proanizational Ghamge................cceeeeveennennneee.

Lessons Learned

The authors
discuss the
lessons they
learned while
developing four

generations of
a distributed
groupware
system called
WinWwin.

Barry Boehm, University of Southern California

Paul Griinbacher, johannes Kepler University Linz

Robert 0. Briggs, GroupSystems.com

efining requirements is a complex and difficult process, and de-
fects in the process often lead to costly project failures.! There is
no complete and well-defined set of requirements waiting to be
discovered in system development. Different stakeholders—users,

customers, managers, domain experts, and developers—come to the project

with diverse expectations and interests. Re-
quirements emerge in a highly collabora-
tive, interactive, and interdisciplinary nego-
tiation process that involves heterogeneous
stakeholders.

At the University of Southern Califor-
nia’s Center for Software Engineering, we
have developed a series of groupware im-
plementations for the WinWin require-
ments negotiation approach (see the Ac-
knowledgments at the end of the article for
a list of organizations that helped sponsor
this research). The WinWin approach in-
volves having a system’s success-critical
stakeholders participate in a negotiation
process so they can converge on a mutually
satisfactory or win—-win set of requirements.
Groupware-supported methodologies are
among the hardest to get right, and the rap-
idly moving technology of distributed inter-

46 |EEE SOFTWARE May/June 2001

active systems is a major challenge. This is
due largely to the relative newness of the
area and to the unfamiliarity of most soft-
ware developers with the phenomena of
group dynamics. However, an even bigger
challenge is creating a system that works
well with people of different backgrounds,
in different places, and often at different
times. In particular, collaborative technol-
ogy that supports requirements negotiation
must address stakeholder heterogeneity.
Our WinWin groupware system—which
has evolved over four generations—enables
and facilitates heterogeneous stakeholder
participation and collaboration. Each gener-
ation reflects an increase in our understand-
ing of what is needed for successful WinWin
groupware operations and technology sup-
port. Here, we present the major lessons we
learned during WinWin’s development.

0740-7459/01/$10.00 © 2001 IEEE

The WinWin approach

The original motivation for a WinWin
groupware system was Barry Boehm’s frus-
tration in using a manual win—win approach
to manage large projects at DARPA. For ex-
ample, win-win management of the $100-
million DARPA STARS program was done
primarily through monthly meetings of many
STARS stakeholders: three prime contractors
and their three commercial counterparts;
three user representatives from the Army,
Navy, and Air Force; DARPA customers and
contract managers; and several research and
support contractors. Each meeting concluded
with a win—win agreement, so after a meet-
ing, participants felt they had taken three
steps forward. However, by the next meeting,
the distributed stakeholders had independ-
ently “reinterpreted” the agreements, causing
the process to move two steps back. As a re-
sult, it took six months to achieve a shared
vision that the prime contractors’ success
plans documented. Our analysis at the time
indicated that a WinWin groupware support
system could reduce this process to one or
two months.

The general win—win approach evolved
more or less independently as an interper-
sonal-relations,> success-management,® and
project-management* approach. We usually
define it as “a set of principles, practices, and
tools, which enable a set of interdependent
stakeholders to work out a mutually satisfac-
tory (win—-win) set of shared commitments.”

Interdependent stakeholders can be people
or organizations. Their shared commitments
can relate to information system requirements
in particular (the WinWin groupware sys-
tem’s primary focus) or can cover most con-
tinuing relationships in work and life (for ex-
ample, international diplomacy). Mutually
satisfactory generally means that people do
not get everything they want but can be rea-
sonably assured of getting whatever it was to
which they agreed. Shared commitments are

not just good intentions but carefully defined
conditions. If someone has a conditional com-
mitment, he or she must make it explicit to
ensure all stakeholders understand the condi-
tion as part of the agreement.

Why does WinWin work?

WinWin works because people and
groups have different preference patterns. A
classic example was the 1978 Egyptian-
Israeli peace treaty’s negotiation of the Sinai
Peninsula borderline. It was at an impasse
until it was clarified that Egypt preferred
territory and Israel preferred getting a de-
militarized zone. We elaborate on other rea-
sons why WinWin works in the following.

Win-lose doesn’t work

In requirements negotiation, nobody wants
a lose-lose outcome. Win—lose might sound
attractive to the party most likely to win, but
it usually turns into a lose-lose situation. Table
1 shows three classic win—lose patterns among
the three primary system stakeholders—devel-
opers, customers, and users—in which the
loser’s outcome usually turns the two “win-
ners” into losers.’

