

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the 35th
0-7695-1435-9/02 $17.00
EasyWinWin: Managing Complexity in Requirements Negotiation with GSS

Robert O. Briggs
GroupSystems.com – University of Arizona
1430 E. Fort Lowell Rd. #301, Tucson, AZ

bbriggs@groupsystems.com

Paul Gruenbacher
Johannes Kepler University Linz

Systems Engineering and Automation
Altenbergerstr. 69, 4040 Linz, Austria

pg@sea.uni-linz.ac.at

Abstract
More than ¾ of large software projects suffer large cost
and schedule overruns or fail outright. Deficits in project
requirements cause more than half of these failures and
overruns. This is in part because the establishing of soft-
ware requirements is fraught with complexity. Finding
ways to manage that complexity might be an important
step in reducing the risk of software development. Group
Support Systems (GSS) offer functionality that may reduce
some aspects of complexity and reduce the cognitive load
of addressing other aspects of complexity. In this paper
we examine the sources of causes of complexity in soft-
ware requirements in the context of EasyWinWin, a re-
quirements negotiation methodology supported by GSS.
Early field trials suggest that EasyWinWin is a significant
step forward in managing the complexity of establishing
requirements, and that further advantage could be gained
by combining a GSS solution with other technologies like
intelligent agents and requirements management systems.

1. Introduction

Large-scale software development projects are risky.
More than a quarter of all software engineering projects
fail outright. Of the rest, more than 70% suffer the dou-
bling of budgets and schedules [15]. These failures waste
hundreds of billions of dollars per year, so developers and
consumers of software might derive significant value
from any interventions that could reduce their risks.

More than half of these overruns and failures in soft-
ware development projects can be directly attributed to
flawed requirements [15, 16], so there is high potential for
reducing the risk of software development by improving
the processes by which requirements are established. One
reason why software developers struggle to establish re-
quirements is that the task is fraught with complexity.
Finding ways to manage that complexity might be an im-
0-7695-1435-9/02 $1
Annual Hawaii International Conference on System Sciences (HICSS-35�02)
 © 2002 IEEE
portant step in improving the quality of the requirements
process.

In this paper, we draw on field experience gained dur-
ing a two-year effort to develop and deploy new require-
ments negotiation methodology. We draw from and ex-
tend Wood’s [17] model of task complexity to report
some sources and causes of complexity that emerged dur-
ing more than 50 requirements negotiation workshops we
conducted during the project. We then argue that group
support systems (GSS) can be useful to help manage the
complexity inherent in requirements collection. We pre-
sent the steps of EasyWinWin, a GSS-based requirements
negotiation method that emerged from extensive user ex-
periences, and discuss the manner in which each step ad-
dresses task complexity. We conclude with a discussion
of future directions for using technology to address com-
plexity in requirements tasks.

2. Complexity in Requirements Definition
Tasks

Wood [17] identifies three sources and three causes of
task complexity (Figure 1). All of these factors weigh
heavily in software development projects. In Wood’s
model, the sources of complexity are 1) products (deliver-
ables); 2) acts (behaviors required to create products); and
3) information cues (knowledge that permits actors to
make judgments). The classes of complexity are the
kinds of complexity that can manifest in any of these ele-
ments. They are: 1) Component complexity (number of
and interdependency among acts and information cues
needed to create products 2) Coordination complexity (the
frequency, timing, intensity, and interdependencies of
sequencing interactions required to produce products);
and 3) Dynamic Complexity (the degree to which re-
quired products, acts, and information cues and the inter-
dependencies among them change during the task).
7.00 (c) 2002 IEEE 1

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
Figure 1. Sources and classes of task complexity. Wood [17] argues that task complexity comes from three sources:
Products, Acts, and Information Cues. Products are the deliverables that must be created during the task. Acts are the
behaviors that give rise to the deliverables. Information Cues are the those things one must know to act in a manner that
will produce the deliverables. Three different kinds of complexity can emerge from these sources: component complexity,
coordination complexity, and dynamic complexity. Component complexity springs from the number of and interdependen-
cies among the acts and information cues required to produce the products. Coordination complexity springs from the
frequency, timing, and intensity of sequencing of interactions required to product the products. Dynamic complexity springs
from the degree to which products, acts, and information cues change during a task. The cells in this table show examples
of complexity in the software engineering arena.

