

Microblog 911 SRS

Version: 1.0

ACS560
Microblog 911
Software Requirements Specification Document
Prepared by: Kassie Bowman
Date: September 25, 2011
Version: 1.0
Table of Contents

51
Introduction

51.1
Purpose

51.2
Scope

51.3
Definitions, Acronyms, and Abbreviations

51.4
References

51.5
Overview

62
The Overall Description

62.1
Product Perspective

62.1.1
System Interfaces

62.1.2
Interfaces

72.1.3
Hardware Interfaces

72.1.4
Software Interfaces

72.1.5
Communications Interfaces

72.1.6
Memory Constraints

82.1.7
Operations

82.1.8
Site Adaptation Requirements

82.2
Product Functions

92.3
User Characteristics

92.4
Constraints

102.5
Assumptions and Dependencies

102.6
Apportioning of Requirements

113
Specific Requirements

113.1
External Interfaces

113.1.1
Microblog Interface

11TBD

113.1.2
User Interface

113.1.3
Data Store Interface

113.2
Functions

113.2.1
Emergency Detection

113.2.1.1
The system shall interface with a microblog application to retrieve the following data for messages containing key words related to supported emergency situations:

113.2.2
Emergency Services Personnel Interaction

113.2.2.1
The system shall notify emergency services personnel (ESP) of a detected emergency situation.

123.2.2.2
The system shall provide the capability for ESP to update the status of an emergency situation.

123.2.3
Public Subscriber Interaction

123.2.3.1
The system shall provide the capability for public subscribers (PS) to specify locations for which to receive emergency notifications.

123.2.3.2
The system shall provide the capability for PS to specify which emergency types for which to receive notifications.

123.2.3.3
The system shall notify PS of a detected emergency situation that satisfies user settings of type and location.

123.3
Performance Requirements

123.4
Logical Database Requirements

133.5
Design Constraints

133.5.1
Standards Compliance

133.6
Software System Attributes

143.6.1
Reliability

143.6.2
Availability

143.6.3
Security

143.6.4
Maintainability

143.6.5
Portability

174
Change Management Process

175
Document Approvals

176
Supporting Information

1 Introduction

1.1 Purpose
The purpose of this Software Requirements Specifications document is to describe requirements for Microblog 911, an emergency detection and notification application that will allow emergency services personnel and application subscribers to receive real-time information about emergency situations. The intended audience for this document includes project stakeholders and developers.
1.2 Scope

The Microblog 911 software will be able to detect emergency situations by monitoring posts to microblog sites (such as Twitter). The microblog data will be analyzed using data mining techniques in order to detect the presence of an emergency. When an emergency situation has been detected, the software will notify emergency services dispatchers and members of the public who subscribe to the service of the situation.

This application will allow emergency services personnel and public subscribers to have real-time information about an emergency situation as it occurs. This will allow them to respond more quickly and prevent unnecessary loss of life and property.

1.3 Definitions, Acronyms, and Abbreviations

	Term
	Definition

	API
	Application Programming Interface

	emergency services
	Public organizations that respond to and deal with emergencies when they occur, esp. those that provide police, ambulance, and firefighting services

	ES
	Emergency Services

	ESP
	Emergency Services Personnel

	GUI
	Graphical User Interface

	microblog
	Web service that allows the subscriber to broadcast short messages to other subscribers of the service

	PS
	Public Subscribers

	public subscribers
	Members of the general public who subscribe to the service provided by the application

	SRS
	Software Requirements Specification

1.4 References

[1] “Documentation | Twitter Developers”. https://dev.twitter.com/docs. Retrieve September 25, 2011.