As the table shows, building a quick and
sloppy product might be a low-cost, near-term
win for the software developer and customer,
but the user (and maintainer) will lose in the
long run. In addition, adding lots of margin-
ally useful bells and whistles to a software
product on a cost-plus contract might be a win
for the developer and users, but it is a loss for
the customer. Finally, “best and final offer”
bidding wars that customers and users impose
on competing developers generally lead to
lowball winning bids, which place the selected
developer in a losing position.

However, nobody really wins in these situ-
ations. Quick and sloppy products destroy a
developer’s reputation and have to be re-
done—inevitably at a higher cost to the cus-
tomer. The bells and whistles either disappear

Frequent Software Development Win-Lose Patterns (That Usually
Turn into Lose-Lose Situations)

Proposed solution “Winner” Loser
Quickly build a cheap, sloppy product Developer and customer User
Add lots of “bells and whistles” Developer and user Customer
Drive too hard a bargain Customer and user Developer

May/June 2001

In particuiar,
collaborative
technology that

supports

requirements

must address

stakenolder

heterogeneity.

IEEE SOFTWARE

47

O
A WinWin
approach builds

a shared
vision among
stakeholders
and provides

the flexibility to
adapt to change.

48

IEEE SOFTWARE

or (worse) crowd out more essential product
capabilities as the customer’s budgets are ex-
hausted. Inadequate lowball bids translate
into inadequate products, which again incur
increased customer costs and user delivery de-
lays to reach adequacy.

WinWin builds trust and manages expectations.
If you consistently find other stakeholders
asking about your needs and acting to un-
derstand and support them, you will end up
trusting them more. In addition, if you con-
sistently find them balancing your needs
with other stakeholders’ needs, you will
have more realistic expectations about get-
ting everything you want.

WinWin helps stakeholders adapt to changes.
Our traditional, adversarial, lawyer-oriented
contracting mechanisms are no match for
our current world of increasingly rapid
change in technology, mergers, reorganiza-
tions, and personnel turnover. Instead of rig-
orous requirements in ironbound contracts,
doing business in Internet time requires
stakeholders with a shared vision and the
flexibility to quickly renegotiate a new solu-
tion once unforeseen problems or opportu-
nities arise.®”” A WinWin approach builds a
shared vision among stakeholders and pro-
vides the flexibility to adapt to change.

WinWin helps build institutional memory. The
why behind the what—that is, the decisions
that lead to a work result—often vanish. By
capturing and preserving stakeholder nego-
tiations, WinWin supports long-term avail-
ability of the decision rationale and thus
helps build institutional memory. Having
more auditable decisions creates more de-
tailed, accurate, and complete deliverables.

How does the WinWin negotiation model work?

The particular approach we have evolved
includes a WinWin negotiation model for con-
verging to a win-win agreement and a Win-
Win equilibrium condition to test whether the
negotiation process has converged.

The negotiation model guides success-crit-
ical stakeholders in elaborating mutually sat-
isfactory agreements. Stakeholders express
their goals as win conditions. If everyone
concurs, the win conditions become agree-
ments. When stakeholders do not concur,
they identify their conflicted win conditions

May/June 2001

and register their conflicts as issues. In this
case, stakeholders invent options for mutual
gain and explore the option trade-offs. Op-
tions are iterated and turned into agreements
when all stakeholders concur. Additionally,
we use a domain taxonomy to organize Win-
Win artifacts, and a glossary captures the do-
main’s important terms. The stakeholders are
in a WinWin equilibrium condition when the
agreements cover all of the win conditions
and there are no outstanding issues.

Four generations of tool support

The WinWin negotiation model provided
the basis of all four generations of WinWin
groupware systems.

G1: Initial prototype

The first-generation WinWin groupware
implementation was a prototype developed in
concert with Perceptronics’ CACE-PM sup-
port system for concurrent engineering of mul-
tichip modules. CASE-PM let us develop a
useful prototype in several weeks, which was
sufficient for demonstrations and an initial ex-
periment. This involved having the G1 Win-
Win system developers perform role-playing
as future system developers, customers, and
users negotiating the requirements for a more
robust version of WinWin. Performing the
WinWin negotiation with G1 WinWin gave us
a strong, shared vision for the system’s next
version, validating its utility as a groupware
capability.

G2: Strong vision, not-so-strong architecture
The second-generation WinWin system
used a Sun-Unix client-server architecture,
X/Motif GUI support, and its own database
server. Some friendly industry users tried it
experimentally. G2 WinWin’s main value
was identifying inconsistencies between the
negotiation model and the artifacts, among
the artifacts, and between the GUI and the
database server. However, we underestimated
how much detailed software engineering it
would need to get from a shared groupware
vision to a groupware support system.

G3: Muscle-bound architecture

The third-generation WinWin system
had a formally analyzed negotiation model,
a uniform artifact look and feel, carefully
defined GUI-database interfaces, and rigor-
ous enforcement of the negotiation model.