Component Coordination Dynamic

Products

Acts

Information Cues

Sources of
Task Complexity

Classes of Task Complexity

Component Coordination Dynamic

Goals
Use Cases

Requirements

Derivative
Dependencies

Change in
vision

Life Cycle
Activities

Critical Path
Dependencies

Changes in
Process

Identify and
Resolve Con-
flicts Among

Requirements

Model Clash Changes in
Meaning
e
2
There can be very high component complexity in the
products for a requirements definition task. In a large-
scale project like an Air Traffic Control system there are
thousands of requirements, each of which must be tracked
throughout the life of the project. Further, there can be a
high degree of interdependency among requirements.
That interdependency can take several forms (Figure 2).
For example, the choice of software architecture might
depend on the choice of network architecture. Choosing
network architecture constrains ones choice of messaging
protocols. A level-of-service requirement may conflict
with a time-to-market requirement. A cross-platform re-
quirement may generalize requirements that a new system
operate on UNIX and Windows. Requirements for data
communication through sockets, secure sockets, and
HTTP elaborate on a requirement for multiple messaging
channels.

Thus, the component complexity of the products of a
requirements definition task can be quite high. This, in
turn, causes high component and coordination complexity
in the acts and information cues for the project because
the project team must take action and marshal vast quanti-
ties of information cues to identify and address the inter-
dependencies among project requirements.
0-7695-1435-9/02 $1
 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
$17.00 © 2002 IEEE
Requirements definition tasks also tend to engender
high dynamic complexity, as expressed by Boehm’s
Maxim:

You don’t know the requirements until the project is
done.

Boehm [2] argues that there is no complete, objective
set of requirements out in the environment waiting to be
discovered and written down. Rather, as a project pro-
ceeds, the project team learns more about what is desir-
able, what is possible, and what is acceptable, and the
requirements evolve.

In requirements definition, a proliferation of semantic
and consequential meanings increases the component and
dynamic complexity of information cues. Different peo-
ple use the same words to express very different concepts.
Until those differences were made explicit, information
cues will be overloaded, murky and confusing, which
adds to the complexity of the task. Understandings of
consequential meaning can likewise be diverse. To one
stakeholder a decision to place a new system on the Inter-
net might mean “universal access.” To another it might
mean, “security risk.” Differences of consequential
meaning may arise because of a lack of information, or
because the issues in question are probabilistic rather than
deterministic. They may spring from conflicting assump-
7.00 (c) 2002 IEEE 2

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
tions, or they may arise because different people have
been attending to different cues in the environment.

Differences of consequential meaning during require-
ments definition may also spring from a fourth source of
complexity that is not addressed by Wood’s model: dif-
ferences in vested interest. Different stakeholders want
different things from a project. The various end-users
may want different, even mutually exclusive features and
functions. The customer may focus on low cost. Man-
agement might focus on delivering the project on time
0-7695-1435-9/02 $17
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
verge from comfortable patterns of thought, seeking far-
ther and farther afield for new ideas. A categorizing tool,
on the other hand, might be used to cause a group to con-
verge quickly on just the key issues that are worthy of
further attention. A group-outlining tool might let a group
organize complex ideas into an understandable structure,
while an electronic polling tool could be used to provoke
discussions that uncover unchallenged assumptions and
reveal unshared information. Extensive research in the lab
and in the field reveals that, under certain circumstances,
Elaborates on

Generalizes

Conflicts with

Constrains

Depends On

Kinds of Interdependence

A requirement is an elaboration of another requirement when the first
creates a more-specific instance of the second.

n

A requirement generalizes other requirements when it expresses a high-
level concept of which the others are instances.

n

A requirement conflicts with another when choosing the first precludes
choosing the second.

n2

A requirement constrains another when choosing the first limits the options
available for the second.

n2

A requirement depends on another when one requirement only makes
sense if the other is in place.

n

DefinitionDegree

Figure 2. Interdependence Among Requirements. This table lists several ways in which system requirements may be
related to or interdependent with one another. The volume and degree of interdependence determines the component
complexity of the products for a requirements definition task. This, in turn, affects the component and coordination
complexity of the acts and information cues for the task.
and under-budget. Even the same individual can have
different, mutually exclusive requirements for a project.
For example, a user might want both a web browser as
client and off-line capability.

 It falls to the software analysts and engineers to find
a process whereby they can wade through all the sources
and causes of complexity in requirements definition.

3. EasyWinWin – Managing Complexity with
GSS

Group Support Systems (GSS) offer a partial solution

to addressing the complexity inherent in requirements
definition. A group support system is a collection of col-
laborative software tools that a team may use to focus and
structure their mental effort as they work together toward
a goal [13]. A team may use a GSS to create, sustain, and
change patterns of group interaction in repeatable, pre-
dictable ways [13]. Each GSS tool can be used to create
specific group dynamics. For example, an electronic
brainstorming tool might be used to cause a group to di-
teams can use GSS to become substantially more produc-
tive than would otherwise be possible [8]. Field studies
regularly report that teams using GSS can cut their labor
hours for a project by as much as 50%, and can cut the
calendar days for their projects by 70-90% [7, 14]. (See
[7] for an exhaustive compendium of GSS field research).

