =
40. The first thing to note is that QuickPeer convergence
rate does not depend on the network size. For all the three
scenarios, more than 99.5% of the peers have their closest
neighbor in view at cycle 20. However, QuickPeer reaches
100% optimality only around cycle 60. In fact, as the pro-
tocol clusters close neighbours together, it becomes harder
and harder for those peers that did not reach optimality to
find their closest neighbour.

To improve the convergence speed in the final phase, we
implement the following optimization. At each view ex-
change, the randomized view maintained by the underlying
peer randomizer is added to the merging process. This opti-
mization yields 100% convergence at about cycle 30, as can
be seen in figure 2. Note that this feature comes at no added
cost in terms of network usage since the merge process is
local at each node. For these reasons, we have decided to
keep this feature always on during all the other tests.

3.1.2 CloseFarPolicy

Figure 3 shows the convergence performance obtained with
the CloseFar trim policy. With this policy, QuickPeer pro-
vides each peer with the closest and the furthest neighbours
present in the overlay. To obtain faster convergence time,
the node picking strategy has been slightly modified: the
node is selected randomly in the whole view and not only
in the first half as when ClosePolicy is used. As can be seen
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Figure 2. QuickPeer convergence rate expressed in percentage of optimal nodes for each network
size over time (simulation cycles). The second line of pictures highlights the final phase convergence
details.

in Figure 3, close and far convergence rate are pretty sim-
ilar. However, in all our experiments, we experienced that
QuickPeer locates more easily furthest nodes in the initial
convergence phase.

3.2 Dynamic scenarios

In this section, we present experiments that evaluate
QuickPeer scalability and convergence rate in dynamic
overlays. We consider a massive node crash scenario in
which half of the nodes are killed during QuickPeer conver-
gence phase and show that the protocol handles the failures
gracefully. In addition, we evaluate QuickPeer behaviour in
a scenario where a large number of nodes join the overlay
during the convergence phase. Even in this case, QuickPeer
adapts to mutated environmental conditions.

3.2.1 Nodes crash

To evaluate the protocol robustness in case of a massive
node crash, we ran the following experiment. The exper-
iment starts with a network of 214 nodes. At cycle 5, right
in the middle of the Quickpeer convergence process, 50%
of the active nodes fail.

In this catastrophic scenario, QuickPeer is still perform-
ing well, as depicted in Figure 4. Note that QuickPeer con-
vergence is still increasing even one cycle after the massive
node crash and optimality is reached in about the 30 cy-
cles. This behaviour is expected, since now QuickPeer has

an easier job to accomplish given the smaller size of the
overlay.

After the node crash, each node holds in its view, with
high probablility, references to failed nodes. In this experi-
ment, the cleanView procedure is triggered every 3 simula-
tion cycles.
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Figure 4. Massive crash scenario: 50% of
nodes are randomly crashed at cycle 5. The
two sub-figures depict respectively the con-
vergence rate and average node view pollu-
tion per node.
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Figure 5. QuickPeer convergence rate for the
massive nodes join experiment: starting from
a 213 nodes network, 4096 new nodes are
added at cycle 5. The arrow (between cycle 5
and 6) indicates a transient slow down in con-
vergence rate due to the massive node join.

The bottom sub-figure in Figure 4 shows that, after the
crash, the node views are getting populated with failed
PIDs. Without the cleanView procedure, the number of
failed PIDs initially tend to decrease due to the cleaning
process associated with the picking in the first half of the
view. However, after a few cycles, the average pollution sta-
bilizes around 45% of the view size (i.e., it fills nearly half
of the view). The cleanView procedure stops this patholog-
ical behaviour at cycle 10.

3.2.2 Nodes join

QuickPeer reaction to a massive node join scenario is de-
picted in Figure 5. The experiment starts with an overlay
network of 8192 nodes. At cycle 5, 4096 new nodes join
the overlay.

The convergence rate slows down at cycle 5, just after the
massive join. After this step, the rate grows exponentially as
in previous experiments until full convergence is achieved
at cycle 30.

4 Related Work

In this section, we review research results related with
topology-aware overlay construction.

T-Man [17] is a generic, gossip-based framework for
managing and building large-scale overlay topologies that
inspired our work on QuickPeer. However, in [17], T-Man
performance is evaluated only on “geometric” topologies

(e.g., torus, ring or binary tree). In contrast, we evaluate
QuickPeer using more realistic topology models and in dy-
namic environments to illustrate QuickPeer self-healing and
adaptive behaviour.

In [25], the authors propose a scheme to partition over-
lay nodes into “bins” according to network proximity infor-
mation. This information is gathered from DNS and delay
measures against a set of landmark nodes. Our approach, in
contrast, does not need any infrastructure services and ex-
ploits a synthetic virtual coordinates system (Vivaldi [9]) to
obtain distance measurements.

In [21], the authours propose an epidemic protocol, the
Localiser, to optimise an unstructured overlay network built
using SCAMP [14]. Such protocol prove to be scalable and
tolerates failures. However, no massive node join scenarios
are evaluated.

Several architecture for global distance estimation ser-
vices that expolits synthetic coordinates have been proposed
recently. IDMaps [13] and GNP [22] rely on deployment
of infrastructure nodes. In contrast, Vivaldi [9], PIC [8]
and PCoord [20] provide latency estimates using distance
measurements gathered only between end-hosts in the over-
lay network. We opted for Vivaldi because of its fully
distributed nature and simple implementation. However,
Quick-Peer is not tied to a specific coordinate system and
can be used with any of the systems cited above.

5 Conclusions and Future Work

This work presents a gossip-based protocol, termed
QuickPeer, which builds and maintains latency-aware over-
lay topologies. Such topologies are useful for sev-
eral distributed applications, like distributed online gam-
ing, context-aware P2P applications and QoS-aware pub-
lish/subscribe systems. The distinctive feature of Quick-
Peer is that it can manage large scale overlay topologies
providing each host in the overlay with its closest or fur-
thest neighbour, according to network distance (RTT), in
few gossip rounds.

Experimental results proves Quickpeer scalability, ro-
bustness to failures and adaptiveness to scenarios in which
large numbers of nodes join the overlay concurrently.

Future investigations will develop further our dynamic
scenarios, including extensive churning experiments. In
addition, we plan to evaluate QuickPeer on a distributed
testbed such as PlanetLab [1].
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