What Is a Group Support System?

Some group fasks can be most effectively accomplished by
carefully coordinated individual efforts. Technologies that support
this kind of teamwork abound —email, team calendaring, shared
document repositories, and so on. Other tasks, such as require-
ments negotiation, require concerted reasoning by many minds.
For such tasks there are Group Support Systems.

On the surface, a GSS might seem like a collection of glorified
chat tools with some voting tools thrown in for good measure.

For example, most GSS suites include shared list tools. Any user
can make a contribution to a shared list at any time, and any
contribution a person makes appears instantly on all the other
users’ screens. Various GSS suites include shared outlines, shared
comment windows, shared drawing tools, and so on. In each tool,
all the users can talk at once, contributing to the discussion as
inspiration strikes rather than waiting for the floor. GSS suites
usually include a variety of useful voting tools, including Likert
scales, semantic anchors, allocation votes, and multicriteria votes.
The users can move their contributions info a vote tool, evaluate
them, and then instantly review their results online.

The real magic of a GSS is not what you can make happen on
the screen but what you can make happen in the group. Using @
GSS, you can create predictable, repeatable patterns of human
interaction and reasoning among people working toward a
common goal. For example, most GSSs include brainstorming
tools that can help a group diverge from customary patterns of
thinking. Some GSSs also have idea-organizing tools that let
group structure disorganized ideas. Other GSS tools can help a
group converge quickly from its many brainstorming ideas down
to a clear focus of just the ideas that merit further attention.

Using a GSS, you can arrange a sequence of steps that a team
can follow as they reason together to accomplish their task. In each
step, the GSS tools are configured so that as participants contribute
to the system, a useful pattern of thinking emerges.

In all, there are seven basic patterns of thinking a GSS can
create in a group:'

Diverge: Move from having fewer ideas to more ideas,
Converge: Move from having many ideas to focusing on
just the few that are worthy of further attention,

= Organize: Start to gain a better understanding of the
relationships among ideas,

m Elaborate: Start expressing ideas in more detail,

m Abstract: Move from expressing ideas in detail to
expressing them as fewer, more general concepts,

m Evaluate: Start better understanding the value of concepts
for accomplishing the task at hand, and

m Build consensus: Start better understanding the diverse
interests of the group members and begin to agree on
possible courses of action.

Besides requirements negotiation, GSS processes have been
implemented for a variety of organizational tasks that require
many people to think together. Here are a few exqmp|es:

strategic planning,

new product development,

marketing focus groups,

total quality management,

military infelligence analysis,
organizational change management,
data modeling,

group therapy,

factory floor design, and

software inspections.?

Because a GSS operates over a computer network, feam members
can often interact, even when oceans and continents separate them.
However, just as a screwdriver is not very useful for pounding nails, a
GSS is not right for every group interaction. Sometimes a team still
needs fo get together the old-fashioned way, eye-to-eye, to see who
sweats and who blinks first. Nonetheless, extensive research shows
that under the right circumstances, feams using a GSS can reduce
their labor hours by 50 percent or more and cut their project cycles by
60 to 90 percent. Such teams usually also report a higher-quality

result than they were able to obtain using more conventional means.3

References

1. R.O.Briggs, G.-J. de Vreede, and J.F. Nunamaker, Jr., “Thinklets: Achieving
Predictable Repeatable Patterns of Group Interaction with Group Support
Systems (GSS),” Proc. HICSS 2001 (Hawaii Int'| Conf. System Sciences),
IEEE CS Press, Los Alamitos, Calif., 2001.

2. M. van Genuchten et al., “Industrial Experence in Using Group Support
Systems for Software Inspections,” IEEE Software, vol. 18, no. 3, May/June
2001, pp. 60-65.

3. J. Fjermestad and R. Hiltz, “Case and Field Studies of Group Support
Systems: An Empirical Assessment,” J. Management Information Systems, to
be published, 2001.

It also had a number of amenities for vot-
ing, for attaching associated documents or
analysis-tool runs, and for big-picture nego-
tiation visualization and navigation. Its ma-
jor problems were its insufficient robustness
and the overly strict enforcement of the ne-
gotiation approach that kept it from adapt-
ing to different negotiation situations.

G4: Group support system infrastructure

Our experiences with the first three gen-
erations of WinWin encouraged USC to de-
velop a version of WinWin based on

the commercial groupware infrastructure
GroupSystems.com developed in coopera-
tion with the University of Arizona.? Our
current collaboration between USC and
GroupSystems.com has led to a fourth-gen-
eration system, called EasyWinWin.’

