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Abstract

This article develops a general framework for identifying error and uncertainty in computational simulations that deal with the numerical
solution of a set of partial differential equations (PDEs). A comprehensive, new view of the general phases of modeling and simulation is
proposed, consisting of the following phases: conceptual modeling of the physical system, mathematical modeling of the conceptual model,
discretization and algorithm selection for the mathematical model, computer programming of the discrete model, numerical solution of the
computer program model, and representation of the numerical solution. Our view incorporates the modeling and simulation phases that are
recognized in the systems engineering and operations research communities, but it adds phases that are specific to the numerical solution of
PDEs. In each of these phases, general sources of uncertainty, both aleatory and epistemic, and error are identified. Our general framework is
applicable to any numerical discretization procedure for solving ODEs or PDEs. To demonstrate this framework, we describe a system-level
example: the flight of an unguided, rocket-boosted, aircraft-launched missile. This example is discussed in detail at each of the six phases of
modeling and simulation. Two alternative models of the flight dynamics are considered, along with aleatory uncertainty of the initial mass of
the missile and epistemic uncertainty in the thrust of the rocket motor. We also investigate the interaction of modeling uncertainties and
numerical integration error in the solution of the ordinary differential equations for the flight dynamics. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Realistic modeling and simulation of complex systems
must include the nondeterministic features of the system
and the environment. By ‘nondeterministic’ we mean that
the response of the system is not precisely predictable
because of the existence of uncertainty in the system or
the environment, or human interaction with the system.
Nondeterminism is thoroughly ingrained in the risk assess-
ment community, where the emphasis is on estimating the
safety of the system in abnormal or failure environments.
Many examples exist in the literature of analyses for nuclear
reactors, environmental impact, earthquake engineering and
marine systems. The emphasis in the risk assessment field
has been directed towards representing and propagating
parameter uncertainties through mathematical models of

* Corresponding author. Fax: +1-505-844-4523.
E-mail address: wloberk@sandia.gov (W.L. Oberkampf).

the physical event. For reactor safety, significant emphasis
has also been placed on identifying and analyzing fault trees
and event trees in abnormal or failure event scenarios. The
vast majority of this work has used probabilistic methods to
represent sources of uncertainty and then sampling methods,
such as Monte Carlo sampling, to propagate the sources
through a deterministic model.

Our focus in this article is on a framework for identifying
error and uncertainty in modeling and computational
simulation. Our framework emphasizes models that are
given by a set of partial differential equations (PDEs) that
are to be solved numerically, although the framework is also
applicable to modeling in general. We stress a clear distinc-
tion between the specification of the system, which is
modeled by a set of PDEs, and the environment, which
should be representative of the boundary conditions (BCs)
and excitation for the PDEs. Our distinction between the
system and the environment is similar to that taken in the
thermodynamic analysis of engineering systems. We make a
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distinction between error and uncertainty so that the issues
of representation and propagation of each is aided. Our
taxonomy also distinguishes between errors that result
from acknowledged sources, such as mathematical model-
ing approximations, and unacknowledged sources, such as
computer programming errors. We differentiate between
aleatory and epistemic uncertainty based on whether a source
of nondeterminism is irreducible or reducible, respectively.

The issue of numerical solution error is generally ignored
in risk assessment analyses and nondeterministic simula-
tions. Neglecting numerical solution error can be particu-
larly detrimental to uncertainty estimation when the
mathematical models of interest are cast in terms of
nonlinear PDEs. Types of numerical error that are of
concern in the numerical solution of PDEs are spatial
discretization error in finite element and finite difference
methods, temporal discretization error in time-dependent
simulations, and error due to discrete representation of
strongly nonlinear interactions. It is fair to say that the
field of numerical error estimation is considered completely
separate from that of uncertainty estimation. Although many
authors in the field of numerical error estimation refer to
solution error as ‘numerical uncertainty’, we believe this
interpretation confuses the issue. Since we concentrate on
systems described by the numerical solution of PDEs, we
directly include possible sources of numerical and nonnu-
merical error in our framework and maintain a distinction
between these and the sources of uncertainty.

We consider nondeterministic physical behavior originat-
ing from a very broad range of aleatory and epistemic
uncertainties, in addition to inaccuracy due to modeling
and simulation errors. Aleatory uncertainty is also referred
to in the literature as irreducible uncertainty, inherent
uncertainty, variability and stochastic uncertainty. The
mathematical representation essentially always used for
aleatory uncertainty is a probability or frequency distribu-
tion. Propagation of these distributions through a modeling
and simulation process has been well developed in the
disciplines mentioned above.

Epistemic uncertainty as a source of nondeterministic
behavior derives from lack of knowledge of the system or
the environment. In the literature, it is also referred to as
reducible uncertainty, subjective uncertainty and cognitive
uncertainty [1-12]. Although the distinction between
aleatory and epistemic uncertainty has been in debate for
the last decade, primarily in the risk assessment community,
we firmly accept the distinction in our proposed framework.
Once accepting this segregation of aleatory and epistemic
uncertainty, one is faced with the question: Are probability
(or frequency) distributions appropriate mathematical
representations of uncertainty or should other representa-
tions, such as possibility theory or Dempster—Schafer
theory, be used? Although this debate is raging in the
literature, our proposed framework for modeling and
simulation is not affected by this issue.

This article proposes a comprehensive, new framework

(or structure) of the general phases of modeling and simula-
tion. This structure is composed of six phases, which
represent a synthesis of the activities recognized in the
systems engineering and operations research communities,
the risk assessment community, and the computational
mathematics community. The phases are (1) conceptual
modeling of the physical system (2) mathematical modeling
of the conceptual model (3) discretization and algorithm
selection for the mathematical model (4) computer
programming of the discrete model (5) numerical solution
of the computer program model, and (6) representation of
the numerical solution. Characteristics and activities of each
of the phases are discussed as they relate to a variety of
disciplines in computational mechanics and thermal
sciences. We also discuss the distinction between uncer-
tainty and error that might occur in any of the phases of
modeling and simulation.

To demonstrate this framework, we describe a system-
level example: the flight of a rocket-boosted, aircraft-
launched missile. In this example, we consider the missile
to be a relatively short-range, i.e. 37 km (20 nm), unguided
air-to-ground rocket. In the conceptual modeling phase for
this example, we discuss alternative system/environment
specifications, scenario abstractions, physics coupling
specifications, and nondeterministic specifications. After
discussing varying conceptual models, only one branch of
the analysis is pursued: rigid-body flight dynamics. Of the
large number of possible nondeterministic phenomena, we
consider only two: aleatory uncertainty of the initial mass of
the missile and epistemic uncertainty in the thrust of the
rocket motor because of an unknown initial motor-tempera-
ture. To illustrate epistemic uncertainty due to mathematical
modeling, we pursue two models with differing levels of
physics: a six-degree-of-freedom (6-DOF) and a three-
degree-of-freedom (3-DOF) model. Latin Hypercube
Sampling (LHS) was used to propagate the aleatory uncer-
tainty of initial mass through each of the two mathematical
models. For each case, we include the effect of error due to
numerical solution of the equations of motion for each
model.

2. Modeling and simulation
2.1. Review of the literature

The systems engineering and operations research (OR)
communities have developed many of the general principles
and procedures for modeling and simulation. Researchers in
this field have made significant progress in defining and
categorizing the various phases of modeling and simulation.
(For texts in this field, see Refs. [13—18].) The areas of
emphasis in OR include definition of the problem entity,
definition of the conceptual model, assessment of data and
information quality, validation methodology, and usage of
simulation results as an aid in decision making. Although
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Fig. 1. View of modeling and simulation by the Society for Computer
Simulation [19].

this work does not take a strong numerical methods
perspective, it is very helpful in providing a constructive
philosophical approach for identifying sources of
uncertainty and error, as well as in developing some of
the basic terminology.

In 1979 the Technical Committee on Model Credibility of
the Society for Computer Simulation developed a diagram
identifying the primary phases and activities of modeling
and simulation [19]. Included as Fig. 1, the diagram shows
that analysis is used to construct a conceptual model of
reality. Programming converts the conceptual/mathematical
model into a computerized model. Then computer simula-
tion is used to simulate reality. Although simple and direct,
the diagram clearly captures the relationship of two key
phases of modeling and simulation to each other and to
reality. The diagram also includes the activities of model
qualification, model verification, and model validation.

However, the diagram does not address the detailed
activities required for the solution of PDEs describing the
system or the activities necessary for the estimation of
uncertainty.

Jacoby and Kowalik developed a more detailed view for
the phases of modeling and simulation in 1980 (Fig. 2) [20].
Their view not only better defined the phases of modeling
and simulation but also emphasized the mathematical
modeling aspects of the process. After the purpose or
objective of the modeling effort is clarified and refined, a
prototype modeling effort is conducted. The activities
described in this effort are similar to those referred to in
the present literature as the conceptual modeling phase. In
the preliminary modeling and mathematical modeling
phases, various alternate mathematical models are
constructed and their feasibility is evaluated. In the solution
technique phase, the numerical methods for solving the
mathematical model, or models, are specified. In the compu-
ter program phase, the actual coding of all the numerical
methods is conducted, as well as debugging of the code. In
the model phase, all activities related to model validation,
i.e. comparisons with experimental data, and checks on the
reasonableness of predicted results are described. In the
modeling result phase, the interpretation of results is
conducted and an attempt is made to satisfy the original
purpose of the modeling and simulation effort. The feedback
and iterative nature of the entire process is represented by
the dashed-loop circling the modeling and simulation effort.

Throughout the 1980s, Sargent [21,22] made improve-
ments toward generalizing the concepts of modeling and
simulation shown in Fig. 1. In this regard, his most
important contribution was the development of general
procedures for verification and validation of models and
simulations. An extension of the phases of modeling and
simulation was made by Nance [23] and Balci [24] to
include the concept of the life cycle of a simulation.
Major phases added by Nance and Balci to the earlier
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Fig. 2. View of modeling and simulation by Jacoby and Kowalik [20].
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description were System and Objectives Definition,
Communicative Models, and Simulation Results. Even
though the Objectives Definition and Simulation Results
phases were specifically identified earlier by Jacoby and
Kowalik [20], there is no indication this work was
recognized. Communicative Models were described by
Nance and Balci as ‘a model representation which can be
communicated to other humans, can be judged or compared
against the system and the study objective by more than one
human’ [23].

