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Abstract

This report develops a general methodology for estimating the total uncertainty in
computational simulations that deal with the numerical solution of a system of partial differential
equations. A comprehensive, new view of the general phases of modeling and simulation is
proposed, consisting of the following phases: conceptual modeling of the physical system,
mathematical modeling of the conceptual model, discretization and algorithm selection for the
mathematical model, computer programming of the discrete model, numerical solution of the
computer program model, and representation of the numerical solution. Our view incorporates the
modeling and simulation phases that are recognized in the operations research community, but it
adds phases that are specific to the numerical solution of partial differential equations. In each of
these phases, general sources of variability, uncertainty, and error are identified. Our general
methodology is applicable to any discretization procedure for solving ordinary or partial differential
equations. To demonstrate this methodology, we describe two system-level examples: a weapon
involved in an aircraft crash-and-burn accident, and an unguided, rocket-boosted, aircraft-launched
missile. The weapon in a crash and fire is discussed conceptually, but no computational
simulations are performed. The missile flight example is discussed in more detail and
computational results are presented.
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1. Introduction

Historically, the primary method of evaluating the performance of an engineered system has
been to build the design and then test it in the use environment. This testing process is commonly
iterative, as design weaknesses and flaws are sequentially discovered and corrected. The number
of design-test iterations has been reduced with the advent of computer simulation through
numerical solution of the mathematical equations describing the system behavior. Computational
results can identify some flaws and they avoid the difficulties, expense, or safety issues involved
in conducting certain types of physical tests. Examples include the atmospheric entry of a space
probe into another planet, structural failure of a full-scale containment vessel of a nuclear power
plant, failure of a bridge during an earthquake, and exposure of a nuclear weapon to certain types
of accident environments.

Modeling and simulation are valuable tools in assessing the survivability and vulnerability of
complex systems to natural, abnormal, and hostile events. However, there still remains the need to
assess the accuracy of simulations by comparing computational predictions with experimental test
data through the process known as validation of computational simulations. Physical
experimentation, however, is continually increasing in cost and time required to conduct the test.
For this reason, modeling and simulation must take increasing responsibility for the safety,
performance, and reliability of many high consequence systems.

Realistic modeling and simulation of complex systems must include the nondeterministic
features of the system and the environment. By “nondeterministic” we mean that the response of
the system is not precisely predictable because of the existence of variability or uncertainty in the
system or the environment. Nondeterminism is thoroughly ingrained in the experimental culture,
but it is only dealt with in certain modeling and simulation disciplines. Examples of these
disciplines are nuclear reactor safety,1-9 civil and marine engineering,10-13 and environmental
impact.14-20 The emphasis in these fields has been directed toward representing and propagating
parameter uncertainties in mathematical models of the physical event. The vast majority of this
work has used probabilistic methods to represent sources of variability or uncertainty and then
sampling methods, such as Monte Carlo sampling, to propagate the sources.

Our focus in this report is on a framework for estimating the total modeling and simulation
uncertainty in computational predictions. We consider nondeterministic physical behavior
originating from a very broad range of variabilities and uncertainties, in addition to inaccuracy due
to modeling and simulation errors. Variability is also referred to in the literature as stochastic
uncertainty, aleatory uncertainty, inherent uncertainty, and irreducible uncertainty. (For reasons
discussed in Section 2, we use the term “variability” and we provide our definition.) The
mathematical representation most commonly used for variabilities is a probability or frequency
distribution. Propagation of these distributions through a modeling and simulation process has
been well developed in the disciplines mentioned above.

Uncertainty as a source of nondeterministic behavior derives from lack of knowledge of the
system or the environment. This restrictive use of the term “uncertainty” has been debated and
developed during the last decade in the risk assessment community.2, 15, 16, 19, 21-27 In the
literature it is also referred to as epistemic uncertainty and reducible uncertainty. Once you accept
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this segregation of variability and uncertainty, one is immediately faced with the question: Are
probability (or frequency) distributions appropriate mathematical representations of uncertainty?
Since this debate is raging in the literature, we feel compelled to register our opinion in Section 2.
Whichever side one chooses in this debate, however, does not affect our proposed framework for
modeling and simulation.

The issue of numerical solution error is generally ignored in risk assessment analyses and
nondeterministic simulations. Neglecting numerical solution error can be particularly detrimental to
total uncertainty estimation when the mathematical models of interest are cast in terms of partial
differential equations (PDEs). Types of numerical error that are of concern in the numerical
solution of PDEs are: spatial discretization error in finite element and finite difference methods,
temporal discretization error in time dependent simulations, and error due to discrete representation
of strongly nonlinear features. It is fair to say that the field of numerical error estimation is
considered to be completely separate from uncertainty estimation.28-30 Although many authors in
the field of numerical error estimation refer to solution error as “numerical uncertainty,” we believe
this confuses the issue. Since we concentrate on systems described by the numerical solution of
PDEs, we directly include possible sources of error in our framework.