EasyWinWin

EasyWinWin is a requirements definition
approach based on a Group Support System.
A GSS is a suite of software tools that can
create, sustain, and change patterns of group
interaction in repeatable, predictable ways

May/June 2001

IEEE SOFTWARE 49

Figure 1. An example
of how a team builds
a clean list of win
conditions and
organizes them into
predefined buckets.

Figure 2. In
EasyWinWin, red
cells indicate a lack
of consensus. The
cell graph shows a
voting pattern

used to trigger an
oral discussion
revealing unshared
information, unnoticed
assumptions, hidden
issues, constraints,
and so forth. This
particular graph
shows the voting
pattern for win
condition 2.1, with
criterion Business
Importance.

50 IEEE SOFTWARE

s GroupSystems - Online Bookstore Site and Ad Management - [Converge on Win Conditions {Categorizer}]
“% File Folders Edit Categorizer Group Options Window Help

2 Agenda | Q%Pe_uple_‘ <Mwhiteboard | HanduuLi | 3 opinion | ‘Repurts

=]
=8| x|
| @Erief:ase ‘ @Luq | @4 Find ‘ Falder List |

X AR OB PG GO KT

material).

etc.

. 7. Flexible text on banners

1. Site management adds bookstore layout information (floor, location, type of

2. The banner will provide a link to the university bookstore

3. Interface for advertisers to select their schedule

4. Default banner of bookstore if no other events available

5. The site management must have a website which displays banners:

6. Different kinds of advertising, including sales,

8. Display address of the bookstore, a map of it and also a picture of it.

9. Ads must be hyperlinked so that users can click on them to get more
details
10. Link to bookstore site {incl book's prices)

. 11. Web statistics tracking to determine number of visits for banners

4
23 ideas | 9 comments | 6 cat, | 15126, | paul

@ Project & Process

Interfaces

Level of Service
Evolution

<TBD>

'now hiring,"' book signings,

(see the “What is a Group Support System?”
sidebar for details). The tools help increase
stakeholder involvement and interaction.

EasyWinWin defines a set of activities
guiding stakeholders through a process of
gathering, elaborating, prioritizing, and ne-
gotiating requirements. In addition, it uses
group facilitation techniques that collabora-
tive tools support.

Table 2 summarizes the main stakeholder
negotiation activities involved in using Easy-
WinWin, and how they are implemented
through group techniques and thinking pat-
terns that the GroupSystems.com GSS sup-

ports. Figure 1 shows an EasyWinWin ex-
ample of candidate win conditions for a USC
bookstore Web portal requirements negotia-
tion and how stakeholders can categorize
them by dragging them into buckets. In con-
trast, 3G WinWin had a much more formal
way of defining win conditions, in which
categorization involved scrolling through a
category list in another window and typing
in the category name or number. With 3G
WinWin, it would usually take about a day
to enter and categorize about 15 to 25 win
conditions. With EasyWinWin, it would
take about two hours to enter and categorize

7 Prioritize Win Conditions (Alternative Analysis)

D O YGmO M

|F?ate from 1 to 10, with 10 the highest value

[&cersurmory Govzicory B
03 3
iz
2 02 15
Q

Capabilities (1 of 16)

2.1 Provide feedback capability on website items.

1. Business Importance

(Critera {1 of 2)

o [HIH HEEEEE

1 ‘234t 187 88 S
Choices

| Bririt I Clase | Help

Win Conditions

. - —
|Bu5|ness Imoor‘tance| Ease ofReaHzat\on| Total | Mean | STD \

| v

‘!\J

Capabilities

b
Ly

i
i
(,o

13.74
16.73

R

6.87
7.86
6.86

0.33

0.45

0.59

| 1017 508
1. 76

14.67 7.34
11.35 5.67 1.23%

May/June 2001

EasyWinWin Activities, Group Techniques, and Patterns of Thinking
(see the sidebar for information on patterns of thinking)

Activity Purpose Group technique Thinking pattern
Review and expand Stakeholders jointly refine and customize Stakeholders add comments and Diverge
negotiation topics an outline of negotiation topics based on recommend changes to the
a taxonomy of software requirements. outline.
The shared outline helps stimulate
thinking, organize win conditions, and A moderator reviews these Converge
check negotiations. comments together with the group
and modifies the outline
Brainstorm Stakeholders share their goals, perspectives, Free-format brainstorming: Diverge
stakeholder interests views, background, and expectations by Anonymous, rapid brainstorming
gathering statements about their win on electronic discussion sheets
conditions.
Converge on Stakeholders jointly craft a nonredundant Fast focus: A structured Converge
win conditions list of clearly stated, unambiguous win discussion to converge on
conditions by considering all ideas key win conditions
contributed in the brainstorming session.
Categorize win conditions Organize
into negotiation topics.
Capture a glossary Stakeholders define and share the Stakeholders propose initial Elaborate
of terms meaning of important terms of the definition of terms based on
project/domain in a glossary of terms. stakeholder statements. The team
then jointly reviews and agrees
on the terms.
Prioritize win The team prioritizes the win conditions Stakeholders rate win conditions Evaluate
conditions to define the scope of work and to gain for each of two criteria:

focus.

business importance (relevance

of a win condition to project/
company success) and

ease of realization (perceived technical
or economic constraints of
implementing a win condition).