Work in the risk assessment community, specifically
nuclear reactor safety and environmental impact of radio-
nuclides, has not directly addressed the phases of modeling
and simulation. Instead, investigators have concentrated on
the possible sources that could contribute to uncertainty in
risk assessment predictions. Reactor safety analyses have
developed extensive methods for constructing possible
failure and event-tree scenarios that aid in risk assessment
[4,12,25-28]. Analyses of the risk of geologic repositories
for the disposal of low-level and high-level nuclear waste
have used scenario analyses and have identified sources of
indeterminacy and inaccuracy occurring in other phases of
the risk analysis. Specifically, these analyses have identified
different types of sources occurring in conceptual modeling,
mathematical modeling, computer code implementation,
and experimentally measured or derived model input data
[29,30].

The development of the present framework for the phases
of modeling and simulation builds on much of this previous
work. Our framework can thus be viewed as a synthesis of
this reviewed literature, with three substantial additions.
First, we describe a more precise distinction between the
system and the environment. Second, we place more emphasis
on the distinction between aleatory and epistemic
uncertainty in the analysis. Third, we include a dominant
element in the simulation of complex physical processes;
the numerical solution of nonlinear PDEs. Our integration
of these perspectives will be presented and discussed in
Sections 2.3 and 3.

2.2. Segregation of uncertainty and error

Sources of uncertainty and error are associated with each
phase of modeling and simulation. Examining the literature
in fields that deal with the simulation of complex systems or
physical processes (e.g. operations research, risk assess-
ment, structural dynamics, and fluid dynamics), one finds
that most authors do not carefully distinguish between what
they mean by uncertainty and error; and more commonly,
they do not distinguish between aleatory and epistemic
uncertainty. Even when these terms have been defined,
their definitions are typically couched in the restricted
context of the particular subject or do not address the
issue of error [4,25,27,28,31]. During the last ten years
some authors in the risk assessment field have begun to
clearly distinguish between some of these sources,

particularly the distinction between aleatory and epistemic
uncertainty [1-5,7-11,32-42]. The risk assessment field is
the first to use the separate notion and treatment of aleatory
uncertainty and epistemic uncertainty in practical applica-
tions. We are convinced of the constructive value of this
distinction and we will adopt essentially the same
definitions used by these authors.

We use the term aleatory uncertainty to describe the
inherent variation associated with the physical system or
the environment under consideration. Sources of aleatory
uncertainty can commonly be singled out from other contri-
butors to total modeling and simulation uncertainty by their
representation as distributed quantities that can take on
values in an established or known range, but for which the
exact value will vary by chance from unit to unit or from
time to time. As mentioned earlier, aleatory uncertainty is
also referred to in the literature as irreducible uncertainty,
inherent uncertainty, variability and stochastic uncertainty.
Aleatory uncertainty is generally quantified by a probability
or frequency distribution when sufficient information is
available to estimate the distribution.

We define epistemic uncertainty as a potential inaccuracy
in any phase or activity of the modeling process that is due
to lack of knowledge. As mentioned previously, our
definition of epistemic uncertainty is also referred to in
the literature as reducible uncertainty, subjective
uncertainty, and cognitive uncertainty. The first feature
that our definition stresses is ‘potential’, meaning that the
inaccuracy may or may not exist. In other words, there may
be no inaccuracy, say, in the prediction of some event, even
though there is a lack of knowledge if we happen to model
the phenomena correctly. The second key feature of episte-
mic uncertainty is that its fundamental cause is incomplete
information. Incomplete information can be caused by
vagueness, nonspecificity, or dissonance [43,44]. Vague-
ness characterizes information that is imprecisely defined,
unclear, or indistinct, e.g. imprecise set membership.
Vagueness is characteristic of communication by language.
Nonspecificity refers to the variety of alternatives in a given
situation that are all possible, i.e. not specified. For example,
one could have the situation where only one value in a set is
correct or appropriate, but because of insufficient informa-
tion, the true value is not known. The larger the number of
possibilities, the larger the degree of nonspecificity.
Dissonance refers to the existence of totally or partially
conflicting evidence. Dissonance exists when there is
evidence that an entity or elements of subsets belong to
multiple sets that either do not overlap or overlap slightly.
In addition to probabilistic modeling, a number of mathe-
matical theories are available for modeling epistemic
uncertainty, for example, possibility theory [45,46],
evidence (Dempster/Shafer) theory [47,48], fuzzy set theory
[49,50], imprecise probability theory [51,52] and Bayesian
estimation [53,54].

We define error as a recognizable inaccuracy in any
phase or activity of modeling and simulation that is not
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Fig. 3. Proposed phases for computational modeling and simulation.

due to lack of knowledge. Our definition stresses that the
inaccuracy is identifiable or knowable upon examination;
that is, the inaccuracy is not caused by lack of knowledge.
Essentially, there is an agreed-upon or correct approach that
is considered to be more accurate or correct. If divergence
from the correct or more accurate approach is pointed out,
the divergence is either corrected or allowed to remain. It
may be allowed to remain because of practical constraints,
such as cost or schedule. For example, the error may be
deemed acceptable for the analysis requirements or because
of the excessive computational cost to correct it. This recog-
nizability implies a segregation of error types: an error can
be either acknowledged or unacknowledged. Acknowledged
errors are those inaccuracies that are recognized by the
analysts. When acknowledged errors are introduced by the
analyst into the modeling or simulation process, the analyst
typically has some idea of the magnitude or impact of such
errors. Examples of acknowledged errors are finite precision
arithmetic in a computer, assumptions and approximations
made to simplify the modeling of a physical process, and
conversion of PDEs into discrete numerical equations.
Unacknowledged errors are those inaccuracies that are not
recognized by the analyst, but they are recognizable.
Examples of unacknowledged errors are blunders or
mistakes; e.g. the analyst intended to do one thing in the
modeling and simulation but as a result of human error
perhaps, did another. Unfortunately, there are no straight-
forward methods for estimating, bounding, or ordering the

contribution of unacknowledged errors. Sometimes an
unacknowledged error can be detected by the person who
committed it, e.g. a double-check of a computer program
reveals that a coding error has been made, or by others
because of redundancy procedures built into the analysis.

2.3. Proposed phases of modeling and simulation

Fig. 3 depicts our representation of the phases of model-
ing and simulation. The phases represent collections of
activities or tasks required in a large-scale simulation analy-
sis, particularly models given by PDEs and their numerical
solution. The ordering of the phases implies an information
and data flow that indicates which activities are likely to
impact decisions and methodology occurring in later phases.
However, there is significant feedback and interaction
between the phases, as indicated by the dashed lines in
Fig. 3. These phases follow the recent work of
Refs. [55,56]. The paragraphs below provide brief descrip-
tions of each of these phases. The modeling and simulation
process is initiated by a set of questions posed by a designer
or decision maker. The information to address these
questions can be provided (at least in part) through a
computer simulation analysis.

Conceptual modeling of the physical system. Our initial
phase encompasses developing a specification of the physi-
cal system and the environment. Specification development
includes determining which physical events, or sequence of
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events, and which types of coupling of different physical
processes will be considered. It also includes identifying
elements of the system and environment that will be treated
as nondeterministic. These determinations should be based
on the general requirements for the modeling and simulation
effort, together with information regarding possible system
response sensitivity to these events, processes and elements.
The physical system can be an existing system or process, or
it can be a proposed system or process. During the concep-
tual modeling phase, no mathematical equations are written,
but the fundamental assumptions regarding possible events
and physical processes are made. Only conceptual issues are
considered, with heavy emphasis placed on determining all
possible factors, such as physical and human intervention,
that could possibly affect the requirements set for the model-
ing and simulation. Identifying possible event sequences, or
scenarios, is similar to developing a fault-tree structure in
the probabilistic risk assessment (PRA) analyses of nuclear
reactor safety. Whether or not the event sequence will
eventually be analyzed should not be a factor that impacts
its inclusion in the conceptual modeling phase.

After the system and environment have been carefully
specified, options for various levels of possible physics
couplings should be identified, even if it is considered
unlikely that such couplings will be considered
subsequently in the analysis. If a physics coupling is not
considered in this phase, it cannot be resurrected later in
the process without returning to this phase and adding it.
For example, if a particular type of physics coupling is
recognized as important late in an analysis, then one must
return to the conceptual modeling phase where it is to be
added. This new thread can weave its way through the
remainder of the phases and it would likely add new branch-
ing threads. Another activity conducted in the conceptual
modeling phase is to identify all of the system and environ-
ment characteristics that might be treated nondeterministi-
cally. Consideration should be given to the treatment of
these characteristics as aleatory or epistemic uncertainties.
However, issues such as mathematical representation and
propagation of these characteristics should be deferred
until later phases.

Mathematical modeling of the conceptual model. The
primary activity in this phase is to develop detailed and
precise mathematical models, i.e. analytical, statements of
the problem (or series of event-tree-driven problems) to be
solved. Any complex mathematical model of a process, or
physical system, is actually composed of many mathemati-
cal submodels. The complexity of the models depends on
the physical complexity of each phenomenon being consid-
ered, the number of physical phenomena considered, and the
level of coupling of different types of physics. The mathe-
matical models formulated in this phase include the
complete specification of all PDEs, auxiliary conditions,
BCs, and initial conditions (ICs) for the system. For
example, if the problem being addressed is a fluid-structure
interaction, then all of the coupled fluid-structure PDEs

must be specified, along with any fluid or material-property
changes that might occur as a result of their interaction. The
integral form of the equations could also be considered, but
this type of formulation is not addressed in the present
discussion.

Another function addressed during the mathematical
modeling phase is the selection of appropriate representa-
tions and models for the nondeterministic elements of the
problem. Several considerations might drive these
selections. Restrictions set forth in the conceptual modeling
phase commonly put constraints on the range of values or
types of models that might be used further in the analysis.
Within these constraints, the quantity and/or limitations of
available or obtainable data will play an important role. A
probabilistic treatment of aleatory uncertainties generally
requires that probability distributions can be established,
either through data analysis or through subjective
judgments. Common sources of aleatory uncertainty include
system parameters, BCs, and ICs that may vary randomly
from component to component and/or from system to
system.

