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I Introduce Uncertainty Quantification
I Definitions and motivations
I Classification of various techniques
I Identify different types of uncertainties

I Demonstrate application of UQ to simple problems
I Fluid dynamics: variability in high speed flows
I Autoignition: effect of reaction rate uncertainties
I Heat transfer: material property uncertainty

I Convey the challenges and the opportunity in UQ Science
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Part I

Why Uncertainty Quantification?



Why Uncertainty Quantification?
...from WikiPedia

Uncertainty quantification (UQ) is the science of quantitative
characterization and reduction of uncertainties in applications.

It tries to determine how likely certain outcomes are if some
aspects of the system are not exactly known.

An example would be to predict the acceleration of a human
body in a head-on crash with another car: even if we exactly
knew the speed, small differences in the manufacturing of
individual cars, how tightly every bolt has been tightened, etc,
will lead to different results that can only be predicted in a
statistical sense. [...]
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Why Uncertainty Quantification?
Decision Making

I UQ is critical in identifying the confidence in an outcome
I Provides basis for certification in high-consequence

decisions
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I Required to identify the effect limited knowledge in inputs

of the simulations
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Why Uncertainty Quantification?
Robust Design

I System performance are unchanged (stable) when
exposed to uncertainties in the operating conditions.

I Optimization Under Uncertainty is a powerful tool for
managing the tradeoffs between optimal performance and
performance stability.



Why Uncertainty Quantification?
A simplistic view

I In spite of the wide spread use of Modeling and Simulation
(M&S) tools it remains difficult to provide objective
confidence levels in the quantitative information obtained
from numerical predictions

I One of the main objective is to provide error bars on the
simulations results
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Why Uncertainty Quantification?
Error Bars

The objective is to replace the subjective notion of confidence
with a mathematical rigorous measure

Unsteady turbulent heat convection with uncertain wall heating

Costantine & Iaccarino, AIAA-2009-0975



Why Uncertainty Quantification?
Error Bars

The objective is to replace the subjective notion of confidence
with a mathematical rigorous measure

Transonic airfoil with uncertain flight conditions

Witteveen, Chantrasmi, Doostan & Iaccarino, Nodesim Workshop



Slide from M. Anderson, LANL



Part II

Definitions

"As we know there are known knowns.
There are things we know we know.
We also know there are known unknowns.
That is to say, we know there are some things we do not know.
But there are also unknown unknowns,
The ones we don’t know we don’t know."

D. Rumsfeld, Feb. 12, 2002, Department of Defense news briefing



Verification and Validation
Definitions

The American Institute for Aeronautics and Astronautics (AIAA)
has developed the “Guide for the Verification and Validation
(V&V) of Computational Fluid Dynamics Simulations” (1998)

What is V&V?
I Verification: The process of determining that a model

implementation accurately represents the developer’s
conceptual description of the model.

I Validation: The process of determining the degree to which
a model is an accurate representation of the real world for
the intended uses of the model
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Errors vs. Uncertainties
Definitions

The AIAA “Guide for the Verification and Validation (V&V) of
CFD Simulations” (1998) defines

I errors as recognisable deficiencies of the models or the
algorithms employed

I uncertainties as a potential deficiency that is due to lack of
knowledge.

Well...
I The definitions are not very precise
I Do not clearly distinguish between the mathematics and

the physics.
I What is the relation with V&V?
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Errors vs. Uncertainties
Definitions

I What are errors? errors are associated to the translation of
a mathematical formulation into a numerical algorithm and
a computational code.

I round-off, limited convergence of iterative algorithms)
I implementation mistakes (bugs).
I is the mathematics...

I What are uncertainties? uncertainties are associated to
the specification of the input physical parameters required
for performing the analysis.

I is the physics...
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Uncertainties

Aleatory: it is the physical variability present in the system or its
environment.

I It is not strictly due to a lack of knowledge and cannot be
reduced (also referred to as variability, stochastic uncertainty or
irreducible uncertainty)

I It is naturally defined in a
probabilistic framework

I Examples are: material properties,
operating conditions manufacturing
tolerances, etc.

I In mathematical modeling it is also
studied as noise



Uncertainties

Aleatory: it is the physical variability present in the system or its
environment.

I It is not strictly due to a lack of knowledge and cannot be
reduced (also referred to as variability, stochastic uncertainty or
irreducible uncertainty)

I It is naturally defined in a
probabilistic framework

I Examples are: material properties,
operating conditions manufacturing
tolerances, etc.

I In mathematical modeling it is also
studied as noise



Uncertainties

Aleatory: it is the physical variability present in the system or its
environment.

I It is not strictly due to a lack of knowledge and cannot be
reduced (also referred to as variability, stochastic uncertainty or
irreducible uncertainty)

I It is naturally defined in a
probabilistic framework

I Examples are: material properties,
operating conditions manufacturing
tolerances, etc.