Stakeholders surface and understand
issues.

Reveal issues
and constraints

Crowbar: Analyze prioritization Build consensus
poll to reveal conflicts, constraints,

different perceptions, and so forth.

|dentify issues,
options, agreements

Identify the issues that arise owing to
constraints and conflicting win conditions.
Propose options to resolve these issues.

WinWinTree: Review win conditions, Elaborate

identify issues, and porpose options

Negotiate agreements.

Negotiation of agreements

Build consensus

about 50 to 120 win conditions.

Figure 2 shows EasyWinWin’s capability
for group prioritization of win conditions.
Stakeholders can quickly see which win con-
ditions are more and less important and easy
to implement, plus where their degree of con-
sensus is stronger (the green and red cells).
With 3G WinWin, we had an awkward inter-
face to a separate and partially implemented
prioritization tool that was rarely used.

EasyWinWin has been used in about 30
real-world projects. We applied the ap-
proach in various domains (for example, in
digital libraries, an e-marketplace, and col-

laboration technology) and thoroughly ex-
plored and refined the various collaborative
techniques with the goal of streamlining the
negotiation protocols and the overall order
and design of process steps. We captured
our experiences in a detailed process guide-
book that explains our approach to project
managers or facilitators.!?

Lessons learned

We learned three major types of lessons
while developing the four generations of
WinWin systems: methodology, groupware,
and project.

May/June 2001 1EEE SOFTWARE 51

_ Methodology lessons

Gollaborative
technology for
requirements

must be based
on collaboration
and facilitation

that emphasize

52

engineering

group
dynamics.

IEEE SOFTWARE

Groupware tools for information tech-
nology requirements negotiation need a
methodology that reflects both the evolving
role of requirements in the IT life cycle
process and the sensitivity involved in suc-
cessful group dynamics. Here are some ex-
amples of methodology lessons we learned.

Define a repeatable requirements negotiation
pracess. The first three generations provided
only a top-level strategy on how to carry out
a concrete WinWin negotiation. In the Easy-
WinWin project, we focused on moving
people through a process that builds mutual
understanding and a shared vision in pro-
gressive steps. Each step involves the stake-
holders in assimilating each others’ views and
in building consensus on a mutually satisfac-
tory shared vision and set of system require-
ments. A process guide explains the use of
group techniques and collaborative tools in a
requirements negotiation.'® We found that a
detailed process guide reduces variance in the
quality of deliverables and helps lower-
skilled or less experienced practitioners ac-
complish more than would be possible with
straight stand-up facilitation.

Incorporate facilitation and collaboration
techniques. Collaborative technology for re-
quirements engineering must be based on
collaboration and facilitation techniques
that emphasize group dynamics. The first
three generations of WinWin environments
emphasized modeling constraints over
group dynamics and collaboration support.
Groupware-supported collaboration tech-
niques adopted in EasyWinWin help create
desired patterns of group interaction (see
the sidebar).

An example is the anonymous submission
of stakeholder contributions, such as win
conditions or voting ballots used to foster
candor. This way, people with power differ-
entials can make proposals without feeling a
threat to their job, status, relationships, or
political position. Increased openness also
helps stakeholders quickly get to the root is-
sues. People up and down the hierarchy are
better informed and thus can avoid the Abi-
lene Paradox (in which people agree to an
unattractive option because they erroneously
believe it will make the option-proposer

happy).!!

May/June 2001

Recognize the role of negotiations in the life
cycle. A major lesson learned from the ex-
periment with the 1G WinWin system was
that the WinWin approach helps bridge a
previous gap’ in using the spiral process
model: determining the next round of ob-
jectives, alternatives, and constraints. This
led to the WinWin spiral model extensions
that several organizations now use.!?

Experiments also showed that we should
perform prototyping ahead of and during
requirements negotiations: The 3G WinWin
was sufficiently robust to support four
years’ worth of projects—with 15 to 20
project negotiations per year.'>!3 These
project negotiations involved USC librari-
ans and student teams negotiating the re-
quirements for operational USC digital li-
brary systems, which the student teams then
built and transitioned to library use. In the
first year, we learned not to do the WinWin
negotiations ahead of the prototype, as we
rediscovered the IKIWISI (’ll know it when
I see it) syndrome. Once the librarians saw
the prototype, they wanted to redo all the
negotiations. In the following years, we ver-
ified across over 100 requirements negotia-
tions that 3G WinWin could support rapid
definition and development of unprece-
dented applications.