Mathematical modeling can result in an epistemic
uncertainty or an acknowledged error when alternative
models can be used to address the same aspects of the
problem. Presumably, only one model is more correct for
the simulation, but this information is not generally known
beforehand, i.e. in a prediction. Furthermore, a preferred
model might be too expensive for use exclusively in the
analysis and, as a result, less accurate models would be
used for portions of the analysis.

Our emphasis on comprehensiveness in the mathematical
model should not be interpreted as an emphasis on complex-
ity of the model. The predictive power of a model depends
on its ability to correctly identify the dominant controlling
factors and their influences, not upon its completeness or
complexity. A model of limited, but known, applicability is
often more useful than a more complete model. This dictum
of engineering seems to be forgotten today with the advent
of rapidly increasing computing power. The clear tendency,
observable in most fields of engineering and science, is to
use very complex models and then make one or two ‘heroic’
simulations. We do not believe this approach is the best use
of available resources in a system analysis.

An additional point concerning the incompleteness of
models should be made. Any mathematical model, regard-
less of its physical level of detail, is by definition a simpli-
fication of reality. Any complex engineering system, or even
individual physical processes, contains phenomena that are
not represented in the model. Statements such as ‘full
physics simulations’ can only be considered as marketing
jargon. This point was succinctly stated twenty years ago by
Box [57]: ‘All models are wrong, some are useful’.

Discretization and algorithm selection for the mathe-
matical model. This phase accomplishes two activities
related to converting the mathematical models into a form
that can be addressed through computational analysis. The
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first activity involves conversion of the continuum mathe-
matics form of the mathematical model into a discrete, or
numerical, model. Simply stated, the mathematics are
mapped from a calculus problem to an arithmetic problem.
During the discretization phase, all of the spatial and
temporal differencing methods, discretized BCs, discretized
geometric boundaries, and grid-generation methods are
specified in analytical form. In other words, algorithms
and methods are prescribed in mathematically discrete
form, but the spatial and temporal step sizes are not numeri-
cally specified. The discretization phase focuses on the
conversion from continuum mathematics to discrete mathe-
matics, not on numerical solution issues. Note that we are
only referring to continuum and discrete mathematics, not
continuum and discrete models of physics, such as Eulerian
and Lagrangian models. We strongly believe that the
continuum mathematical model and the discrete model
should be separately represented in the phases of modeling
and simulation. The discretization phase deals with
questions such as consistency of the discrete equations
with the PDEs, stability of the numerical method, approx-
imations of mathematical singularities, and differences in
zones of influence between the continuum and discrete
systems.

The second activity of this phase focuses on specifying
the methodology that dictates which computer runs will be
performed in a later phase of the analysis to accommodate
the nondeterministic aspects of the problem. For example, a
Monte Carlo method or response surface method could be
chosen for propagating uncertainties. Also, this activity
would include decisions made on how to design and execute
computer experiments.

Computer programming of the discrete model. This phase
is common to all computer modeling: algorithms and
solution procedures defined in the previous phase are
converted into a computer code. The computer program-
ming phase has probably achieved the highest level of
maturity because of decades of programming development
and software quality assurance efforts [58,59]. These efforts
have made a significant impact in areas such as commercial
graphics and mathematics software, telephone circuit-
switching software, and flight control systems. On the
other hand, these efforts have had little impact on corporate
and university-developed software for engineering applica-
tions, as well as most applications written for massively
parallel computers.

Numerical solution of the computer program model. In
this phase the individual numerical solutions are actually
computed. No quantities are left arithmetically undefined
or continuous; only discrete values and discrete solutions
exist with finite precision. For example, a spatial grid
distribution and a time step are fully specified. Dependent
variables and independent variables, space and time, exist
only at discrete points. However, these points may be altered
during subsequent computer runs.

Multiple computational solutions are usually required for

nondeterministic analyses. These multiple solutions are
dictated by the propagation methods and input settings
determined in the discretization and algorithm selection
phase. Multiple solutions can also be required from the
mathematical modeling phase if alternative models are to
be investigated. For some propagation methods, the number
and complete specification of subsequent runs is dependent
on the computed results. When this is the case, these
determinations are made as part of this numerical solution
phase of the analysis.

Representation of the numerical solution. The final phase
of the modeling and simulation process concerns the repre-
sentation and interpretation of both the individual and
collective computational solutions. The collective results
are ultimately used by decision makers or policy makers,
whereas the individual results are typically used by
engineers, physicists, and numerical analysts. Each of
these audiences has very different interests and require-
ments. The individual solutions provide detailed informa-
tion on deterministic issues such as the physics occurring in
the system, the adequacy of the numerical methods to
compute an accurate solution to the PDEs, and the system’s
response to deterministic BCs and ICs. For the individual
solutions, the primary activity is to construct what-appears-
to-be continuous functions based on the discrete solutions
obtained in the previous phase. For example, one can
construct the interpolated dependent variables given in the
PDEs, which are based on the discrete solution of the PDEs;
however, the construction involves new approximations.

We have specifically included representation of the
numerical solution as a separate phase in the modeling
and simulation process because of the sophisticated soft-
ware that is being developed to comprehend modern
complex simulations. This area includes three-dimensional
graphical visualization of a solution, animation of a
solution, use of sound for improved interpretation, and use
of virtual reality, which allows analysts to ‘go into the solu-
tion space’. Some may argue that this final phase is simply
‘postprocessing’ of the computational data. We believe,
however, this description does not do justice to the rapidly
growing importance of this area and the likelihood that it
introduces unique types of errors. In addition, by referring to
this phase as representation of the numerical solution, we
are able to include types of errors that are due not simply to
the modeling and simulation of the system, but also to the
processing of the computed solution and to the conclusions
drawn the refrom.

Summary. The phases of modeling and simulation
described above illustrate the major components involved
in planning and conducting a large-scale simulation analysis.
When viewed from the planning aspect, the issues
confronted in each phase may be addressed simultaneously.
For example, in most large-scale system simulations the
activities will be performed by different groups of people
with different areas of expertise, such as professional
planners, physicists, chemists, engineers, computer
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programmers, and numerical analysts. A ‘feedback’ aspect
indicated in Fig. 3, but not explicitly discussed here, is the
use of sensitivity analyses in a large-scale analysis. Sensi-
tivity analyses and scoping studies are critical when there
are hundreds of uncertainties in an analysis. Sensitivity
analyses and scoping studies are clear examples of how
feedback from the solution representation phase occurs in
a large-scale analysis. There is, however, a clear sequential
aspect to the phases as shown in Fig. 3. Two key sequential
features of this illustration are that decisions must be made
at each phase and that continuous parameters and model
specification information propagate through the remaining
phases. In most cases, the decisions made at one phase will
impact the models formulated or activities conducted in
later phases.

3. Missile flight example
3.1. Description of the problem

Our example to demonstrate the framework considers the
flight of a rocket-boosted, aircraft-launched missile. In our
analysis, we make the following assumptions about the
missile:

1. The missile is unguided during its entire flight, i.e. only
ballistic flight is considered.

2. The missile is propelled by a solid-fuel rocket motor for
the initial portion of its flight, and it is unpowered during
the remainder of the flight.

3. The missile is fired from a launch rail attached to the
aircraft in flight.

4. The only aerodynamic surfaces on the missile are fins to
provide flight stability.

The analysis considers the missile flight to be in the
unspecified future. Thus, we are attempting to predict future
plausible events, not to analyze an event in the past or
update models based on past observations of the system.

Fig. 4 illustrates the activities that are conducted in each
of the six phases of modeling and simulation. Also shown
for each activity are the dominant sources of uncertainty
(either aleatory uncertainty ‘A uncertainty’ or epistemic
uncertainty ‘E uncertainty’) and error (either acknowledged
error or unacknowledged error) that typically occur in each
activity. We now discuss in detail the activities that are
conducted in each of the phases and explain how these
activities are applied to the missile flight example.

3.2. Conceptual modeling activities

As seen in Fig. 4, we have identified four major activities
that are conducted in the conceptual modeling phase:
system/environment specification, scenario abstraction,
coupled physics specification and nondeterministic specifi-
cation. The system/environment-specification activity

consists primarily of carefully identifying the physical or
conceptual elements that are considered part of the system
and those that are considered part of the environment. When
we say physical or conceptual elements are part of the
system, we mean that it is possible that any of the elements
can interact with one another. This concept is similar to a
system as defined in thermodynamic analyses. The state of a
system is influenced by processes internal to the system
(endogenous processes) and also processes or activities
external to the system (exogenous effects). Exogenous
processes or activities are considered part of the environ-
ment. A system is influenced by the environment, but the
environment cannot be influenced by the system [14]. In
other words, the system and the environment do not inter-
act; the system can respond to the environment, but the
environment cannot respond to the system. System/environ-
ment specifications are a matter of engineering judgment
and are not unique. As a result, these specifications pose
one of the most difficult conceptual issues in modeling
and simulation.

Fig. 5 shows three possible system/environment specifi-
cations for the missile flight example. The specifications are
listed from the most physically inclusive (with regard to the
system specification) to the least inclusive. System/Envir-
onment Specification 1 considers the missile and the
atmosphere near the missile to be part of the system,
whereas the launching aircraft and target are considered
part of the environment. An example of an analysis that
would be allowed with this specification is the missile, the
flow field of the missile, and the rocket exhaust are coupled
to the flow field of the launching aircraft. Thus, the missile
and rocket exhaust could interact with the aircraft flow field,
but the aircraft structure, for example, could not change its
geometry or deformation due to the rocket exhaust. Another
example allowed by this specification would be the analysis
of the missile flight inside an enclosure or tunnel, e.g. near
the target.

System/Environment Specification 2 considers the
missile and the aerothermal processes occurring on the
missile to be part of the system, whereas the atmosphere
near the missile, the launching aircraft and the target are
considered part of the environment. This specification
allows analyses that couple the missile and its aerothermal
effects. For example, one could consider the deformation of
the missile due to aerodynamic loading and thermal heating,
and then couple these deformations into recomputing the
aerodynamic loading and thermal heating.