Using GSS tools, one can create a sequence of steps
for a team to follow as they work on their task. During
each step, the system displays one or more tools with
which the team can generate, organize, and evaluate con-
cepts and information. By using GSS, a team can signifi-
cantly cut the cognitive load of communication and delib-
eration. Because GSS tools allow multiple people to
work together to structure the products and information
cues with which they wrestle, the cognitive load of ad-
dressing component complexity may be reduced. Be-
cause GSS tools allow for simultaneous contribution
without turn-taking, the cognitive load associated with
coordination complexity may be reduced. Because teams
using GSS can read and respond to one another’s contri-
butions in real time, diversity of interests can be identified
.00 (c) 2002 IEEE 3

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02
and accommodated early in the requirements process,
which could reduce the need for changes later in the pro-
ject. Because GSS allows many participants to review and
annotate contributions, there may be increased opportuni-
ties to identify previously unnoticed interdependencies
among requirements. Because GSS allows a team to fo-
cus and structure their interactions in predictable ways
[6], GSS can become the foundation for developing and
refining a repeatable, efficient requirements process.

We have developed a collaborative requirements
method called EasyWinWin [11, 5] which is comprised of
nine steps supported by GSS1. A key goal of the ap-
proach is to reduce the cognitive load associated with the
sources and causes of complexity in the requirements
definition task without losing or overlooking any of the
richness of interrelationships among the many concepts
incorporated in the requirements deliverables.

EasyWinWin combines the WinWin Spiral Model of
Software Engineering [1, 2, 3] with collaborative knowl-
edge techniques and automation of a Group Support Sys-
tem. In the WinWin negotiation model, the objectives of
stakeholders are captured as win conditions. Conflicts
among win conditions are recorded as issues. Options are
proposed to reconcile Issues. Agreements are developed
out of win conditions and out of options by taking into
account the preceding decision process and rationale.

Because GSS can be used to create repeatable patterns
of group interaction, it can be used to create collaborative
methodologies that produce deliverables of consistent
quality and detail. EasyWinWin is based on the WinWin
requirements negotiation model and helps a team of
stakeholders to gain a better and more thorough under-
standing of the problem and supports co-operative learn-
ing about other's viewpoints. Different stakeholders –
users, customers, managers, domain experts, and develop-
ers – come to the project with different expectations and
interests. Developing requirements is a learning process:
Developers learn more about the customer’s and user’s
world, while customers and users learn more about what
is technically and economically possible. This interactive
learning process is a prerequisite for the creation of sys-
tems satisfying all people who are involved [12].

Teams use EasyWinWin throughout the development
cycle to develop:

- Shared Project Vision
- High-levels Requirements Definition
- Detailed requirements for features, functions, and

properties
- Requirements for transitioning the system to the

customer and user.

1
 This study was conducted with GroupSystems
software developed at the University of
Arizona and commercialized by Group-
Systems.com.
0-7695-1435-9/02 $17
 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
$17.00 © 2002 IEEE
The nominal purpose of the EasyWinWin methodol-
ogy is to create an acceptable set of system requirements
[4, 9, 10]. To fulfill their nominal purposes, each step is
designed to manage one or more of the causes in one or
more of the sources of task complexity.

The following sections summarize each step of the
methodology and describe how task complexity is ad-
dressed during those steps.

Step 0. Engage the success-critical stakeholders.

Boehm [5] argues that there is no objective, complete set
of requirements “out there” waiting to be discovered and
written down. Rather, he argues, requirements emerge
from a process of learning and negotiation as people dis-
cover the financial and technical constraints under which
they must work, and as they learn about one another’s
needs and interests. If that is the case, then one may re-
duce coordination complexity by involving only success-
critical stakeholders in requirements negotiations. A suc-
cess-critical stakeholder is any individual whose interests
must be accommodated in order for the project to suc-
ceed. The success critical stakeholders are the people
who can make agreements about the requirements, and
make those agreements stick. If low-level representatives
negotiate requirements, the success-critical stakeholder
may subsequently disallow any agreements they reach.
Such repudiation means more negotiations, which may
again end with the repudiation of agreements by superi-
ors. Having only success-critical stakeholders involved
can short-circuit the negotiate-repudiate-renegotiate cycle,
which should, in turn, reduce coordination complexity --
the frequency and intensity of interactions required to
achieve the requirements. Therefore the first step of
EasyWinWin is to identify and engage the participation of
success-critical stakeholders.