WinWin has been successfully used in
various contexts of a requirements defini-
tion. This includes the development of a
shared vision among stakeholders, require-
ments definition for custom development
projects, COTS acquisition and integration,
transition planning, and COTS product en-
hancement and release planning.

Make sure your stakeholder negotiators have
the essential characteristics. Your stake-
holder negotiators should be representative,
empowered, knowledgeable, collaborative,
and committed. We identified these character-
istics after analyzing the critical success fac-
tors for transition into digital library opera-
tional use. Successful win—win negotiations
often involve prescreening stakeholder nego-
tiators and performing shared-knowledge-
building activities such as preliminary team-
building sessions and concurrent prototyping.

Refine agreements into more measurable
requirements. The result of a WinWin nego-
tiation is typically not a complete, consis-

tent, traceable, and testable requirements
specification. For example, stakeholders
might become enthusiastic about proposed
capabilities and ratify idealistic agreements
such as “anytime, anywhere” service.
Rather than dampen their enthusiasm with
a precise wordsmithing exercise, it is better
to have a facilitator postprocess such agree-
ments into more precise and realistic re-
quirements for the stakeholders to review
and iterate.

Groupware lessons

Some of the strongest agreements among
negotiators in our early WinWin systems
were about deficiencies in the groupware.
This is not where you want your negotiators
focusing their attention. Later versions of
WinWin became more effective in keeping
stakeholders focused on their negotiations.

Make use of unobtrusive and flexible tools.
Each of our first three generations of Win-
Win groupware was increasingly strict
about enforcing modeling conventions at
the expense of group dynamics. Several in-
dustry and government organizations also
used 3G WinWin experimentally. How-
ever, this use did not lead to the system’s
crossing the chasm into mainstream use.
The main reason the users cited was that
3G WinWin’s integrity rules were too rig-
orous. For example, when an agreement
was put to a vote, all of its associated win
conditions, issues, and options were locked
to preserve the voting process’s integrity.
Then, to fix a typo in an artifact that was
locked for voting, users had to make all the
locked artifacts inactive and copy their
contents into a new set of artifacts. Fur-
thermore, they could not define issues
without win conditions as referents or de-
fine options without issues as referents.
Thus, the software got in the way of the
human interactions, which were a critical
part of negotiation. In EasyWinWin, we
decided to relax such constraints, with the
result that industry and government users
have been enthusiastic about their negotia-
tion experiences.

Define the negotiation model. Experiments
with the 1G WinWin system showed that
software requirements negotiation required
considerably more database and relation-

ship management than was needed for mul-
tichip modules. This led to a much more
thorough definition of WinWin artifacts
and relationships, including the basic nego-
tiation model discussed earlier.

Focus on ease of use to foster stakeholder in-
volvement. People participating in a require-
ments negotiation typically don’t have time
to take training before starting to negotiate.
Ease of use lets more people directly partic-
ipate and elicits more from everybody in-
volved. This leads to better buy-in because
more interests can be accommodated earlier
in the process. It also helps to develop
broader and deeper deliverables. EasyWin-
Win results surpass 3G WinWin results in
terms of the number of artifacts collected in
a negotiation.!3

In addition, the higher number of issues
identified and resolved helps reduce risks
early in a project and the chances of it de-
railing later. For example, our 3G WinWin
digital library requirements negotiations in-
volved 15 to 25 win conditions and con-
verged in two to three weeks (as compared
to two to three months for comparable
manual win-win requirements negotia-
tions). Similar EasyWinWin requirements
negotiations involved 50 to 120 win condi-
tions and converged in two to three days.
Furthermore, we found that the stakehold-
ers’ experience with EasyWinWin led to bet-
ter mutual understanding and greater stabil-
ity of the negotiated requirements.

Provide a robust infrastructure. The 3G
homemade database server was very fragile
and prone to losing people’s work in
crashes. Using a reliable infrastructure is
critical to avoid frustration and to ensure
stakeholder buy-in.

Provide interoperability. 3G WinWin did not
interoperate well with other groupware sys-
tems, even after we built an applications
programming interface. One industry proj-
ect successfully built and applied its own
WinWin overlay on top of the groupware
system it was using but did not try to de-
velop a more general capability.

Support for multiple modes of interaction. Be-
yond same-time and same-place stakeholder
interaction, we successfully included remote

May/June 2001

using a reliabie

Infrastructure

IS critical
to avoid

frustration and

to ensure
stakeholder
buy-in.