1.5 Overview

This document provides a high-level description of the features and capabilities of the Microblog 911 application. It also provides a detailed description of the low-level functions that are required in order to provide those capabilities.
2 The Overall Description
Microblog 911 will utilize microblog data to detect the occurrence of an emergency situation and provide real-time information regarding the situation to emergency services personnel and members of the general public who subscribe to the service. The microblog data will be accessed via publicly available Application Program Interfaces (APIs) to microblog applications. The data will be processed and analyzed in order to detect similarities and patterns.
Once an emergency situation has been detected by analyzing the microblog data, the application will provide all known details about the emergency to emergency services dispatchers in the area to allow them to respond to the emergency. Many microblog applications allow for posts to be geo-tagged, meaning the latitudinal and longitudinal coordinates of the post originator are embedded in the post. The Microblog 911 application will utilize geo-tagged posts in order to provide a precise location of the detected emergency situation to emergency services dispatchers.
Information regarding a detected emergency will also be provided to public subscribers. Unlike emergency services dispatchers, public subscribers will not wish to be notified for every single event that occurs. As such, they will be able to specify criteria for notification, such as occurance within a certain vicinity of their home, school, or workplace. They will also be able to specify the type of emergencies of which they wish to be notified, as well as the method of notification.
2.1 Product Perspective
The Microblog 911 application is dependent on its interfaces with existing microblog applications. Although the application itself is self-contained, the entire premise of the application is based on the the availability of real-time data posted by users of microblogs. Without this data, Microblog 911 will have no means of detecting emergencies situations and the application will be rendered inert.
2.1.1 System Interfaces
The most important interface for this application is the interface with microblog applications. For this version of the software, only the Twitter microblog application will be used, due to the widespread popularity of Twitter and its public API, which is simple and easy to use. Twitter provides a Streaming API which will be utilized to obtain “high-throughput near-realtime access” to posts [1].
2.1.2 Interfaces
The Microblog 911 application will provide two primary user interfaces. There will be a mobile application interface for public subscribers to access their accounts and alter their notification settings. There will also be a web browser-based interface. For public subscribers, it will provide the same functionality as the mobile application. For emergency services dispatchers, it will provide more detail and the ability to update the application regarding the status of the emergency situation.
2.1.3 Hardware Interfaces
The system has no hardware interface requirements.
2.1.4 Software Interfaces
TBD
Specify the use of other required software products and interfaces with other application systems. For each required software product, include:

(1) Name

(2) Mnemonic

(3) Specification number

(4) Version number

(5) Source
For each interface, provide:

(1) Discussion of the purpose of the interfacing software as related to this software product

(2) Definition of the interface in terms of message content and format
Here we document the APIs, versions of software that we do not have to write, but that our system has to use. For instance if your customer uses SQL Server 7 and you are required to use that, then you need to specify i.e.

2.1.4.1 Microsoft SQL Server 7. The system must use SQL Server as its database component. Communication with the DB is through ODBC connections. The system must provide SQL data table definintions to be provided to the company DBA for setup.
A key point to remember is that you do NOT want to specify software here that you think would be good to use. This is only for customer-specified systems that you have to interact with. Choosing SQL Server 7 as a DB without a customer requirement is a Design choice, not a requirement. This is a subtle but important point to writing good requirements and not over-constraining the design.
2.1.5 Communications Interfaces
This application will require Wi-Fi or 3G in order to interact with users utilizing mobile devices. For all other users utilizing web browsers on a computer, normal internet communication protocols will be utilized (such as HTTP).
2.1.6 Memory Constraints
The primary memory needs of this application will include storage of user settings and data being analyzed. This will occur on the server side of the application, imposing minimal memory constraints on user systems.
2.1.7 Operations
TBD
Specify the normal and special operations required by the user such as:

(1) The various modes of operations in the user organization

(2) Periods of interactive operations and periods of unattended operations

(3) Data processing support functions

(4) Backup and recovery operations
(Note: This is sometimes specified as part of the User Interfaces section.) If you separate this from the UI stuff earlier, then cover business process type stuff that would impact the design. For instance, if the company brings all their systems down at midnight for data backup that might impact the design. These are all the work tasks that impact the design of an application, but which might not be located in software.
2.1.8 Site Adaptation Requirements
TBD
In this section:

(1) Define the requirements for any data or initialization sequences that are specific to a given site, mission, or operational mode

(2) Specify the site or mission-related features that should be modified to adapt the software to a particular installation
If any modifications to the customer’s work area would be required by your system, then document that here. For instance, “A 100Kw backup generator and 10000 BTU air conditioning system must be installed at the user site prior to software installation”.

This could also be software-specific like, “New data tables created for this system must be installed on the company’s existing DB server and populated prior to system activation.” Any equipment the customer would need to buy or any software setup that needs to be done so that your system will install and operate correctly should be documented here.
2.2 Product Functions
TBD
Provide a summary of the major functions that the software will perform. Sometimes the function summary that is necessary for this part can be taken directly from the section of the higher-level specification (if one exists) that allocates particular functions to the software product.
For clarity:

(1) The functions should be organized in a way that makes the list of functions understandable to the customer or to anyone else reading the document for the first time.

(2) Textual or graphic methods can be used to show the different functions and their relationships. Such a diagram is not intended to show a design of a product but simply shows the logical relationships among variables.
AH, Finally the real meat of section 2. This describes the functionality of the system in the language of the customer. What specifically does the system that will be designed have to do? Drawings are good, but remember this is a description of what the system needs to do, not how you are going to build it. (That comes in the design document).
2.3 User Characteristics
There are two user groups for this application: emergency services dispatchers and service subscribers who are members of the general public (called public subscribers). The emergency services dispatchers may not have a high level of technical expertise outside of technologies required to perform their jobs. As such, it will be imperative that any application interface for this group is easy to use and understand. It should also work with existing equipment used by emergency services (i.e. requisitioning new hardware should not be required to adopt this application).