Also, it is important to notice that success-critical
stakeholders typically change throughout a project which
increases dynamic complexity. For example, stakeholders
negotiating a contract are different from stakeholders
planning and performing the transition of a system to the
target environment. The WinWin spiral model therefore
demands the identification of success-critical stakeholders
whenever a new cycle is entered.

Step 1. Refine and Expand Negotiation Topics. One

difficulty created by the component complexity of soft-
ware requirements is that most stakeholders are unaware
of all the different aspects of a system for which require-
ments must be written. Therefore, in this step, the system
presents the stakeholders with a shared outline. The out-
line contains a taxonomy of system requirements. The
nodes of the outline are presented as categories for the
many ways to win during a software development project.
Participants review this outline and make suggestions on
how to tailor it to the specifics of their project.
.00 (c) 2002 IEEE 4

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
The review of the outline serves several purposes with
respect to task complexity. First, it addresses component
complexity of requirements. Stakeholders tend to arrive
with a narrow understanding of what they want and need
from the proposed system. By reviewing and revising the
taxonomy, they often come to understand that the project
is much bigger than they had imagined, that the task will
produce more products requiring more coordination than
they had originally expected.

This step also reminds the participants to consider
many concepts they might otherwise overlook. For exam-
ple, a stakeholder from management who is primarily
concerned about budgets and schedules might not think to
state win conditions about interface response times.

Stakeholders prune some parts of the taxonomy and
elaborate others. Any change that one stakeholder makes
to the outline displays immediately on the screens of the
other stakeholders interdependencies among elements of
the project emerge and are recorded. In subsequent steps
the team addresses the one by one. The resulting taxon-
omy becomes an organizing framework for emergent win
conditions and becomes a completeness checklist at any
time in the project to test whether more work is required.
This step is also the first shot across the bow of dynamic
complexity, because the better the stakeholders under-
stand the scope of their task early in the project, the fewer
the changes that may be required later in the project.

Step 2. Brainstorm Stakeholder Win Conditions.
Stakeholders often arrive with at least a vague under-

standing of what they want from the system for them-
selves and their constituents. However, they often have
little knowledge of what other stakeholders want from the
system. Complexities of interest can only be addressed
when stakeholders understand one another’s interests.
This step accomplishes three main purposes.

1. Stakeholders record first-draft statements of
what they want from the proposed system

2. Stakeholders learn what others want from the
system

3. Stakeholders expand and clarify what they
want from the system by reading what others
want

In this step, the stakeholders use an electronic brain-
storming tool to surface as many different possible win
conditions as they can in a short period of time (See Fig-
ure 3 for more detail about how this step is conducted). A
team of 10 stakeholders typically contributes about 300
ideas in an hour-long brainstorm. Here are three examples
of brainstorming comments submitted by stakeholders in
a requirements negotiation about a knowledge manage-
ment system:

0-7695-1435-9/02 $1
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
Nice to be able to create private taxonomy for CSE
knowledge base; how I want to categorize entries; not
how CSE thinks they should be categorized.

No special knowledge is required for creation of

cross-references.

Authorized users (without having to learn and use

special applications) publish content in the intranet

This step can reduce coordination complexity for the
software analyst or engineer charged with establishing
requirements. Rather than interviewing stakeholders one-
on-one or in small groups, many stakeholders can be
brought together to contribute simultaneously, which re-
duces the frequency and intensity of interactions required.
This step does not reduce component complexity, rather,
it provides a means of managing it. Indeed, since this
approach generates more requirements than other methods
we have tried, it might appear to increase component
complexity. However, experience suggests that the win
conditions not revealed by standard methods still exist,
and surface later in the project, which introduces the need
for change. By surfacing requirements earlier in the pro-
ject, there is the potential to reduce dynamic complexity.

Figure 3. Brainstorm stakeholder interests. In

this step, there is an electronic page for each stakeholder.
Each time a stakeholder contributes a comment to a page
the system takes that page away and randomly replaces it
with a different page containing comments from other
stakeholders. As the activity progresses, the pages swap
among the participants, picking up a new comment at
each stop. This process tends to broaden the scope of
the discussion, resulting in breadth, rather than depth. It is
a useful way to identify many concepts in a short amount
of time.