I In mathematical modeling it is also
studied as noise



Aleatory Uncertainty
Natural variance

Patient-to-patient differences

Courtesy of de Backer et al, 2009



Aleatory Uncertainty
Flight conditions

Difference between measured (balloon) and expected (Global
Reference Atmospheric Model) temperature in the earth
atmosphere

Image from Smart et al. 2003



Uncertainties

Epistemic: it is a potential deficiency that is due to a lack of
knowledge

I It can arise from assumptions introduced in the derivation of the
mathematical model (it is also called reducible uncertainty or
incertitude)

I Examples are: turbulence
model assumptions or
surrogate chemical models

I It is NOT naturally defined in
a probabilistic framework

I Can lead to strong bias of the
predictions
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Epistemic Uncertainty
Model uncertainty

Deepwater Horizon oil tracking forecast

Source: University of Texas Institute of Geophysics



Epistemic Uncertainty
Model uncertainty

Predictions of heat flux over a compression ramp

Source: Roy et al, 2007



Summary
Choose your Uncertain Battles..

I Uncertainties relate to the physics of the problem of
interest! not to the errors in the mathematical
description/solution...

I Reducible vs. Irreducible Uncertainty
I Epistemic uncertainty can be reduced by increasing our

knowledge, e.g. performing more experimental
investigations and/or developing new physical models.

I Aleatory uncertainty cannot be reduced as it arises
naturally from observations of the system. Additional
experiments can only be used to better characterize the
variability.
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Sensitivity Analysis vs. UQ

I Sensitivity analysis (SA) investigates the connection
between inputs and outputs of a (computational) model

I The objective of SA is to identify how the variability in an
output quantity of interest (q) is connected to an input (ξ) in
the model; the result is a sensitivity derivative ∂q/∂ξ

I SA allows to build a ranking of the input sources which
might dominate the response of the system

I Note that strong large sensitivities derivatives do not
necessarily translate in critical uncertainties because the
input variability might be very small in a specific device of
interest.

I SA ∈ UQ
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Part III

Computations Under Uncertainty
=

Predictive Simulations

"The significant problems we face cannot be solved
at the same level of thinking we were at when we created them."

A. Einstein



Uncertainty Quantification
Computational Framework

Consider a generic computational model (y ∈ <d with d large)

How do we handle the uncertainties?

1. Uncertainty definition: characterize uncertainties in the
inputs

2. Uncertainty propagation: perform simulations accounting
for the identified uncertainties

3. Certification: establish acceptance criteria for predictions



Uncertainty Quantification
Computational Framework

Consider a generic computational model (y ∈ <d with d large)

How do we handle the uncertainties?

1. Uncertainty definition: characterize uncertainties in the
inputs

2. Uncertainty propagation: perform simulations accounting
for the identified uncertainties

3. Certification: establish acceptance criteria for predictions



Uncertainty Quantification
Computational Framework

Consider a generic computational model (y ∈ <d with d large)

How do we handle the uncertainties?

1. Uncertainty definition: characterize uncertainties in the
inputs

2. Uncertainty propagation: perform simulations accounting
for the identified uncertainties

3. Certification: establish acceptance criteria for predictions



Uncertainty definition
The objective is characterize uncertainties in simulation inputs,
based on available information

I Direct methods
- Experimental observations
- Theoretical arguments
- Expert opinions
- etc.

I Inverse methods (Inference, Calibration)
I determination of the statistical input parameters that

represent observed data
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I Identification of all the (d) explicit and hidden parameters
(knobs) of the mathematical/computational model: y

I Characterization of the associated level of knowledge

I The mathematical framework for propagating uncertainties
is dependent on the data representation chosen

I In these lecturers we focus on probabilistic methods
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Probabilistic Uncertainty Propagation

Perform simulations accounting for the uncertainty represented
as randomness

I Define an abstract probability space (Ω,A,P)

I Introduce uncertain input as random quantities y(ω), ω ∈ Ω

I The original problem becomes stochastic with solution
u(ω) ≡ u(y(ω))

Remark: y can affect the boundary conditions, the geometry,
the forcing terms or the operator in the computational model.
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Intrusive vs. Non-Intrusive Methodology

I Nonintrusive methods only require (multiple) solutions of
the original (deterministic) model

I Intrusive methods require the formulation and solution of a
stochastic version of the original model
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I Nonintrusive methods only require (multiple) solutions of
the original (deterministic) model

+ Simple extension of the "conventional" simulation paradigm
+ Embarrassingly parallel: solutions are independent
+ Conceptually very simple

I Intrusive methods require the formulation and solution of a
stochastic version of the original model

+ Exploit the mathematical structure of the problem
+ Leverage theoretical & algorithmic advancements
+ Are largely (or entirely) deterministic
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Certification
I Quantification of the confidence
I Objective validity

Hypersonic air-breathing vehicle - HyShot II



Validation

I Need to define a validation metric to compare uncertain
quantities

I What if the measurements do not have access to the QOI?
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I Need to define a validation metric to compare uncertain
quantities

I What if the measurements do not have access to the QOI?