System/Environment Specification 3 considers the
missile to be the system, whereas the aerothermal processes,
atmosphere near the missile, launching aircraft and target
are considered part of the environment. Even though this is
the simplest specification considered, it still allows for
significant complexities in the analysis. Note that the missile
flight example presented here will only pursue System/
Environment Specification 3.

The scenario-abstraction activity attempts to identify all
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(A and E Uncertainties)

Nondeterministic Specification
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Data Representation
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Computational Results
(Total Uncertainty and Error)

Fig. 4. Activities conducted in the phases of computational modeling and simulation.

possible physical events, or sequences of events, that may
affect the goals of the analysis. For relatively simple
systems, isolated systems, or systems with very controlled
environments or operational conditions, this activity can be

straightforward. However, complex engineered systems can
be exposed to a variety of natural and abnormal operating
conditions, hostile environments, or a myriad of human-
caused or accidentally caused failure modes. Constructing
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Fig. 5. Conceptual modeling activities for the missile flight example.

scenario abstractions for these complex systems is a
mammoth undertaking. The field of engineering that has
achieved the highest development of scenario abstraction
is the PRA of nuclear power plants. PRA techniques
construct a many-branched event tree for complex operating
and failure scenarios. Even though the probability of occur-
rence of certain events may be extremely low, these events

should be considered and analyzed for failure of nuclear
power plants and other high-consequence systems.

The scenario abstraction considered here includes both
event-tree and decision-tree construction. Decision-tree
construction does not necessarily depend on events but
can identify possible results or analysis paths that are
based on modeling decisions.
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As shown in Fig. 5, the missile flight example identifies
three broad classes of scenarios: missile flight under normal,
abnormal and hostile conditions. Normal conditions are
those that can be reasonably expected, such as typical
launch conditions from aircraft that are expected to carry
the missile, near nominal operation of the propulsion
system, and reasonably expected weather conditions. Exam-
ples of flight under abnormal conditions would be impro-
perly assembled missile components, explosive failure of
the propulsion system, and flight through adverse weather
conditions like snow or lightning. Examples of flight under
hostile conditions would be detonation of nearby defensive
systems, damage to missile components resulting from
small-arms fire and damage from laser or microwave defen-
sive systems. The three scenario classes considered here
have been commonly used for military systems like nuclear
weapons. Note that the missile flight example will only pursue
Scenario Abstraction 1. With the increasing concern of terror-
ist attacks on civilian systems such as buildings, commercial
aircraft, bridges and dams, these three scenario classes may,
unfortunately, prove to be more broadly useful in the future.

The third activity, coupled physics specification Figs. 4
and 5, identifies and carefully distinguishes the possible
alternatives for physical and chemical processes in the
system, and the coupling between these processes for the
system/environment specification and scenario abstraction
under consideration. A clear statement of the possible levels
of physics coupling is required because of the wide variety
of physics that may occur in a complex system. In the
missile flight example (Fig. 5), we identify three levels of
physics coupling, although more alternatives could be iden-
tified. Coupled Physics Specification 1 essentially couples
all physics that could exist in this decision-thread of the
analysis. For example, this specification could couple the
structural deformation and dynamics with the aerodynamic
loading and thermal loading due to atmospheric heating. It
could also couple the deformation of the solid-fuel rocket
motor case due to combustion pressurization, the heat trans-
fer from the motor case into the missile airframe structure,
and the nonrigid-body flight dynamics on the missile.
Coupled Physics Specification 2 couples the missile flight
dynamics, aerodynamics, and structural dynamics, neglect-
ing all other couplings. This coupling permits the computa-
tion of the deformation of the missile structure due to
inertial loading and aerodynamic loading and then the
aerodynamic loading and aerodynamic damping due to the
deformed structure. Coupled Physics Specification 2 would
result in a time-dependent, coupled fluid/structure inter-
action simulation. Coupled Physics Specification 3 assumes
arigid missile body; not only is physics coupling disallowed
but the missile structure is assumed rigid. The missile is
allowed to respond only to inputs or forcing functions
from the environment. Structural dynamics is removed
from the analysis; i.e. only rigid-body dynamics is consid-
ered. Note that the missile flight example will only pursue
Coupled Physics Specification 3.

Before addressing the last activity of conceptual model-
ing, we will consider the possible sources of aleatory and
epistemic uncertainty and error that could occur in the three
activities discussed so far. The activities of developing
system/environment specifications and scenario abstrac-
tions introduce epistemic uncertainties into the modeling
and simulation process. These epistemic uncertainties
arise primarily because of what is not included or scenarios
that are not imagined, but are possible. Modarres, Kamins-
kiy and Krivtsov [60] refer to this type of uncertainty as
‘completeness uncertainty’. The wider the scope of the
analysis is or the more complex the system is, the larger is
the number of possibilities that exist for epistemic
uncertainties due to lack of knowledge about aspects of
the modeled system and environment. Indeed, a common
weakness of modern technological risk analyses is the
exclusion, either intentionally or unintentionally, of unusual
events, effects and possibilities [61]. For example, auto-
matic control systems designed to ensure safe operation of
complex systems can fail in unexpected ways, or the safety
systems can be overridden during testing or maintenance.
During construction of coupled physics specifications,
acknowledged error is of primary concern. A hierarchical
ordering of levels of physical coupling in conceptual models
can commonly be constructed. Based on experience with
similar systems, previous analyses, failure consequences,
economic and liability consequences, and budget and
schedule considerations, decisions are then made concern-
ing which physics coupling is chosen. However, when
physics couplings are neglected, an acknowledged error is
introduced.

For the missile flight example, we list only two alternative
nondeterministic specifications, as shown in Fig. 5. Nonde-
terministic Specification 1 includes the following aleatory
uncertainties (indicated by an AU in Fig. 5): mass properties
of the missile, aerodynamic force and moment coefficients,
aerothermal heating characteristics and ICs at missile
launch. These are considered aleatory uncertainties because
they are usually associated with random variation due to
manufacturing processes or physically random processes.
If many missiles were manufactured, for example, there
would normally be sufficient inspection data so that a
representative probability distribution for each parameter
could be constructed. Nondeterministic Specification 1
also includes the following as aleatory and/or epistemic
uncertainties (indicated by an AU, EU in Fig. 5): propulsion
characteristics, atmospheric characteristics and target
characteristics. These quantities could be considered as
aleatory uncertainties, but their nondeterministic feature is
usually dominated by lack of knowledge. For example,
propulsion characteristics of solid rocket motors can vary
substantially with age and temperature of the propellant.
Suppose that statistical models for the random variation
due to manufacturing have been constructed and these
models are based on the known age and temperature of
the propellant. If the age of the propellant in a particular
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motor is not known or the temperature of the propellant in a
particular motor is not known, the statistical models are of little
value in estimating the variation in the motor’s performance. A
similar argument can be made for estimating the uncertainty in
atmospheric characteristics like wind conditions or tempera-
ture. Without specifying additional knowledge, such as
location on earth, month of year, or even time of day, statis-
tical models would include these effects as additional
random variables.

The missile flight example will only pursue Nondeter-
ministic Specification 2. For this specification, we chose
one parameter of the mass properties of the missile as an
aleatory uncertainty and one characteristic of the propulsion
system as an epistemic uncertainty. We pursue Specification
2 in the example to distinguish the characteristics of each
and to show how these parameters might be represented
differently in a computational simulation. All other
parameters are considered deterministic (indicated by a D
in Fig. 5).

3.3. Mathematical modeling activities

As shown in Fig. 4, we have identified four major
activities in the mathematical modeling phase: formulation
of the PDEg, selection of all auxiliary equations that supple-
ment the differential equations, formulation of all ICs and
BCs required to solve the PDEs, and selection of the math-
ematical representation of nondeterministic elements of the
analysis. The PDEs commonly represent conservation
equations for mass, momentum and energy, but they can
originate from any mathematical model of the system.
The auxiliary equations are equations that are required to
complete the PDEs. Examples are turbulence-modeling
equations in fluid dynamics, equations of state in shock
wave physics, material-constitutive equations in solid
dynamics, neutron cross-sections in neutron transport and
environmental excitation conditions. The auxiliary
equations can be of any type, e.g. algebraic equations,
integral equations, or PDEs. The BCs and ICs provide the
required closure equations needed for all PDEs.

Formulation of the nondeterministic representations is
based on the needs of the analysis, as well as the quantity
and quality of relevant information available. Aleatory
uncertainties commonly dominate the nondeterministic
features of the auxiliary physical equations and the BC
and IC activities. The most common aleatory uncertainties
are those due to inherent randomness of continuous para-
meters in these equations. Aleatory uncertainties are nearly
always represented by probability distributions. In some
cases, the form of these distributions is inferred from first
principles of the processes used to determine the parameter
values. In most cases, the distributions are chosen based on
very little data, on convention, or convenience. Parameters
associated with the probability distributions are then
estimated when sufficient data are available or assigned

values based on a subjective assessment when insufficient
data are available.

Epistemic uncertainties can have a large impact on the
nondeterministic formulation of the PDEs because the key
issue can be limited, or inadequate, knowledge of the physi-
cal processes involved. Examples of epistemic uncertainties
that occur in the PDEs are limited knowledge of the
equations for turbulent-reacting flow, steam explosions
and crack propagation in materials, particularly nonhomo-
geneous and nonisotropic materials. For physical processes
that are well understood, inaccuracies in certain models
should be considered as errors rather than epistemic uncer-
tainties. This guideline is based on the argument that if
significant knowledge of the process exists, a set of alter-
native models can be convincingly ordered in terms of
increasing accuracy. In the modeling of fluid dynamic turbu-
lence, the models can be generally ordered in terms of
increasing accuracy as follows: algebraic models, two-
equation models, Reynolds stress models, and large eddy
simulation models. In general, this ordering is appropriate,
but for individual flow fields, there is no guarantee that any
one model will be more accurate than the other because
certain lower-order models can be very accurate for
specialized cases.