Step 3. Converge on Win Conditions. To minimize

component complexity, it is important to minimize the
7.00 (c) 2002 IEEE 5

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
number of artifacts with which the team must deal. The
contents of the brainstorming session in the previous step
tend to be free ranging, wordy, full of redundancy and
irrelevancy. Therefore, in this step, the team converges
on a concisely worded, non-redundant, unambiguous list
of win conditions. To do this the group uses an oral con-
versation supported by two collaborative tools. One tool
divides the brainstorming comments among the partici-
pants so each sees a different set. This reduces component
complexity for stakeholders by allowing them to work in
parallel on smaller chunks of their data. The other tool
provides them a shared list which all can see on their
screens. Drawing from the brainstorming comments on
the screen, each participant in turn proposes orally a clear,
concise statement of a win condition to be posted on the
shared list. When each stakeholder has contributed one
win condition to the shared list, the system reshuffles the
raw brainstorming comments so each person now sees a
different set. Stakeholders review that set to see if they
can identify new win conditions. They continue to swap
raw brainstorming comments and post new win condi-
tions to the shared list until nobody can find anything new
to add. The group discusses each win condition aloud to
create a shared understanding of its semantic meaning.
Participants may argue about the meaning of any win
condition, but they may not object to or raise issues about
any win condition at this time. This manages the compo-
nent and coordination complexity surrounding the re-
quirements by explicitly precluding discussions of conse-
quential meaning and interdependency. All issues and
objections must be reserved for a later step. During these
oral discussions new win conditions that were not part of
the original brainstorming session often emerge, and are
added to the shared list. Key terms surface during these
conversations which may take on special meaning for the
project, or which the team may find vague or confusing.
These terms are captured to a keyword list for further
processing in the next step. There are typically about 1/3
to 1/2 as many cleanly stated win conditions as there were
brainstorming comments, so component complexity has
usually been reduced by this step.

Step 4. Define a Glossary of Key Terms. In any sys-

tem development project there are key terms that become
insider jargon for project members. Insider jargon can
simplify communication among those who know the jar-
gon, but it can hinder communication with others who do
not know the jargon. This step captures knowledge about
the project-specific meaning of these terms. All the key
terms derived from the brainstorming session are posted
to a shared list. The team breaks into pairs and each pair
works out a definition of several key terms and posts the
definitions to the shared list. Then the pairs report their
definitions to the group orally, which usually provokes
spirited debate. The team negotiates an agreed meaning
0-7695-1435-9/02 $17
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
for each term, and usually finds there are other key terms,
which should be added to the list and defined. The cap-
tured definitions are valuable throughout the project, es-
pecially as the composition of the team changes over
time. However, there is additional value in the spirited
debate. As people negotiate the meanings of words, key
project constraints emerge, assumptions surface, and the
team frequently identifies new stakeholders who should
be included in the requirements process.

 Often key terms turn out to be confounded, having
many meanings. This can significantly raise the coordina-
tion complexity of information cues. In one recent case,
the term, “affiliate” turned out to have five different
meanings. When the team got to this step, each of those
meanings was given a new, more specific term, and those
five terms were added to the list. The group agreed not to
use the term, “affiliate” for the rest of the project to
minimize confusion.

Other times it turns out that several key terms have the
same meaning. The team chooses one label for the con-
cept and deletes all other redundant labels. This reduces
the component and coordination complexity of informa-
tion cues. This step may be repeated several times
throughout the project as the team collects new terms.
Once the terms have been defined the team goes back and
restates the win conditions more precisely. This step helps
to develop a mutual understanding of language and to
eliminate ambiguous statements.

Step 5. Prioritize Win Conditions. During brain-

storming, convergence, and definitions of key terms, the
stakeholders can post any win condition that comes to
mind, regardless of its potential impact on other win con-
ditions. Stakeholders learn about one another’s interests,
but not necessarily about how important one win condi-
tion is compared to another, nor about what a given win
condition might cost in time, effort, and aggravation. In
this step, the participants rate each win condition along
two criteria: (a) Business Importance - the degree to
which the success of the project depends on this win con-
dition being realized, and (b) Ease of Realization - the
degree to which a win condition is technologically, so-
cially, politically, and economically feasible (Figure 4).

During this assessment, the participants are instructed,
“If you don’t know, don’t vote.” Customers and users
often decide not to render opinions about the ease of re-
alization. Programmers frequently choose not to rate the
business importance of a given win condition. Some peo-
ple offer no assessment of win conditions in which they
have no stake, focusing instead on the ones about which
they care. This is the first step where participants are al-
lowed to register an opinion about the merits of the win
conditions. However, the results are not used to eliminate
any win conditions. Rather they are used to provoke a
well-structured, tightly contained exploration in the next
.00 (c) 2002 IEEE 6

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
step. Moreover, the step allows the individuals to see how
their own opinion compares to that of the group, and this
helps them to learn about expectations and perhaps to
identify unreasonable expectations of their own.

