Question: What is the molar mass of a gas that has a density of $6.70 \mathrm{~g} / \mathrm{L}$ at STP?.
A. $0.298 \mathrm{~g} / \mathrm{mol}$
B. $3.35 \mathrm{~g} / \mathrm{mol}$
C. $73 \mathrm{~g} / \mathrm{mol}$
D. $150 \mathrm{~g} / \mathrm{mol}$
E. $496 \mathrm{~g} / \mathrm{mol}$

HINT: What does STP mean?

Concepts: To answer this question we need to understand what density is and how we can obtain it using the ideal gas law.

Connections: What is given? We are given the density of a sample of gas as well as the state of the gas sample (STP).

What do I want to know? We want to know the molecular weight of the gas under these conditions. We have to use the density to figure this out.

What else do I need to know? STP is an abbreviation for Standard Temperature and Pressure. For as, STP corresponds to $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=0^{\circ} \mathrm{C}$ or 273.2 K

Density is defined as mass per unit volume (m / V). For gases the most common unit is g / L because the densities tend to be low. If we know the number of moles of gas (n) that we have, we can use the molar mass in $g(M)$ to get the mass $=(n M)$. Typically we can use the ideal gas law to get $\mathrm{n}(\mathrm{n}=\mathrm{PV} /(\mathrm{RT})$, however we do not know the volume.

We can however calculate the ratio of the moles to the volume: $n / V=P /(R T)$. If we simply multiply both sides of this equation by the molar mass (M), the ratio $n M / V$ is the density $=\mathrm{d}$

$$
\mathrm{nM} / \mathrm{V}=\mathrm{d}=\mathrm{PM}(\mathrm{RT})
$$

From this equation, we see that the density of a gas depends only on its identity (molecular weight), temperature and pressure so we should be able to determine the identity of a gas from its density.

$$
\mathrm{M}=\mathrm{dRT} / \mathrm{P}
$$

As with the idea gas law, proper units is imperative. Since we are given P in atm and T in K , we will use the gas constant: $\mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$. If we use $\mathrm{M} \mathrm{in} \mathrm{g} / \mathrm{mol}$, then the resulting density will have units of g / L.

Be sure you understand everything above before moving on to the solution below.

Solution:

Start by summarizing all your information:
$\mathrm{d}=6.70 \mathrm{~g} / \mathrm{L}$
STP means standard temperature and pressure:
$\mathrm{P}=1.0 \mathrm{~atm}$
$\mathrm{T}=0^{\circ} \mathrm{C}$
Next, we need to determine which R value to use. Since we're using pressure units we need to use $\mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$

Now we see that Kelvin is the temperature scale needed so we convert our temperature to Kelvin:

$$
\mathrm{T}=0^{\circ} \mathrm{C}+273.15=273.15 \mathrm{~K}
$$

We now have all of the information needed to complete the calculation:
$\mathrm{M}=\mathrm{dRT} / \mathrm{P} \quad \mathrm{E} 12-4-4$
$\mathrm{M}=(6.70 \mathrm{~g} / \mathrm{L})(0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(273.15 \mathrm{~K}) / 1.0 \mathrm{~atm}$
$\mathrm{M}=150 \mathrm{~g} / \mathrm{mol}$ or answer choice D