Acknowledged errors in PDE models are those due to
mathematically representing the physics in a more simpli-
fied or approximate form than the best available. The invari-
able case is that for any mathematical model chosen to
represent some physical process, one can identify higher-
fidelity models that are known to exist. In our definitions
given in Section 2.2, this is precisely what is meant by
acknowledged error. Higher-fidelity models are usually
not chosen because of the higher computational costs asso-
ciated with their solution. The ratio of computational cost
for a higher-fidelity model to a lower-fidelity model is
commonly high, sometimes exceeding a factor of a 100.

Analysts ordinarily choose a given level of model fidelity
based on practical issues, such as computational resources
available, options in computer codes with which they are
familiar, schedule constraints and technical issues. Some
examples of acknowledged errors in mathematical modeling
are the modeling of a process in two spatial dimensions
when three spatial dimensions may be needed, the assump-
tion of a steady state when unsteady effects may be impor-
tant, and the assumption of homogenous material properties
when mesoscale features play a substantial role. These
examples of acknowledged errors are all characteristic of
situations in which physical modeling approximations were
made to simplify the mathematical model and the sub-
sequent solution.

For the missile flight example, two mathematical models
are chosen; a 6-DOF model and a 3-DOF model (Fig. 6).
Both models are consistent with the conceptual model being
analyzed: System/Environment Specification 3, Scenario
Specification 1, Coupled Physics Specification 3 and
Nondeterministic Specification 2 (Fig. 5). The translational
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Fig. 6. Mathematical models for the missile flight example.
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the sum of all forces acting on the vehicle. The rotational
equations of motion can be written as
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where [I] is the inertia tensor of the vehicle, @, the angular
velocity and 3M is the sum of all moments acting on the
vehicle. Eq. (1) represents the 3-DOF equations of motion,
and Egs. (1) and (2) represent the 6-DOF equations of
motion. A description of the derivation of the 3-DOF and
6-DOF equations of motion are given in Ref. [62]. Although
the 3-DOF and 6-DOF equations are ordinary differential
equation (ODE) models instead of the PDE models stressed
in the present work, key aspects of the present framework
can still be exercised.

For the 3-DOF and 6-DOF mathematical models of flight
dynamics, one can unequivocally order the models in terms
of fidelity. Indeed, the physics and mathematics of the 6-
DOF equations are so well understood that there is no need
for experimental validation of these models. Their accuracy
is only limited by the accuracy of the assumption of a rigid
body, accuracy of the measured mass properties and
accuracy of the forces and moments acting on the vehicle.
However, as mentioned above, this ordering is commonly
not possible for models of complex physical processes or
systems. As a result, the mathematical model approximation
would no longer be considered as an acknowledged error as
in the present case, but an epistemic uncertainty.

Fig. 6 lists all the auxiliary equations and ICs that are
needed for each mathematical model. As would be expected
of higher-fidelity models, the 6-DOF model requires physi-
cal information well beyond that required by the 3-DOF
model. This poses the question: When does the lack of
information for the additional parameters in a higher-fidelity
model counteract its accuracy when compared to a lower-
fidelity model? Although this question is not addressed in
the present work, it is an issue to be considered in many
analyses. It is fallacious, but unfortunately common, to
claim that the higher the fidelity of the physics model, the
better the results. The uncertainty of parameters and the
greater computer resources required to solve higher-fidelity
models are critical factors in estimating nondeterministic
system response. In addition, constraints on computer
resources can obviate the accuracy of a higher-fidelity
model.

The two nondeterministic parameters considered in the
missile flight example are the initial mass of the missile and
the propulsion thrust characteristics. Both parameters
appear in each of the mathematical models chosen so that
direct comparisons of their effect on each model can be
made. It is assumed that sufficient inspection data of manu-
factured missiles is available for the missile mass to justify a
normal distribution with known mean and standard devia-
tion. Thrust characteristics are considered an epistemic
uncertainty due to the unknown temperature of the solid
propellant. We choose a nominal value and two bounding
values: the normal operating temperature, the highest
allowed temperature within the manufacturer’s specifica-
tion, and the lowest allowed temperature. The high-
temperature condition causes the thrust to be higher and
the burn time to be shorter, and the low-temperature

condition causes the thrust to be lower and the burn time
to be longer. We assume that the thrust-versus-time profiles
of the high- and low-temperature motors are accurately
known, i.e. there is no random variation in motor
performance due to any other factors. It is clear that the
epistemic uncertainty in propulsion thrust can be steadily
reduced as information is added to the analysis. For
example, if the temperature at launch is known precisely,
the propulsion uncertainty could be eliminated, given the
present assumptions.

3.4. Discretization and algorithm selection activities

The discretization and algorithm selection phase accom-
plishes two related activities. First, it converts the
continuum mathematics model, i.e. the differential
equations, into a discrete mathematics problem suitable
for numerical solution. Secondly, it provides the method-
ology determining how a discrete set of computer solutions
can be most appropriately used to accommodate the non-
deterministic features of the analysis. The conversion from
continuous to discrete mathematics is fundamentally a
mathematics-approximation topic; errors, not uncertainties,
are the dominant loss-of-confidence issue in this phase (note
that, for the remainder of the article, when we refer to
‘errors’, we will be referring only to acknowledged errors,
unless otherwise stated). Some may question why this
conversion process should be separated from the solution
process. We argue that this conversion process is the root
cause of more difficulties in the numerical solution of
nonlinear PDEs than is generally realized [63,64]. Tradi-
tional nondeterministic methods applied to systems
described by differential equations are commonly approxi-
mations to stochastic differential equations, even though this
is rarely recognized. Stated differently, traditional nondeter-
ministic methods are commonly a conversion of a stochastic
differential equation into multiple solutions of deterministic
differential equations. Since the discrete solution to stochas-
tic differential equations is much less developed than the
discrete solution for deterministic differential equations,
this approximation is almost always made [65].

As shown in Fig. 4, we identify four activities in the
discretization and algorithm selection phase: discretization
of the PDEs, discretization of the BCs and ICs, selection of
the propagation methods, and design of computer experi-
ments. The types of errors that should be identified in the
discretization of the PDEs, BCs and ICs are those associated
with possible inconsistencies between the discrete form of
the equations in the infinitesimal limit and the continuum
form of the equations. Consistency of the discretization is
normally evaluated by analytically proving that the numer-
ical algorithm approaches the continuum equations as the
discretization size of all independent variables approaches
zero. For simple differencing methods, this evaluation is
straightforward. For complex differencing schemes, such
as essentially nonoscillatory (ENO) schemes, flux limiter
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schemes, and second-order, multidimensional upwind
schemes, determining the consistency of the schemes can
be difficult. For complex multiphysics in coupled PDEs, it is
impossible to prove. Related issues are also treated in the
discretization activities of differential equations, for exam-
ple: Are the conservation laws satisfied for finite spatial grid
sizes or are mass, momentum and energy only conserved in
the limit as grid size approaches zero? Does the numerical
damping approach zero as the mesh size approaches zero?
Note that the discretization of PDEs is also involved in the
conversion of Neumann and Robin’s, i.e. derivative, BCs
into discrete equations. We have included the conversion of
continuum ICs to discrete ICs because spatial singularities
may be part of the ICs, not because there are derivatives
involved. An example is the time-dependent decay of a
vortex for which the IC is given as a singularity. Our
point is also valid, indeed much more common, when singu-
larities or discontinuities are specified as part of the BCs.

The selection of propagation methods and the design of
computer experiments in Fig. 4 both address conversion of
the nondeterministic elements of the analysis into multiple
runs, or solutions, of a deterministic computational simula-
tion code. Selection of a propagation method involves the
determination of an approach, or approaches, to propagating
aleatory and epistemic uncertainties through the computa-
tional phases of the analysis. Examples of methods for
propagating aleatory uncertainties include reliability
methods [25], sampling methods such as Monte Carlo or
Latin Hypercube [66,67], and statistical design approaches
[68]. Methods for the propagation of epistemic uncertainties
represented by nontraditional theories, e.g. possibility
theory and fuzzy sets, are a subject of current research
[48,69-71]. The design of computer experiments is driven
largely by the availability of resources and by the require-
ments of the analysis. Establishing an experimental design
often involves more than just implementation of the propa-
gation method specified above. The problems associated
with large analyses can often be decomposed in a way
that permits some variables and parameters to be investi-
gated using only portions of the code or, perhaps, simpler
models than are required for other variables and parameters.
The decomposition of the problem and selection of appro-
priate models, together with the formal determination of
inputs for the computer runs, can have a major effect on
the estimate of uncertainty introduced into the analysis in
this phase. This activity is performed here because the
detailed specification of inputs and models will impact
programming requirements, as well as the running of the
computer model in the numerical solution phase. Selection
of propagation methods and the design of computer
experiments may be performed differently for different
mathematical models and may involve the specification of
probabilities associated with different model choices, where
available information warrants specification of prob-
abilities.

For the missile flight example, the same discretization

method was applied to both the 6-DOF and 3-DOF mathe-
matical models. This resulted in two discretized models that
differ only in the differential equations being solved. A
Runge—Kutta—Fehlberg (RKF) 4(5) method was chosen to
solve each system of ODEs [72]. The RKF method is fifth-
order accurate at each time step, and the integrator
coefficients of Ref. [73] were used. The method provides
an estimate of the local truncation error, i.e. truncation error
at each step, so that the estimated numerical solution error
can be directly controlled by adjusting the step size as the
solution progresses. The local truncation error is computed
by comparing a fourth-order accurate solution with the fifth-
order accurate solution. A more detailed description of the
numerical integration procedure in given in Ref. [62].

The method chosen for propagation of the missile mass
aleatory uncertainty was the Latin Hypercube Sampling
(LHS) method. LHS employs stratified random sampling
for choosing discrete values from a probabilistically defined
nondeterministic variable or parameter. For propagation of
the epistemic uncertainty of the motor performance, we
simply chose three possible propulsion characteristics to
bind the solution and provide an interval-valued result.
The experimental design activity for this example is simple
because one of our objectives is to compare models of
different fidelity. Hence, the experimental design calls for
performing the same number of Latin Hypercube calcula-
tions for both the 3-DOF and 6-DOF models. In an actual
analysis, this phase would include selecting how to mix
computer runs between the two models and determining
how results from these models might be combined to maxi-
mize the accuracy and efficiency of the computations.