Figure 4. Prioritizing Win Conditions. Partici-
pants use a multi-criteria polling tool to assess the busi-
ness importance and ease of implementation for each win
condition. The items where the group has high consensus
display in green. The items where consensus is low dis-
play in red.

This step helps manage component and coordination

complexity of products and information cues by explicitly
excluding consideration of interdependencies while con-
sidering the merits of each condition as a stand-alone
product. The team explores interdependencies in a sepa-
rate step later in the process. It also helps manage com-
ponent and coordination complexity for stakeholders by
asking them to respond only to those items about which
they have knowledge and interest. They need not con-
sider the other items.

Step 6. Surface Issues and Constraints. Any given

win condition may, on its own, raise issues for any given
stakeholder. The purpose of the previous step was not to
eliminate low-rated win conditions, but rather to surface
differences of opinion about individual win conditions.
Different stakeholders often have different reasons for the
opinions they register, and those reasons spring from their
differences of experience, interest, and purpose. Those
differences often relate to unarticulated and unexamined
project constraints. This step focuses exclusively on the
0-7695-1435-9/02 $1
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
areas of highest disagreement among the ballots cast in
the previous step. When the results are displayed, items
with high consensus display with a green background,
while items with low consensus display with a red back-
ground (Figure 4). This step focuses on the red cells,
where consensus is low. A click on a red item displays a
graph and a table that reveals the pattern of votes underly-
ing that cell (Figure 5).

Figure 5. Polling Patterns Under a Red Cell.
Stakeholders use this graph as a stimulus to explore the
reasons behind their differences of opinion about a win
condition.

The group holds a structured oral conversation to try
to explain what reasons might exist for giving an item a
high rating, and what reasons might exist for giving an
item a low rating. Key information cues about the pro-
ject emerge from these discussions

– Project constraints – these are captured as Issues as-
sociated with a particular win condition.

– Assumptions – these are captured as electronic an-
notations attached to a win condition. In one exam-
ple there was a win conditions to forbid the use of
CGI-scripts in development. The vote reveals a bi-
modal split in the group. It turned out that some
stakeholders assumed an external group that forbade
the use of CGI-scripts would manage the system.
Others assumed that the system would be managed
internally. By challenging both these assumptions
the group was able to identify a new project con-
straint.

– Unshared information – captured as electronic anno-
tations to a win condition. For example, in one team
with which we recently worked 12 stakeholders
7.00 (c) 2002 IEEE 7

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
rated on particular feature as extremely ease to real-
ize. One stakeholder rated the same item as ex-
tremely difficult to implement. During the follow-up
exploration the one stakeholder shared his insight
knowledge and previous experience and suggested
the task would be far from trivial. Instead of going
with majority rule the avoided what would other-
wise have been a nasty pitfall.

– Hidden agendas – captured as new win conditions.
The most important purpose of this step is to identify and
address interest complexity. Sometimes differences of
opinion emerge based on orthogonal interests – “It’s im-
portant to you, but I simply don’t care, so I said it wasn’t
important.” Other times the differences are based on mu-
tually exclusive interests – “It’s important to you to have
it, but it’s important to me to NOT have it”. Such con-
flicts are identified and flagged for later negotiation, but
to minimize coordination complexity of acts and informa-
tion cues, no negotiation is allowed during this step.

Step 7. The WinWin Tree: Win Conditions, Issues,

Options, Agreements. Any win condition may have
interdependencies with other win conditions. One key
purpose of this step is to identify and deal with those is-
sues. This step also allows stakeholders to argue their
case against any given win condition, should they have an
issue with something proposed by someone else. In this
step, the team posts a shared outline with all the win con-
ditions as main headings (Figure 6). The team makes
three passes through this outline. On the first pass each
person reads each win condition. If the win condition
raises any issue with a stakeholder, the stakeholder may
write the issue as a sub-heading to the win condition. The
participants may not discuss the issues aloud at this time.

On the next pass, each participant reads each issue. If
a participant can think of any option for resolving the is-
sue, the participant may write the option as a sub-heading
to the issue. Once the issues and options have been articu-
lated, the group is ready to begin negotiating agreements.
There are usually no issues on about 1/3 of the win condi-
tions. After a quick review, the group usually declares
these items to be agreements. They become commitments
the team must fulfill.

Then the group addresses each issue in turn with an
old-fashioned oral negotiation. Sometimes one or more of
the options posted with an issue turn out to be the basis
for an agreement. Other times the stakeholders engage in
protracted discussions of an issue. During that conversa-
tion, more assumptions and constraints, more key terms,
more options, more issues, and more win conditions
emerge. Each of these is captured in its place on the
WinWin Tree. Every time a team member proposes an
agreement out loud, somebody types it as an option on the
tree. As people argue for and against options, someone
captures pros-and-cons as electronic annotations to the
0-7695-1435-9/02 $17
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
options. Eventually, the group fashions an agreement with
which they can live. They write the agreement on the
WinWin Tree. When every win condition and every op-
tion has an agreement, the state of WinWin Equilibrium
has been achieved.