IEEE SOFTWARE

53

_ participants in EasyWinWin workshops by

consider how

well the user
base for which
you are building
the groupware

54

You need to

system
represents
mainstream
end users.

IEEE SOFTWARE

using the Web-based capabilities of Group-
Systems.com and audio links. We are cur-
rently expanding recommendations for geo-
graphically distributed teams intending to
adopt EasyWinWin activities in different
time and place settings.

WinWin project lessons

Finally, here are some lessons we learned
in project organization, user involvement,
and expectations management.

Involve mainstream end users. With persist-
ence, and by focusing on your mainstream
end users, you can develop groupware sys-
tems that both speed up the initial definition
process and help stakeholders achieve a
shared vision with lasting value across the
application’s entire life cycle. Thus, you
need to consider how well the user base for
which you are building the groupware sys-
tem represents mainstream end users. Once
we had an annual set of USC projects to
support with 3G WinWin, we overfocused
on USC users rather than on our primary
target of mainstream industry users.

When developing groupware, perseverance
pays off. Do not overreact to initial negative
experiences. Groupware systems must be
carefully balanced to accommodate the
many stakeholders’ different needs. When
designing 2G and 3G WinWin, we reacted to
the 1G WinWin experience with its high-
priced commercial infrastructure by building
a homemade infrastructure. The EasyWin-
Win overlay above GroupSystems.com’s in-
frastructure has been much more successful.
When designing 3G WinWin, we also over-
reacted to some instances of artifact misuse
in 2G WinWin by creating a system whose
rules were so rigorous that they turned off
most users. 3G WinWin improved on 2G
WinWin with its well-defined architectural
interfaces but lost out because of its inflexi-
bility for mainstream stakeholder groups.
Relative to the “build it twice” guidance in
Winston Royce’s initial waterfall model arti-
cle'* and in Fred Brooks’ The Mythical Man
Month,'> you must also add Brooks’ second
system syndrome: Developers, particularly
for groupware, are likely to react overambi-
tiously to experiences with initial prototypes
or systems.

May/June 2001

Use the system to plan its own future. Doing
this provides both a good test of the current
groupware system and a good way of
achieving a shared vision of its future direc-
tions. Both USC’s experience with using 1G
WinWin to negotiate requirements for 2G
WinWin and GroupSystems.com’s similar
experience with using EasyWinWin sub-
stantiates this.

SS developers should not expect to

get the system right the first time—or

even the second time. OQur experience
with the four generations of WinWin re-
quirements negotiation systems is that it
takes several iterations of operational GSSs
to fully realize their benefits. Even now, we
are involved in a fifth iteration to provide
better support for less experienced facilita-
tors. However, the payoffs are worth it: We
have experienced about a factor of four im-
provement in multistakeholder requirements
negotiation time when going from manual
negotiation to the 2G to 3G WinWin system,
and another factor of five in going from 2G-
3G WinWin to the EasyWinWin system. In
addition, the negotiation results have be-
come more thorough and better internalized

by the stakeholders. @

Acknowledgments

DARPA, through Rome Laboratory under con-
tract number F30602-94-C-0195, and the Austrian
Science Fund, with an Erwin Schrodinger research
grant for Paul Griinbacher (1999/] 1764), sponsored
this research. It was also sponsored by the affiliates of
the USC Center for Software Engineering: Aerospace,
Automobile Club of Southern California, Boeing, C-
Bridge, Chung—Ang University (Korea), Draper Labs,
Electronic Data Systems Corporation, Federal Avia-
tion Administration, Fidelity, GDE Systems, Group-
Systems.com, Hughes, Institute for Defense Analysis,
Litton Industries, Lockheed Martin Corporation, Lu-
cent Technologies, Microsoft, Motorola, Northrop
Grumman Corporation, Rational Software Corpora-
tion, Raytheon, Science Applications International
Corporation, Software Engineering Institute
(Carnegie-Mellon University), Software Productivity
Consortium, Sun Microsystems, Telcordia Technolo-
gies, TRW, US Air Force Research Laboratory, US
Army Research Laboratory, US Army TACOM, and
Xerox Corporation.

We also thank the definers and developers of the
first three versions of WinWin: Ellis Horowitz, Dan
Port, Prasanta Bose, Yimin Bao, Anne Curran, Alex
Egyed, Hoh In, Joo Lee, June Lee, Mingjune Lee, and
Jungwon Park. We also thank the users of the four
WinWin systems: Frank Beltz, Garry Brannum, Walter

Green, Elizabeth Kean, Judy Kerner, Julie Kwan, An-
drew Landisman, Anne Lynch, Ray Madachy, Azad
Madni, Nikunj Mehta, Steve Mosher, Karen Owens,
Arnold Pittler, Michael Saboe, and John Salasin.