3.5. Computer programming activities

Fig. 4 identifies three activities in the computer program-
ming phase: input preparation, module design and coding,
and compilation and linkage. Input preparation refers to the
analyst’s conversion of the mathematical and discrete model
elements into equivalent data elements usable by the
application code. The second and third activities relate to
the building of the application code itself. Here, subroutine
modules are designed and implemented through a high-level
programming language. This high-level code is then
compiled into object code and linked to the operating
system and libraries of additional object code to produce
the final executable code.

The correctness of the computer programming phase is
most influenced by unacknowledged errors, i.e. mistakes.
The potential for mistakes in all three of these activities is
enormous. In addition to the most obvious programming
bugs (which still occur frequently), there is the subtler
problem of undefined code behavior. Such behavior occurs
when a particular code syntax is undefined within the
programming language, leading to executable code whose
behavior is compiler dependent. Compilation and linkage
introduce the potential for further errors that are unknown
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to the developer. Primary among these are bugs and errors in
the numerous libraries of object code linked to the applica-
tion. These libraries can range from the ubiquitous, such as
trigonometric functions, to matrix inversion and the solution
of special classes of ODEs and PDEs. Such libraries allow
the analyst to use previously developed data handling and
numerical analysis algorithms. Unfortunately, the
analyst also inherits the undiscovered or undocumented
errors in these libraries. There is also the possibility that
when the analyst uses library routines he misunder-
stands or makes an error in the values passed to the library
routines.

TAOS was the computer code used for the missile flight
example [74]. This general-purpose flight dynamics code
has been used for a wide variety of guidance, control and
optimization problems for flight vehicles. We used only the
ballistic flight option to solve both the 6-DOF and 3-DOF
equations of motion. Concerns with coding, compilation
and linkage on massively parallel computers were not a
factor in this example because program execution was
performed only on Unix workstations.

The capture and elimination of programming errors,
while not generating much excitement with many research-
ers and engineering analysts, remains a major cost factor in
producing highly verified software. Some researchers
experienced only with model problems, do not appreciate
the magnitude of the issue. They feel it is simply a matter of
carelessness that can be easily remedied by software quality
assurance practices. The high number of inconsistencies,
static errors, and dynamic, i.e. run-time, errors in well tested
commercial computer codes was recently investigated by
Hatton [75]. He concluded “All the evidence ... suggest
that the current state of software implementations of
scientific activity is rather worse that we would ever dare
to fear, but at least we are forewarned”. Assessing software
quality is becoming much more difficult because of
massively parallel computers. In our opinion, the complex-
ities of optimizing compilers for these machines, message
passing, and memory sharing are increasing faster than the
capabilities of software quality-assessment tools. As a case
in point, debugging computer codes on massively parallel
computers is moving toward becoming a nondeterministic
process. For example, the code does not execute identically,
and does not produce the same numerical result, from one
run to another. It is still a fundamental theorem of program-
ming that the correctness of a computer code and its input
cannot be proven, except for trivial problems.

3.6. Numerical solution activities

As shown in Fig. 4, we have identified four activities
occurring in the numerical solution phase: spatial and
temporal convergence, iterative convergence, nondetermi-
nistic propagation convergence and computer round-off
accumulation. Spatial and temporal convergence addresses
the accuracy of numerical solutions using finite spatial grids

and finite time steps. These two can be grouped into the
general category of truncation error due to the discrete
solution of PDEs. By iterative convergence, we mean the
numerical accuracy to which nonlinear algebraic, or trans-
cendental, discrete equations are solved. Iterative conver-
gence error normally occurs in two different procedures
involved in obtaining the numerical solution: (1) during
the iterative convergence that should be achieved within a
time step and (2) during the global iterative convergence of
an elliptic PDE, i.e. a boundary value problem. Examples of
the iterative convergence that should be achieved during a
time step are intra-time-step iteration to solve the unsteady
heat-conduction equation when the thermal conductivity
depends on temperature, and iterative solution of nonlinear
constitutive equations. Iterative convergence error is differ-
ent from error caused by finite precision arithmetic, i.e.
round-off error.

Nondeterministic propagation convergence refers to
activities related to adjusting or further specifying inputs
that determine specifics of the multiple deterministic
computer runs. Some methods for uncertainty propagation
and experimental design rely on run-time results to help
direct further computer experimentation. Reliability
methods, for example, focus on finding a specific point
(for functional expansion) that provides a ‘best approxima-
tion’ to system performance. Propagation convergence is
determined by the change in the approximation from one
computer run to the next. It is clear that the nondeterministic
propagation convergence errors, as well as the errors
discussed in the previous paragraph, are all acknowledged
errors.

For the missile flight example, the numerical solution
method used a variable time step so that the local truncation
error could be directly controlled at each step. The local
truncation error is estimated at each step for each state
variable for each system of differential equations. For the
6-DOF model, there are 12 state variables, and for the
3-DOF models, there are 6 state variables. Before a new
time step can be accepted in the numerical solution, a
relative error criterion must be met for each state variable.
In the TAOS code, if the largest local truncation error of all
the state variables is less than 0.6 of the error criterion, the
step size is increased. Quantification of local solution error
is important not only to measure its impact on an individual
solution but also to precisely determine its interaction
between aleatory and epistemic uncertainty in the problem.
In the solution of PDEs for complex systems, general proce-
dures for estimating solution error are very difficult to
develop and compute. Global estimates of a posteriori
solution error, i.e. over the spatial domain of the PDE, are
commonly made with finite element methods, but local error
estimates are not usually available. For finite difference and
finite volume methods, Richardson’s method can be used to
estimate local truncation error [76,77]. However, this
estimation method can become quite computationally
expensive for complex problems.
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3.7. Solution representation activities

In the solution representation phase shown in Fig. 4, we
have identified five activities: input preparation, module
design and coding, compilation and linkage, data represen-
tation and data interpretation. The first three activities are
very similar to those discussed in the computer-program-
ming phase. The data representation activity includes two
types of similar activities: (1) the representation of
individual solutions over the independent variables of the
PDEs and (2) a summary representation that combines
elements of the multiple individual deterministic computer
runs. Representation of individual solutions refers to the
construction of a continuum solution based on the numerical
solution at discrete points in space and time. Data represen-
tation errors originate as a result of the inaccurate or
inappropriate construction of continuous functions from
the discrete solution of the PDEs in the postprocessor.
Examples are oscillations of the continuous function
between discrete solution points due to the use of a high-
order polynomial function in the postprocessor, and
interpolation of the discrete solution between multiblock
grids such that mass, momentum and energy are not
conserved. Note that we mean inaccurate construction
with respect to the discrete solution, and not with respect
to the continuum PDEs. To clarify this point, consider the
numerical solution of a shock wave passing through a fluid
or a solid, with the shock wave physically modeled as a
discontinuity in the continuum PDEs. If the discretization
method approximates the discontinuity with a continuous
function, e.g. a shock-capturing method, the shock wave
in the discrete representation is no longer discontinuous.
As a result, the construction (solution representation) error
should be judged with respect to the continuous function
approximation of the discrete solution, and not the conti-
nuum model. The discontinuity of the shock wave was lost
in the discretization step and could not be recovered here.

Representation of a nondeterministic simulation from the
individual deterministic computer runs refers to the compi-
lation of these multiple solutions into statistical measures
that can be used to address the requirements of the analysis.
This activity can include developing summary descriptions
of the solution and discriminating which parts of the repre-
sented solutions will be reported through tables and figures.
Errors can occur in the representation of a nondeterministic
solution as a result of integrating the ensemble of individual
solutions in a way that is inconsistent with the specified
propagation method. Data representation errors are princi-
pally acknowledged errors in that a correct or consistent
discrete-to-continuum mapping is known from the choice
of discretization methods.

The data interpretation activity refers to the human
perceptions or impressions that are formed based on obser-
vation of the represented solutions. If the perceptions or
impressions are correct, then knowledge or understanding
is generated. If they are incorrect, then an unacknowledged

error has occurred. In other words, data interpretation errors
occur when a user misinterprets the individual or summary
solutions. Examples of interpretation errors are (1) concluding
that a computed solution is chaotic when it is not and (2)
interpreting a computed flow as turbulent when it is only a
spurious numerical solution [63,64]. Importantly, our defini-
tion of data interpretation errors does not include inappropriate
decisions made by the user based on the interpretation, such as
incorrect design choices or inept policy decisions.

3.8. Summary comments

Fig. 7 illustrates the multiple models, numerical solutions
and solution representations that are addressed in the missile
flight example. As shown in the figure, six conceptual
models are identified, many more are implied, but for
illustration in this paper, only one is selected for further
development and analysis. This single conceptual model
spawns two alternative mathematical descriptions, the
3-DOF and 6-DOF models, both of which are carried
through the remaining phases of the modeling and simula-
tion process. For simplicity, Fig. 7 then shows the further
development of only one of these mathematical models,
although it is understood that identical development of
Mathematical Model 1 is taking place in parallel with Math-
ematical Model 2. The discretization and programming
phases identify alternative model choices that are not
considered further in this example. Continuing into the
numerical solution phase, nondeterministic effects that
were identified in the conceptual model and further defined
in the mathematical modeling phase are computed via
multiple deterministic numerical solutions. How these
solutions were computed was specified in the propagation
method identified in the discretization and algorithm
selection phase. Finally, in the solution representation
phase, the multiple solutions are merged to represent the
nondeterministic solution.

It is clear from the missile flight example that the model-
ing and simulation process for complex systems involves
the identification and use of multiple scenarios, analyses
and computations. At each phase of this process, it is
often possible to identify more than one viable choice of
models or parameters that can be used to obtain a computa-
tional result. As these multiple model choices propagate
through subsequent phases, a tree structure of potential
computational results is developed, as indicated in Fig. 7.