Figure 6. The WinWin Tree. Participants begin

with an outline of their win conditions. They make three
passes through the outline. On the first pass they read
each win condition, and if they have an issue with any
win condition, they record it as a subheading to the win
condition. On the next pass, they read every issue, and if
they can think of an option for resolving the issue, they
record it as a subheading to the issue. On the next pass
they negotiate agreements for every issue and every win
condition.

The most important reason for this step is to manage the
component and coordination complexity associated with
the interests and purposes of the stakeholders. Without
any objection or impediment from others, every stake-
holder may raise and explain any issues with any win
condition posted by other stakeholders. Because all are
contributing simultaneously, rather than in an oral discus-
sion, their issues are captured quickly, with digression
into interpersonal conflict. Before they are allowed to
negotiate any issues, however, every team member has
the opportunity to propose solutions for the issues. So
when the oral negotiations begin, there are usually useful
ideas already proposed. The discussion focuses on a sin-
gle issue at a time, which keeps the negotiations manage-
.00 (c) 2002 IEEE 8

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02 $
able. If someone raises a new issue during the discussion,
that issue is recorded on the WinWinTree for later nego-
tiation, and discussion returns to the issue at hand.

Step 8. Organize Negotiation Results. Stakeholders

post all their win conditions on a shared list. Next to that
they post a set of electronic buckets representing the tax-
onomy of negotiation topics they prepared in the first
step. Then, working together, they drag-and-drop every
win condition into the taxonomic category to which it
belongs. This typically takes two or three minutes. Next,
the team opens each bucket to review its contents. They
ask themselves these questions: - Is there anything in this
bucket that belongs in a different bucket? (If so, the team
talks about it, then moves the win condition to a new
bucket). - Is there anything in here that belongs in a
bucket we don’t have yet? (If so, the team adds a new
category to the taxonomy, then moves the win condition
into that bucket). - Are there any win conditions missing
from this category (If so, the team captures the new win
conditions in the WinWin tree, then cycles back for a new
round of Issues, Options, and Agreements). If one or more
categories are insufficiently populated the team loops
back into another iteration of the EasyWinWin process.

The primary purpose of this step is to manage compo-
nent complexity. The requirements for a large system are
numerous. This step gives the team the opportunity to
check whether they have addressed all important topics in
their negotiations.

4. User Experiences

EasyWinWin has been used in about 50 projects so far.
The approach has been validated in typical software de-
velopment projects (e.g., digital library projects, exten-
sion of COTS products, web portals for e-marketplaces)
and has been applied in different stages of the life-cycle
(e.g., to build a shared vision among the stakeholders, to
develop high-level requirements for a project, to learn
more about the requirements for transitioning a system to
the target environment).

Since effective negotiation turns out to be an important
success-factor not only in software engineering activities
our approach has been adopted in other areas as well: One
organisation used EasyWinWin to support action plan-
ning during a process improvement initiative, another
organization used the methodology to jointly develop and
negotiate the requirements for their marketing processes.
We have found that the EasyWinWin process is extremely
helpful to structure the negotiation activities, and at the
same time allows a team to handle a much higher volume
of information than a traditional paper- or blackboard-
based negotiation process would. Typical negotiations we
0-7695-1435-9/02 $1
35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
17.00 © 2002 IEEE
have carried out involved 10+ participating stakeholders
resulting in 300+ brainstorming ideas, 100+ win condi-
tions, 50+ issues, 50+ issues, and 100+ agreements.

5.Future Directions

Early field results suggest that EasyWinWin does, in

fact help teams manage the complexity of requirements
negotiations for large software development projects.
Requirements projects using EasyWinWin typically re-
quire weeks rather than months to complete, and the re-
sulting requirements have an order of magnitude increase
in detail. However, experience in the field suggests that
further advantage could be gained by combining the GSS
approach with other technologies.

Perhaps the most difficult challenge still facing stake-
holders is the identification of conflicts among win condi-
tions. Any win condition dealing with time-to-market, for
example, may conflict with other win conditions dealing
with quality. Any win condition dealing with features and
functions may conflict with win conditions for cost con-
tainment. The interdependencies among win conditions
can be many, subtle, and varied. It might be possible that
intelligent agents could be used to identify and flag poten-
tially conflicting win conditions, and to bring them to the
attention of stakeholders.