Validation
An Inference Process - PECOS @ UT Austin

I Simulations are NOT compared directly to data!



Part IV

Probabilistic Uncertainty Propagation



Uncertainty = Randomness

I Straightforward Monte Carlo sampling

I ...not feasible with
computationally-expensive
function evaluations!

I Interpret the uncertainties
as additional independent
variables and use
approximation theory to
represent the solution
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Uncertainty = Randomness
I Beyond Monte Carlo

I Advanced Sampling: LHS, importance-sampling,
quasi-random sequence, ...

I Intrusive methods: Polynomial chaos
I Non-intrusive approaches: Stochastic collocation



Part V

Examples



Fluid Dynamics of High Speed Flows
Known Inflow Mach Number (deterministic simulation)

Uncertain Inflow Mach Number (average of stochastic simulations)
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Uncertainty in Ignition Delay Time
Michael Mueller - ME470 Final Project

I Determination of Ignition Delay Time is an important
design consideration

I Accumulation of radicals starts chain reaction causing
sudden ignition of mixture

I What is the effect of uncertainties in reaction rates?

I Simplified Problem:
I Integrate evolution of reacting mixture in homogeneous

isochoric (constant volume) reactor
I Hydrogen chemistry (9 species, 25 elementary reactions)
I What is the uncertainty?
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Hydrogen Chemistry
Reaction Rate Uncertainties

I Rate (and their
uncertainties) are available
in the literature

I Modified Arrhenius form
k = AT nexp(−E/RT )

I The uncertainty factor UF
is such that [k ×UF , k/UF ]
provide probable bounds!

I Assume that the reaction
rate are independent,
lognormally distributed r.v.

Davis, Joshi, Wang, Egolfopoulos, Proc. Combust. Inst. 30, 2005



Ignition Delay Time
Uncertainty Propagation

I Conditions: Stoichiometric Hydrogen-Air Mixture (29.6%
H2; 14.8% O2); Temperature: 1000 K; Pressure: 1 atm;

I Non-intrusive LHS Sampling (25 uncertain variables)

DAKOTA UQ Suite from Sandia National Lab. used for this example
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Ignition Delay Time
Inverse Problem

I What uncertainty in the reaction rates can we tolerate to
ensure that the probability of ignition delay time exceeding
0.25 ms is less than 10%?

I Can be cast as an optimization problem under uncertainty:
find the maximum UF such that the p(IDT > IDTcr ) < 0.1

I Problem: too many parameters! Focus only on the
branching reaction (H + 02 ↔ O + OH)
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Ignition Delay Time
Uncertainty Propagation

Nomimal Optimal

I Overall uncertainty in the IDT is reduced
I Failure probability below critical requirement



Uncertainty in Buoyancy-Driven Convection
Gary Tang - ME470 Final Project

I Fluid driven by the temperature gradient induced by
hot/cold wall.

I Assume that there is uncertainty in the relationship
between temperature and density, with density measured
at various temperatures..

I What is the average temperature on the bottom wall?



Density/Temperature Relationship
Interpreting the measurements

I A linear model appears to be appropriate to capture the
experimental scatter!

I Can build an uncertain model with two random variables,
constraint within the experimental bars
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Driven Cavity
Uncertainty Quantification

I Variability is limited! No sensitivity!



Density/Temperature Relationship
Interpreting the measurements

I Perfect experiments would have allowed a precise
determination of the density/temperature relationship...



Driven Cavity
Uncertainty Quantification



Density/Temperature Relationship
Interpreting the measurements

I Alternative approach (in the absence of perfect
experiments) is NOT to rely on the linear model...



Density/Temperature Relationship
Interpreting the measurements

I Perform an optimization under uncertainty to find the MIN
and MAX average temperature on the bottom wall!



Driven Cavity
Uncertainty Quantification

I The optimization procedure finds the density/temperature
relationships that lead to MIN and MAX of the average
temperature on the bottom wall!



Concluding

I Uncertainty Quantification plays a critical role in Validation!

...but there are a lot of other exciting applications of the
same methodologies, especially in combination with
optimization tools.

I Applications of UQ to realistic problems remains
challenging:

I Interpretation and representation of the uncertainties
I Algorithmic advances are still required for costly

computations, large number of uncertain inputs,
discontinuous responses
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Concluding
an ICME recruiting slide

UQ requires a broad range of skills...