4. Missile flight example computational results

Before the computational results from the missile flight
example are presented, it is necessary to provide a few
details about the calculations. The missile is assumed to
be launched from an aircraft flying straight and level at an
altitude of 9.144 km (30 Kft) above sea level and at a speed
of 213.4m/s (700 ft/s). Assume a spherical, nonrotating
earth. Define an earth-fixed, three-dimensional, Cartesian
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Fig. 7. Tree structure for models, solutions, and representations in the
missile flight example.

coordinate system, where x is vertical, z is in the direction of
the aircraft flight, and y is normal to the xz plane (Fig. 8). Let
the origin of the xyz coordinate system be at sea level,
directly below the missile center-of-gravity at the IC.
Assuming zero disturbance of the aircraft on the missile
during launch and assuming uniform freestream flow

A—p

Final Range—y/ z

y

Fig. 8. Cartesian coordinate system for missile trajectory.

approaching the missile, the ICs for the 6-DOF equations
of motion are

x = 9.144 km, y=2z=0,

a=pB=¢=0,

a, B and ¢ are the pitch, yaw and roll angles of the
missile, respectively. p, ¢ and r are the roll rate, pitch rate
and yaw rate of the missile, respectively. The ICs for the
3-DOF equations of motion are given by the x, y, zand V.,
V, and V, conditions given above. Assume the fluid proper-
ties of the atmosphere are given by the 1976 US Standard
Atmosphere and that the winds are zero over the entire
trajectory [78]. The trajectory calculation is terminated
when x = 0, i.e. when the missile reaches sea level.

For convenience, detailed missile characteristics were
taken to be those of the Improved Hawk missile, since
these characteristics were readily available [79]. Missile
moments of inertia, center of mass, rocket motor thrust
and mass flow rate of the rocket motor are functions of
time during operation of the rocket motor but are constant
after the motor’s burnout. The rocket motor nominally oper-
ates for 24.5 s, which is about half of the total flight time of
the missile. The aerodynamic force and moment coefficient
derivatives are assumed constant with pitch, yaw and roll
angle of the missile, i.e. linear aerodynamics is assumed.
However, the aerodynamic force and moment coefficient
derivatives are functions of Mach number. The only system
response measure presented here is the final range of the
missile, since it captures most of the trajectory characteristics
of interest. Detailed information on the missile moments of
inertia, center of mass, rocket motor thrust, mass flow rate of
the rocket motor, aerodynamic force and moment coefficients,
and other flight dynamics characteristics are given in Ref. [62].

To illustrate the combined effects of aleatory and
epistemic uncertainty in the example, we select 500 values
of initial mass through the LHS method. We then compute

V.=V, =0,

V, =213.4 m/s, p=qg=r=0.
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500 values of range using combinations of the two mathe-
matical models, three thrust models, and five selected values
of numerical integration solution error. Our purpose is to
study and understand the effects and interactions of these
sources of uncertainty and error on the system response
measure of interest.

4.1. Effects of mass uncertainty

The first source of nondeterministic behavior examined
was the aleatory uncertainty of the initial mass of the
missile. The mean initial mass was 62549 kg
(1378.98 1b), of which 332.01 kg (731.961b) was inert
mass and 29348 kg (647.021b) was propellant. As
mentioned in Section 3.3, a normal probability distribution
for initial mass uncertainty was assumed. The standard
deviation, o, was assumed to be 4.54 kg (10 1b). Although
it is not important for this problem, o, = 4.54 kg, is
consistent with actual missile systems of this size [80].
We investigated the effects of numerical solution error for
both the 6-DOF and 3-DOF models to be certain that this
error was not entering into the mass uncertainty results. We
computed solutions with per-step, relative truncation-error
criteria of 1072, 107 and 10~°. Comparing these solutions
at the end of the trajectory, we found that error criteria of
10~"* and 10~° produced the same values of the final range
to seven significant digits. As a result, we used 10~° for all
remaining calculations when solution error was not of
interest. Using this error criterion, the computer run time
on a SUN Sparc 20 workstation was 49 and 1 s, for one
6-DOF and one 3-DOF solution, respectively.

Since computer run time was not an issue, we computed
500 LHS solutions for both the 6-DOF and 3-DOF models.
Fig. 9 shows the histogram from the LHS, centering the
mass at 625.5kg (13791b) and using bins of width
2.27 kg (5 Ib). As can be seen with this number of samples,
the histogram is a good approximation to the assumed
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Fig. 9. Histogram from LHS for mass uncertainty.

normal distribution. Using LHS and 500 samples, the
mean value was computed to be 625.497 kg (1378.984 1b),
and o, = 4.533 kg (9.993 1b). The 500 samples are roughly
a factor of 10 higher than is normally needed. We chose this
large number to essentially eliminate any sampling error in
the analysis. Since the same random number generator and
the same seed were used on both the 6-DOF and 3-DOF
models, each model computed trajectories using exactly
the same missile masses. Indeed, for all results given in
this analysis, exactly the same sampled initial missile
masses were used.

Fig. 10 shows the computed range of the missile as a
function of the initial mass for both the 6-DOF and
3-DOF models. The nominal thrust profile for the rocket
motor was used. For both models, the missile range is linear
for this small variation in initial mass. It is clear from the
very well behaved system response measure that 5—10 LHS
samples would have been sufficient to characterize this
response measure. However, for our analysis, we required
sampling errors that were much less than typical analyses. It
is also seen in Fig. 10 that the lower-fidelity model (3-DOF)
introduces a bias error of 74 m (243 ft) in range, which is
constant for all masses sampled. The generation of a bias
error in the response of the system is disturbing because this
error might go undetected if the higher-fidelity model results
or experimental measurements were not available. In
general, one does not expect this result. Lower-fidelity
models are used with the hope that the computational results
will be distributed around the correct answer and not contain
a systematic error in response. For this relatively simple
physics system, one can easily see how this bias error in
range occurs. The arching trajectory of the missile in a
vertical plane causes a small mean angle-of-attack during
most of the trajectory. Computational results from the
6-DOF trajectory show this value to be about 0.01-0.02°
after the initial disturbance at launch decays. This angle of
attack causes a lift component on the missile, i.e. a small
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Fig. 10. Uncertainty in range due to uncertainty in initial mass.
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Fig. 11. Frequency data from LHS for range offset due to initial mass.

gliding effect, which results in a slightly longer trajectory.
The lower-fidelity model does not, indeed cannot, account
for this physics, and as a result, the prediction of range is
consistently shorter. From this understanding of the physics,
one can then see that the magnitude of the bias will depend
on a host of additional parameters that were not investi-
gated, e.g. initial launch altitude, initial launch angle and
aerodynamic lift coefficient.

Fig. 11 shows frequency data of the LHS samples as a
function of range offset from the mean value range for the 6-
DOF trajectory: 36.210 km (19.552 nm). That is, the range
computed for the mean mass of 625.49 kg (1378.98 1b) for
the 6-DOF trajectory is defined to have zero offset. In this
figure, the bias error in range of 74 m (243 ft) of the 3-DOF
model is seen as a shift of distribution to the left, i.e. shorter
range. The frequency plot shows the distribution produced
by each model is remarkably similar, as might be expected
from the results of Fig. 10. For the 6-DOF model, the stan-
dard deviation in range is computed to be 143 m (468 ft),
whereas for the 3-DOF model, o = 142 m (466 ft).

4.2. Effects of thrust uncertainty

As discussed in Section 3.3, our approach to determining
the uncertainty in the trajectories due to unknown tempera-
ture of the rocket motor is to compute bounding trajectories
using three thrust profiles: a nominal profile, the highest
profile resulting from the highest temperature allowed by
the manufacturer, and the lowest profile resulting from the
lowest temperature allowed by the manufacturer. To be
representative of thrust uncertainty in actual motors, we
chose the changes in performance that have been experi-
mentally measured for the Standard Hawk motor [81]. At
the highest allowed temperature of 49°C (120°F), the total
impulse of the motor is 2% above the nominal performance,
but the burn time is decreased by 7%. At the lowest allowed
temperature of —29°C (—20°F), the total impulse of the
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Fig. 12. Uncertainty in range due to thrust and mass uncertainty for 6-DOF
model.

motor is 2% below the nominal performance, and the burn
time is increased by 7%. Stated qualitatively, the high-
temperature motor has a higher net performance over a
shorter burn time, and the cold motor has a lower net perfor-
mance over a longer burn time.

Fig. 12 shows the 6-DOF computed range of the missile
for each of the three temperature conditions of the motor as
a function of initial mass uncertainty. It can be seen from
Fig. 12 that, as expected, the motor temperature uncertainty
produces a shift in range: the high-temperature motor flying
1.16 km (0.625 nm) further than the nominal motor
temperature, and the cold motor flying 1.14km
(0.616 nm) shorter than the nominal motor. The linearity
of the missile range as a function of mass continues to
hold for both the high- and low-motor-temperature cases.
It is also seen that the uncertainty in range due to motor
temperature uncertainty is significantly larger than that
observed due to mass uncertainty. The uncertainty in
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range due to unknown rocket-motor temperature is 2.30 km
(1.24 nm). The uncertainty in range due to mass uncertainty
can be calculated as 4o =4X0.143 km = 0.572 km
(0.308 nm), which is only 25% of the uncertainty due to thrust.

Fig. 13 shows the frequency data from the LHS for the
6-DOF model as a function of missile range for each of the
three motor temperatures. The mean range for the cold
motor is shifted 1.14 km (0.616 nm) toward shorter range,
whereas the hot motor is shifted about the same amount
toward longer range. The standard deviation in range for
the hot and cold motors is nearly identical: (OR)no =
143 m (470 ft) and (OR)coq = 141 m (463 ft). Recall that
these values are essentially the same as the value of the
nominal motor, (0R)yem = 143 m (468 ft). The results for
the hot and cold motors using the 3-DOF model are very
similar to the 6-DOF results presented in this section. The
only difference is that the 3-DOF results show the 74 m
(243 ft) bias in range, as discussed in Section 4.1.
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Fig. 15. Uncertainty in range due to solution error and mass uncertainty for
3-DOF model.