It would also be useful if analysts could move the win
conditions seamlessly from the GSS in which they were
developed into a requirements management system like
Rational’s RequisitePro or Telelogic’s DOORS. That
way, as technical requirements were written, they could
be traced back to the win conditions they were meant to
address. That way, as the project progresses, when it be-
comes necessary to change technical requirements, ana-
lysts and engineers could know why a requirement
emerged in the first place, and whose interests it serves.
They may be better positioned to develop solutions with
which the stakeholders can live, and they would know
better which stakeholders should be involved in negotiat-
ing the proposed changes.

The component complexity of win conditions still pos-
ses a significant challenge to EasyWinWin workshop par-
ticipants. Research now underway by Hoh In and others
seeks to assist with that challenge by using intelligent
agents to identify and flag potential conflicts among win
conditions. These researchers seek to embed heuristics
into an ontology that the agent can use to find conflicts
that humans might overlook. For example, a win condi-
tion that deals with quality might conflict with other win
conditions that deal with time-to-market. Intelligent
agents may be able to conduct exhaustive pair-wise com-
parisons among thousands of win conditions, a task that
would be impossible for individual humans.
7.00 (c) 2002 IEEE 9

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the
0-7695-1435-9/02
References

[1] Boehm B., A spiral model of software development
and enhancement, IEEE Computer, 21(5):61–72, 1988.

[2] Boehm B., Bose P., Horowitz E., Lee M.J., “Software
Requirements as Negotiated Win Conditions,” Proc. 1994
Intl. Conf. Rqts. Engineering, IEEE April 1994.

[3] Boehm B., A. Egyed, J. Kwan, D. Port, A. Shah, R.
Madachy. Using the WinWin Spiral Model: A Case
Study. IEEE Computer, 7:33–44, 1998.

[4] Boehm B., & P. Grünbacher, “Supporting Collabora-
tive Requirements Negotiation: The EasyWinWin Ap-
proach”, Proc. International Conference on Virtual
Worlds and Simulation VWSIM 2000

[5] Boehm, B; Gruenbacher, P. , & Briggs, R. O. Devel-
oping Groupware for Requirements Negotiation: Lessons
Learned. IEEE Software, Vol. 18, No. 3, May/June 2001

[6] Briggs, R.O.; de Vreede, Gert-Jan; Nunamaker, J.F.,
and Tobey, David H. ThinkLets: Achieving Predictable,
Repeatable Patterns of Group Interaction with Group
Support Systems (GSS) Proceedings of the 34th Hawaii
International Conference on System Sciences, 2001.

[7] Dennis A.R., A.R. Heminger, J.F. Nunamaker, D.R.
Vogel, Bringing automated support to large groups: the
Burr-Brown experience. Information & Management, 18,
(1990), 111-121.

[8] Fjermestad J., R. Hiltz, Case and Field Studies of
Group Support Systems: An Empirical Assessment, Jour-
nal of Management Information Systems, 2000-01.

[9] Gruenbacher P. Collaborative Requirements Negotia-
tion with EasyWinWin, 2nd International Workshop on
the Requirements Engineering Process, Greenwich, Lon-
don, IEEE Computer Society, 2000.

[10] Gruenbacher P., EasyWinWin OnLine: Moderator’s
Guidebook, A Methodology for Negotiating Software
Requirements. GroupSystems.com and USC-CSE 2000

[11] Gruenbacher, Paul and Briggs, R.O. Surfacing Tacit
Knowledge in Requirements Negotiation: Experiences
using EasyWinWin Proceedings of the 34th Hawaii Inter-
national Conference on System Sciences, 2001.

[12] Macaulay L., Requirements Capture as a Cooperative
0-7695-1435-9/02 $1
 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
$17.00 © 2002 IEEE
Activity. In: Proceedings Of the First Intl. Symp. On Re-
quirements Engineering, S. 174–181. IEEE Press, San
Diego,

[13] Nunamaker, J., R. Briggs, D. Mittleman, D. Vogel &
P. Balthazard, Lessons from a Dozen Years of Group
Support Systems Research: A Discussion of Lab and
Field Findings, Journal of Management Information Sys-
tems, Winter 1996-97,

[14] Post B.Q., A business case framework for group sup-
port technology, Journal of Management Information Sys-
tems, 9,3 (1993), 7-26.

[15] Standish Group CHAOS Report: Application Pro-
jects and Failures, 1995.

[16] Standish Group CHAOS Chronicles II. 2001.

[17] Wood, R.E. Task complexity: definition of the con-
struct. Organizational Behavior and Human Decision
Processes, 37(1), 1986, 60-82.
7.00 (c) 2002 IEEE 10

	HICSS35 2002
	Return to Main Menu