References

1. The Standish Group, CHAOS Report, 1995, www.
standishgroup.com/visitor/chaos.htm (current 16 Apr.
2001).

2. D. Waitley, The Double Win, Berkeley Books, New
York, 1985.

3. S. Covey, The Seven Habits of Highly Effective People,
Fireside Books, New York, 1990.

4. B. Boehm and R. Ross, “Theory W Software Project
Management: Principles and Examples,” IEEE Trans.
Software Eng., July 1989, pp. 902-916.

5. B. Boehm et al., “Software Requirements as Negotiated
Win Conditions,” Proc. Int’l Conf. Requirements Eng.,
IEEE Press, Piscataway, N.]J., 1994.

6. B. Boehm, “Requirements That Handle IKIWISI, COTS,
and Rapid Change,” Computer, July 2000, pp. 99-102.

7. J. Highsmith, Adaptive Software Development, Dorset
House, New York, 2000.

8. J. Nunamaker et al., “Lessons from a Dozen Years of
Group Support Systems Research: A Discussion of Lab
and Field Findings,” J. Management Information Sys-
tems, vol. 13, no. 3, Winter 1996-1997, pp. 163-207.

9. P. Gruenbacher, “Collaborative Requirements Negotia-
tion with EasyWinWin,” Second Int’l Workshop Re-
quirements Eng. Process, IEEE CS Press, Los Alamitos,
Calif., 2000.

10. The EasyWinWin Process Guide: USC-CSE and Group-
Systems.com, http://sunset.usc.edu/research/WINWIN,
2000 (current 16 Apr. 2001).

11. J.B. Harvey, The Abilene Paradox and Other Medita-
tions on Management, Jossey-Bass, San Francisco, 1988.

12. B. Boehm et al., “Using the WinWin Spiral Model: A
Case Study,” Computer, 1998, pp. 33-44.

13. A.F. Egyed and B. Boehm, “Comparing Software Sys-
tem Requirements Negotiation Patterns, J. Systems

of [
INDUSTRY
J[ANDARDS

14. W.W. Royce, “Managing the Development of Large
Software Systems,” Proc. IEEE WESCON, IEEE Press,
Piscataway, N.]J., 1970, pp. 1-9.

15. EP. Brooks, The Mythical Man Month, Addison-Wesley,
Reading, Mass, 1975.

About the Authors

Barry Boehm is TRW Professor of Software Engineering and director of the Center for
Software Engineering af the University of Southern California. His current research focuses on
integrating a software system’s process models, product models, property models, and success
models via an approach called MBASE (Model-Based Architecting and Software Engineering).
He received his BA from Harvard and his MS and PhD from UCLA, all in mathematics. He re-
ceived an honorary ScD in computer science from the University of Massachusetts. He is an
AIAA fellow, an IEEE fellow, an INCOSE fellow, an ACM fellow, and a member of the National
Academy of Engineering. Contact him at the USC Center for Software Engineering, Los Angeles,
(A 90089-0781; hoechm@sunset.usc.edu.

Paul Griinbacher is an assistant profes-
sor of systems engineering and automation at the Johannes Kepler University Linz, Austria. His
research interests include the application of collaborative technology in software engineering
with a focus on requirements engineering and methodologies for software process improve-
ment. He studied Business Informatics and holds a PhD from the University of Linz. Contact
him at Systems Engineering and Automation, Johannes Kepler University Linz, Altenbergerstr.
69, 4040 Linz, Ausiria; pg@sea.uni-linz.ac.at.

Robert 0. Briggs is director of methodology and process tools for GroupSystems.com,
where he oversees the future evolution of GroupSystems software, and is also research coordinator
at the Center for the Management of Information at the University of Arizona. He investigates the
cognitive foundations of collaboration with a focus on the development and deployment of soft-
ware and processes to enhance the performance of teams making a joint effort toward a goal. He
earned his BS in Information Systems and Art History and an MBA from San Diego State Univer-
sity. He earned his PhD in management and information systems from the University of Arizona.
Contact him at 1430 E. Fort Lowell Rd. #301, Tucson, AZ 85719; bbriggs@groupsystems.com.

Posix

enhanced parallel ports
wireless foRen rings

networks FireWire

Computer Society members work together to define standards like
IEEE 1003, 1394, 802, 1284, and many more.

HELP SHAPE FUTURE TECHNOLOGIES © JOIN A COMPUTER SOCIETY STANDARDS WORKING GROUP AT
computer.org/standards/

May/June 2001 1EEE SOFTWARE 55