We argue that the source of the large uncertainty in
missile performance due to motor temperature uncertainty
should be characterized as lack of knowledge. Some would
argue that the motor temperature uncertainty could be
characterized as aleatory uncertainty instead of epistemic
uncertainty. The argument is that a probability distribution
could be constructed based on measuring motor tempera-
tures for a large number of actual missile deployments,
experimentally. The uncertainty of motor temperature
could then be represented by a probability distribution
with some mean and standard deviation. Although this is a
reasonable approach, we argue that the aleatory uncertainty
approach could lead to misleading estimates of system
performance for certain deployment situations. For
example, if the deployment were in Alaska during the
winter versus Saudi Arabia during the summer, the mean
range of the missile would be of little value. Additional
knowledge of the type of deployment would change the
representation. A deployment at a permanent installation
with significant environmentally controlled space would
be quite different from a makeshift battlefield deployment.
As more and different kinds of knowledge are introduced
into the analysis, representations other than precise
probability distributions may be more appropriate, e.g.
belief and plausibility measures in Dempster—Shafer theory.
Belief and plausibility measures state the lower and upper
bounds, respectively, of the imprecise probabilitistic
information. However, guidance on developing these
representations based on available information is poorly
developed compared to probability theory.

4.3. Effects of numerical integration error

As discussed in Section 3.6, we are able to precisely
control the numerical solution error at each step of the
numerical integration of the ODEs. The per-step, relative
truncation error is estimated using the RKF 4(5) method,
and the time step is adjusted at each step so that the trunca-
tion error is less than the specified error criterion. Fig. 14
shows the computed range of the missile for the 6-DOF
model using the nominal thrust profile as a function of the
mass uncertainty for five different per-step, relative error
criteria. There is no effect on calculated range even though
the error criterion is varied over eight orders of magnitude:
up to 10% error per step. This result was not expected.
Experience leads us to believe that as the error criterion
increased greatly, the accuracy of the solution would
degrade progressively. For certain state variables, like
those that are periodic, the solution accuracy degrades
only slightly. Most variables, including output variables
that are derived from state variables, like range, do not
degrade because the error criterion must be satisfied by all
12 state variables. The state variables that have the highest
temporal frequency are those that will restrict the growth of
the time step and the resulting growth in solution error. The
highest-frequency state variables are pitch rate ¢, and yaw
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rate r. Both ¢ and r have a frequency of 1-2 Hz, which
limits the maximum time step to 0.1-0.2's so that this
element of physics can be adequately computed. All
lower-frequency state variables are computed much more
accurately than required by the error criterion.

Fig. 15 shows the 3-DOF computed range using the
nominal thrust profile as a function of mass uncertainty
for five per-step, relative truncation-error criteria. These
five error criteria are the same as those used in the 6-DOF
calculation illustrated in Fig. 14. The 3-DOF model has a
completely different sensitivity to numerical solution error
as compared to the high-fidelity model. For a relative error
of 107, a slight roughness in the range as a function of mass
can be seen. For a 10 error, the amplitude in roughness of
range increases to 65 m (213 ft). This variation in amplitude
can occur over a very small change in mass. For example,
near the mean mass of 625.49 kg (1378.99 1b), a jump of
65 m can be seen over a change in mass of less than 0.05 kg.
This type of unrealistic system-response roughness due to
solution error has been seen by many investigators, particu-
larly those using first-order-response surface methods and
those using optimization methods that rely on numerical
differentiation of the system response.

As the numerical error is increased further, to 1072 and
107!, Fig. 15 shows that a drop in the predicted range
occurs. This introduces a bias error in range similar to that
observed in the earlier comparison of the 3-DOF and 6-DOF
models. The bias error varies slightly with mass for 102
error but becomes constant at a value of 185 m (608 ft) for
10~" error. In addition, the range becomes an extraordina-
rily smooth function of mass, with the same characteristic
occurring at errors of 10~ and smaller. To understand these
unusual characteristics due to solution error, one must
examine how the integration step size is changing to control
the per-step error in the state variables of the 3-DOF model.
Contrary to the 6-DOF model, there are no periodic state
variables in the 3-DOF system. As a result, the step size can
increase rapidly from the fixed initial value of 0.1s (all
solutions presented attempt to use Az = 0.1s in stepping
from # = 0). If the step size results in an estimated trunca-
tion error that satisfies the error criterion, the step is
accepted. If the estimated error is 0.6, or less of the error
criterion, the time step is accepted and the time step is
increased for the next step. If it does not meet with the
error criterion, the time step is decreased until the error
criterion is met. For the 3-DOF model, the time step
increases rapidly because all state variables are extremely
smooth as a function of time, relative to the 6-DOF model.
When the error criterion is changed from 10~ to 107°
Fig. 15, there is a rapid loss in accuracy of the major
physical characteristic of the 3-DOF trajectory: the motor
thrust profile. From the IC until 4.5 s, the motor thrust is
roughly 84,000 N (19,000 Ib). Then, it rapidly drops to a
sustained thrust value of about 16,000 N (3600 1b) for
20 s, after which thrust terminates. For error criteria less
than 107°, the numerical solution accurately captures

these two rapid drops in thrust. As the error criteria
increases up to 1073, the numerical error becomes more
erratic, depending on how the time steps fall with regard
to the two rapid drops in thrust. For error criteria of 10> up
to 107", the error requirement becomes so loose that the
time steps jump across the rapid drops in thrust with little
notice.

4.4. Summary comments

Probably the most surprising computational results
obtained in the missile flight example are those related to
the aggregation and interaction of numerical solution error
with uncertainty. The counterintuitive result that the higher
fidelity model is much less sensitive to solution error than
the lower-fidelity model needs further comment. The
discussion given previously regarding the controlling factor
in solution error for each model explains why this surprising
result occurs. These results have implications for the effect
of numerical solution error on uncertainty analyses when the
mathematical model equations are given by PDEs. The per-
step numerical solution error in the present work was
precisely controlled by the adaptive step-size control of
the ODE integrator. This level of solution error control
and robustness does not presently exist in the numerical
solution of PDEs. Even if one only considers elliptic bound-
ary-value problems, robust and adaptive grid-generation for
the control of local spatial discretization error does not
presently exist. For certain special cases, such as linear
boundary-value problems or problems with no large gradi-
ents, reliable methods for adaptive grid control do exist.

It is our view that the present results for the widely
different sensitivity of each mathematical model to solution
error would only apply to the numerical solution of PDEs
with robust, adaptive grid-generation methods. If one were
to use nonadaptive grid-generation methods, which is the
norm for the solution of the PDEs, very different sensitiv-
ities would occur than those observed here. Nonadaptive
grid methods would be analogous to a constant time-step
method in the solution of ODEs. For the present example,
we computed numerical solutions using a constant time step
over the length of the trajectory for the 6-DOF and 3-DOF
models. Table 1 shows the numerical error in range for
various constant time steps for both models using the
nominal mass and nominal thrust. As the time step
increases, the numerical error for both models increases,
but the error in the 6-DOF model increases more rapidly.
When the time step becomes roughly half of the period of
the finest-scale structure in the 6-DOF model, the error

Table 1
Error in range for 6-DOF and 3-DOF for constant time steps

Time step (s) 0.001 0.01 0.07 0.09 0.1
6-DOF (m) 0.0 7 70 736 0
3-DOF (m) 0.0 7 73 96 107
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increases exponentially. For a time step of 0.1, the error in
the 6-DOF solution has become so large that the trajectory is
no longer computable. For the 3-DOF model, the same time
steps cause a gradual increase in the solution error. This
table shows the opposite sensitivity to numerical error as
compared to the adaptive time-step method.

5. Summary and conclusions

We have presented a comprehensive, new framework for
modeling and simulation that blends the perspective of three
technical communities: the systems view from the
operations research community, propagation of uncertainty
from the risk assessment community, and the numerical
solution of PDEs from the computational physics commu-
nity. The activities that are conducted in each of the six
phases of modeling and simulation are discussed in detail.
Consistent with recent work in the risk assessment commu-
nity, we carefully define and distinguish between aleatory
and epistemic uncertainty. In addition, we define and
discuss acknowledged and unacknowledged errors. In
each of the activities in each phase of modeling and simula-
tion, we discuss which type of source (aleatory or epistemic
uncertainty or error) typically dominates the activity. Parti-
cular emphasis is given to distinguishing the continuous and
discrete mathematical modeling activities and to the nonde-
terministic features of the analysis. Our framework applies
regardless of whether the discretization procedure for
solving the PDEs is based on finite elements, finite volumes,
or finite differences.

The formal distinction between aleatory and epistemic
uncertainty in this framework drives one toward different
mathematical representations for each: probabilistic repre-
sentations for aleatory uncertainty, and various other
modern information theories for representation of epistemic
uncertainty. One approach that has been used for epistemic
uncertainty is Bayesian probability. This approach takes a
subjective view of probability as a measure of degree of
belief in a hypothesis. Although we believe this is a step
in the right direction to represent epistemic uncertainty, we
do not believe it is satisfactory. We recommend research
into modern theories of uncertainty-based information, such
as possibility theory, evidence (Dempster/Shafer) theory,
fuzzy set theory, and imprecise probability theory.
However, these theories are not well developed when
compared to probabilistic inference. In addition, none of
these theories, except fuzzy set theory, has been applied to
engineering analysis problems. If one were to take the step
and represent aleatory uncertainty probabilistically, and
epistemic uncertainty with one of the new theories, then
one must face the question of propagating these components
concurrently in the modeling and simulation process. They
are not simply or uniquely combinable. Propagation
methods of this type are even more of a research topic.

We believe that the usefulness of the present framework

results from two aspects. First, it formalizes and merges a
broad range of activities conducted in complex system
modeling and modern computational simulation. It collects
into one picture all activities so that each one can be clearly
distinguished, relationships can be unambiguously depicted
and assumptions can be formalized. The framework can be
viewed as a many-branched event-and-decision tree and, as
such, the connection and propagation of scenarios, uncer-
tainties, and modeling decisions and assumptions are
unequivocal. Second, the framework identifies how and
where sources of aleatory and epistemic uncertainty and
error contribute to the modeling and simulation process.
For the analysis of complex systems, this formal recognition
of sources of uncertainty and error shows the compounding
effect and rapid growth of each source through the modeling
and simulation process. Some have referred to this growth
of source combinations through the modeling and simula-
tion process as ‘overwhelming’. However, it is an issue that
must be faced by analysts and decision makers who use the
results of modeling and simulation.
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