15.- DISACÁRIDOS

Los disacáridos producen dos moléculas de monosacáridos cuando se hidrolizan. Pueden existir como tales en la naturaleza, como la sacarosa o azúcar de mesa; o bien, obtenerse por hidrólisis parcial de algún polímero más complejo. Por lo general, el enlace glicosídico puede ser del tipo *alfa* o *beta* en el azúcar del que deriva el glicósido, el cual se une al OH en C4´ o C6´ de la otra unidad de azúcar que forma el glicósido o acetal, o cetal.

A. Enlace glicosídico 1,4'

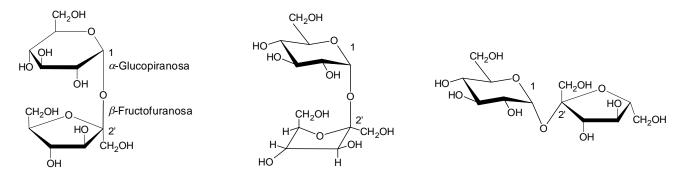
HO enlace enlace no fijo

HO
$$\beta$$
 no fijo

HO β enlace fijo

HO β enlace fijo

 β enlace fijo


 β enlace fijo

 β enlace fijo

B. Enlace glicosídico 1,6'

C. Enlace glicosídico 1,2 ó 2,1 '

15.1. SACAROSA

 β -D-Fructofuranosil- α -D-glucofuranósido

[2-O-(α -D-Glucopranosil)- β -D-fructofuranósido]

Azúcar Invertido

Cuando la sacarosa se hidroliza con:

La enzima α -**D-Glucosidasa** (hidroliza los enlaces α -D glucosídicos)

La enzima *invertasa* (hidroliza los enlaces β -D-fructosídicos)

 H_3O^+

Se produce la mezcla de α -D-glucosa y β -D-fructosa conocida como **azúcar invertido**.

PROBLEMA DE ESTUDIO No. 33

El nombre de azúcar invertido para una mezcla de D-glucosa y D-fructosa se originó de la observación experimental de que el signo de la rotación óptica de la mezcla de reacción cambia de (+) a (-) al hidrolizar la sacarosa. La rotación específica de la sacarosa es de +66.5°, mientras que las rotaciones de la D-glucosa y la D-fructosa son, respectivamente, de +52.7° y -92.4°. Prediga el valor de la rotación específica del azúcar invertido.

Cuando la sacarosa se metila y después se hidroliza produce la 2,3,4,6-tetra-*O*-metil-D-glucopiranosa y la 1,3,4,6-Tetra-*O*-metil-D-fructofuranosa quedando libres los correspondientes oxidrilos de los carbonos anoméricos; lo que indica que la unión glucosídica está entre estos dos carbonos.

PROBLEMA DE ESTUDIO No. 34

Indique el curso de la ruptura oxidativa de la sacarosa con peryodato.

15.2. LACTOSA

Se encuentra en la leche de los mamíferos.

PROBLEMA DE ESTUDIO No. 35

Para determinar la estructura de la lactosa, se utilizaron los siguientes datos experimentales. Utilice esta información para establecer su estructura

- a) La hidrólisis de la lactosa mediante la enzima emulsina o ácido diluido produce cantidades equivalentes de D-galactosa y D-glucosa.
- b) La lactosa es un azúcar reductor.

- c) La metilación de la lactosa con sulfato de dimetilo seguido de hidrólisis produce una mezcla de 2,3,4,6-tetra-*O*-metil-D-galactosa y 2,3,6-tri-*O*-metil-D-glucosa.
- d) La oxidación suave de la lactosa con agua de bromo seguida de metilación e hidrólisis conduce a ácido 2,3,5,6-tetra-*O*-metil-D-glucónico y a 2,3,4,6-tetra-*O*-metil-D-galactosa

15.3. MALTOSA

Se produce en un 80% por la hidrólisis del almidón por acción de la maltasa (α -glucosidasa).

Almidón
$$\frac{H_2O}{\alpha\text{-glucosidasa}}$$
 Maltosa $\frac{H_2O}{\alpha\text{-glucosidasa}}$ D-Glucosa

CH₂OH
HO
HO
HO
HO
HO
HO
HO
H
CH₂OH
OH
OH
H
Hidrólisis

$$^{\circ}$$
 $^{\circ}$

Maltosa, un 1,4'- α -glicósido

[4'-O-(α -D-glucopiranosil)- α -D-glucopiranosa]

PROBLEMA DE ESTUDIO No.36

Dé la estructura del producto de cada una de las siguientes reacciones.

(a)
$$\alpha$$
-Maltosa $\xrightarrow{H_2O, H+}$ (b) β -Maltosa $\xrightarrow{Br_2, H_2O}$ \Rightarrow Ácido maltobiónico (CH₂OH) $\xrightarrow{H_2O+}$ $\xrightarrow{$

15.4. CELOBIOSA

No se encuentra libre en la naturaleza. Se obtiene por hidrólisis del algodón o del hidrolizado enzimático de la celulosa.

Los disacáridos reductores como la maltosa y la celobiosa sufren también el fenómeno de la mutarrotación en el carbono anomérico libre.

PROBLEMA DE ESTUDIO No. 37

Indique los productos que se obtendrían de la reacción de la celobiosa con los siguientes reactivos: (a) NaBH₄; (b) Br₂, H₂O; (c) CH₃COCI

PROBLEMA DE ESTUDIO No. 38

Complete las siguientes reacciones:

a)
$$\alpha$$
-celobiosa $\frac{H_2O, H^+}{\Rightarrow}$
b) α -celobiosa $\frac{Br_2, H_2O}{\Rightarrow}$
c) α -celobiosa $\frac{\beta$ -glucosidasa}{\Rightarrow}
d) β -celobiosa $\frac{H_2O, H^+}{\Rightarrow}$