It is anticipated that public subscribers will have at least a rudimentary level of technical expertise and experience in using web-based applications. Effort will be made with this project to utilize familiar graphical user interfaces (GUI) formats consistent with other applications developed for web browsers or smart phones.
2.4 Constraints
TBD
Provide a general description of any other items that will limit the developer's options. These can include:
(1) Regulatory policies

(3) Interface to other applications

(4) Parallel operation

(5) Audit functions

(6) Control functions

(7) Higher-order language requirements
(8) Signal handshake protocols (for example, XON-XOFF, ACK-NACK)
(9) Reliability requirements

(10) Criticality of the application

(11) Safety and security considerations
This section captures non-functional requirements in the customers language. A more formal presentation of these will occur in section 3.
2.5 Assumptions and Dependencies
As mentioned previously, there is a strong dependency of this application upon the APIs of any microblog applications with which it interfaces. Any changes to these APIs could potentially have significant impact on this product.
2.6 Apportioning of Requirements
It is anticipated that there will be three releases of this application: beta release, emergency services release, and public release.
The beta version of this application will include the functionality related to emergency detection via microblog data analysis. It wil not include the user interface for either user group.

The emergency services release will include all functionality related to reporting detected emergencies to emergency services dispatchers.

The public release wil add functionality for interacting with public subscribers and notifying them of emergencies according to their preferences.
Specific Requirements
2.7 External Interfaces
2.7.1 Microblog Interface
TBD
2.7.2 User Interface

TBD
2.7.3 Data Store Interface

TBD
2.8 Functions
2.8.1 Emergency Detection
2.8.1.1 The system shall interface with a microblog application to retrieve the following data for messages containing key words related to supported emergency situations:

· Content

· Location

· Time

· Author

2.8.1.2 The system shall perform indexing on retrieve microblog posts.
2.8.1.3 The system shall group microblog posts based on similarity of content.

2.8.1.4 The system shall interface with a microblog application to retrieve the number of followers for each author in the group.
2.8.1.5 The system shall interface with a microblog application to retrieve the number of reposts for each message in the group.
2.8.1.6 The system shall score each group by adding the total number of reposts for messages and the total number of authors for followers and dividing by the number of messages.

2.8.1.7 The system shall identify each group with a score greater than the detection threshold as an emergency situation.
2.8.2 Emergency Services Personnel Interaction
2.8.2.1 The system shall notify emergency services personnel (ESP) of a detected emergency situation.
2.8.2.2 The system shall provide the capability for ESP to update the status of an emergency situation.
2.8.3 Public Subscriber Interaction
2.8.3.1 The system shall provide the capability for public subscribers (PS) to specify locations for which to receive emergency notifications.
2.8.3.2 The system shall provide the capability for PS to specify which emergency types for which to receive notifications.

2.8.3.3 The system shall notify PS of a detected emergency situation that satisfies user settings of type and location.
2.9 Performance Requirements
TBD
This subsection specifies both the static and the dynamic numerical requirements placed on the software or on human interaction with the software, as a whole. Static numerical requirements may include:

(a) The number of terminals to be supported

(b) The number of simultaneous users to be supported

(c) Amount and type of information to be handled

Static numerical requirements are sometimes identified under a separate section entitled capacity.
Dynamic numerical requirements may include, for example, the numbers of transactions and tasks and the amount of data to be processed within certain time periods for both normal and peak workload conditions.
All of these requirements should be stated in measurable terms.
For example,
95% of the transactions shall be processed in less than 1 second
 rather than,
An operator shall not have to wait for the transaction to complete.
(Note: Numerical limits applied to one specific function are normally specified as part of the processing subparagraph description of that function.)
2.10 Logical Database Requirements
TBD
This section specifies the logical requirements for any information that is to be placed into a database. This may include:
· Types of information used by various functions

· Frequency of use

· Accessing capabilities

· Data entities and their relationships

· Integrity constraints

· Data retention requirements
If the customer provided you with data models, those can be presented here. ER diagrams (or static class diagrams) can be useful here to show complex data relationships. Remember a diagram is worth a thousand words of confusing text.
2.11 Design Constraints
TBD
Specify design constraints that can be imposed by other standards, hardware limitations, etc.
2.11.1 Standards Compliance
TBD
Specify the requirements derived from existing standards or regulations. They might include:

(1) Report format

(2) Data naming

(3) Accounting procedures

(4) Audit Tracing
For example, this could specify the requirement for software to trace processing activity. Such traces are needed for some applications to meet minimum regulatory or financial standards. An audit trace requirement may, for example, state that all changes to a payroll database must be recorded in a trace file with before and after values.
2.12 Software System Attributes
TBD
There are a number of attributes of software that can serve as requirements. It is important that required attributes by specified so that their achievement can be objectively verified. The following items provide a partial list of examples. These are also known as non-functional requirements or quality attributes.
These are characteristics the system must possess, but that pervade (or cross-cut) the design. These requirements have to be testable just like the functional requirements. Its easy to start philosophizing here, but keep it specific.
2.12.1 Reliability
TBD
Specify the factors required to establish the required reliability of the software system at time of delivery. If you have MTBF requirements, express them here. This doesn’t refer to just having a program that does not crash. This has a specific engineering meaning.
2.12.2 Availability
TBD
Specify the factors required to guarantee a defined availability level for the entire system such as checkpoint, recovery, and restart. This is somewhat related to reliability. Some systems run only infrequently on-demand (like MS Word). Some systems have to run 24/7 (like an e-commerce web site). The required availability will greatly impact the design. What are the requirements for system recovery from a failure? “The system shall allow users to restart the application after failure with the loss of at most 12 characters of input”.
2.12.3 Security
TBD
Specify the factors that would protect the software from accidental or malicious access, use, modification, destruction, or disclosure. Specific requirements in this area could include the need to:

· Utilize certain cryptographic techniques

· Keep specific log or history data sets

· Assign certain functions to different modules

· Restrict communications between some areas of the program

· Check data integrity for critical variables
2.12.4 Maintainability
TBD
Specify attributes of software that relate to the ease of maintenance of the software itself. There may be some requirement for certain modularity, interfaces, complexity, etc. Requirements should not be placed here just because they are thought to be good design practices. If someone else will maintain the system
2.12.5 Portability
TBD
Specify attributes of software that relate to the ease of porting the software to other host machines and/or operating systems. This may include:

· Percentage of components with host-dependent code

· Percentage of code that is host dependent

· Use of a proven portable language

· Use of a particular compiler or language subset

· Use of a particular operating system
Once the relevant characteristics are selected, a subsection should be written for each, explaining the rationale for including this characteristic and how it will be tested and measured. A chart like this might be used to identify the key characteristics (rating them High or Medium), then identifying which are preferred when trading off design or implementation decisions (with the ID of the preferred one indicated in the chart to the right). The chart below is optional (it can be confusing) and is for demonstrating tradeoff analysis between different non-functional requirements. H/M/L is the relative priority of that non-functional requirement.
	ID
	 Characteristic
	H/M/L
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	1
	Correctness
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	Efficiency
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	Flexibility
	
	
	
	
	
	
	
	
	
	
	
	
	

	4
	Integrity/Security
	
	
	
	
	
	
	
	
	
	
	
	
	

	5
	Interoperability
	
	
	
	
	
	
	
	
	
	
	
	
	

	6
	Maintainability
	
	
	
	
	
	
	
	
	
	
	
	
	

	7
	Portability
	
	
	
	
	
	
	
	
	
	
	
	
	

	8
	Reliability
	
	
	
	
	
	
	
	
	
	
	
	
	

	9
	Reusability
	
	
	
	
	
	
	
	
	
	
	
	
	

	10
	Testability
	
	
	
	
	
	
	
	
	
	
	
	
	

	11
	Usability
	
	
	
	
	
	
	
	
	
	
	
	
	

	12
	Availability
	
	
	
	
	
	
	
	
	
	
	
	
	

Definitions of the quality characteristics not defined in the paragraphs above follow.
•
Correctness - extent to which program satisfies specifications, fulfills user’s mission objectives

•
Efficiency - amount of computing resources and code required to perform function

•
Flexibility - effort needed to modify operational program

•
Interoperability - effort needed to couple one system with another

•
Reliability - extent to which program performs with required precision

•
Reusability - extent to which it can be reused in another application

•
Testability - effort needed to test to ensure performs as intended

•
Usability - effort required to learn, operate, prepare input, and interpret output
3 Change Management Process
Any requested changes to this specification must be submitted in writing to the author. Change requests will be reviewed with the requestor to determine if and how they will be implemented. When changes are made, a new version of this document will be released.

4 Document Approvals
This specification has been developed for the ACS 560: Software Engineering course. As such, document approval will be done by the instructor, Dr. Tanik.
5 Supporting Information
TBD
The supporting information makes the SRS easier to use. It includes:
· Table of Contents

· Index

· Appendices
The Appendices are not always considered part of the actual requirements specification and are not always necessary. They may include:

(a) Sample I/O formats, descriptions of cost analysis studies, results of user surveys

(b) Supporting or background information that can help the readers of the SRS

(c) A description of the problems to be solved by the software

 (d) Special packaging instructions for the code and the media to meet security, export, initial loading, or other requirements
When Appendices are included, the SRS should explicitly state whether or not the Appendices are to be considered part of the requirements.

Page 16 of 17