This report proposes a comprehensive, new framework, or structure, of the general phases of
modeling and simulation. This structure is composed of six phases, which represent a synthesis of
the tasks recognized in the operations research community, the risk assessment community, and
the computational mathematics community. The phases are 1) conceptual modeling of the physical
system, 2) mathematical modeling of the conceptual model, 3) discretization and algorithm
selection for the mathematical model, 4) computer programming of the discrete model, 5)
numerical solution of the computer program model, and 6) representation of the numerical
solution. Characteristics and activities of each of the phases are discussed as they relate to a variety
of disciplines in computational mechanics and thermal sciences. We also discuss the distinction
between variability, uncertainty, and error that might occur in any of the phases of modeling and
simulation. The distinction between these terms is important not only in assessing how each
contributes to an estimate of total modeling and simulation uncertainty, but also how each should
be mathematically represented and propagated.

To demonstrate this methodology, we describe two system-level examples: a weapon involved
in an aircraft crash-and-burn accident, and a rocket-boosted, aircraft-launched missile. In the
weapon in a fire example, we discuss a coupled-physics simulation that addresses the conceptual
problem of a weapon damaged in an aircraft crash and exposed to a fuel-fire environment. This
simulation considers the widest possible range of a fully coupled thermal-material response
analysis regarding the detonation safety of the weapon. The weapon in a crash and fire is discussed
conceptually, but no computational simulations are performed. In the missile flight example, we
consider the missile to be a relatively short range, i.e., 20 nautical miles, unguided, air-to-ground
rocket. In the conceptual modeling phase for this example, we discuss alternative
system/environment specifications, scenario abstractions, physics coupling specifications, and
nondeterministic specifications. After discussing varying conceptual models, only one branch of
the analysis is pursued: rigid body flight dynamics. Of the large number of possible
nondeterministic phenomena, we consider only two: variability of the initial mass of the missile
and uncertainty in the thrust of the rocket motor because of unknown initial motor temperature. To
illustrate mathematical modeling uncertainty, we pursue two models with differing levels of
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physics: a six-degree-of-freedom and a three-degree-of-freedom model. In each case we include
the effect of error due to numerical solution of the equations of motion for each model.

2. Modeling and Simulation

2.1 Review of the Literature

The operations research (OR) community has developed many of the general principles and
procedures for modeling and simulation. Researchers in this field have made significant progress
in defining and categorizing the various phases of modeling and simulation. (For recent texts in
this field, see Refs. 31-34.) The areas of emphasis in OR include definition of the problem entity,
definition of the conceptual model, assessment of data and information quality, validation
methodology, and usage of simulation results as an aid in decision making. From a computational
sciences perspective, many feel this work is extraneous because it does not deal explicitly with
solving PDEs. However, we have found that the OR work is very helpful in providing a
constructive philosophical approach for identifying sources of variability, uncertainty, and error, as
well as developing some of the basic terminology.

In 1979 the Technical Committee on Model Credibility of the Society for Computer Simulation
developed a diagram identifying the primary phases and activities of modeling and simulation.35

Included as Fig. 1, the diagram shows that analysis is used to construct a conceptual model of
reality. Programming converts the conceptual/mathematical model into a computerized model. Then
computer simulation is used to simulate reality. Although simple and direct, the diagram clearly
captures the relationship of two key phases of modeling and simulation to each other, and to
reality. The diagram also includes the activities of model qualification, model verification, and
model validation. However, the diagram does not address the detailed activities required for the
solution of PDEs describing the system nor the activities necessary for uncertainty estimation.

Jacoby and Kowalik developed a more detailed view for the phases of modeling and simulation
in 1980 (Fig. 2).36 Their view not only better defined the phases of modeling and simulation, they
also emphasized the mathematical modeling aspects of the process. After the purpose of the
modeling effort is clarified and refined, a prototype modeling effort is conducted. The activities
they describe in this effort are similar to those activities the present literature refers to as the
conceptual modeling phase. In the preliminary modeling and mathematical modeling phases,
various alternate mathematical models are constructed and their feasibility evaluated. In the solution
technique phase the numerical methods for solving the mathematical model, or models, are
specified. In the computer program phase the actual coding of all the numerical methods is
conducted, as well as verification testing of the code. In the model phase, they describe activities
that are all related to model validation, i.e., comparisons with experimental data, and checks on the
reasonableness of predicted results. In the modeling result phase the interpretation of results is
conducted and an attempt is made to satisfy the original purpose of the modeling and simulation
effort. The feedback and iterative nature of the entire process is represented by the dashed-loop
circling the modeling and simulation effort.
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Throughout the 1980s, Sargent37, 38 made improvements toward generalizing the concepts of
modeling and simulation shown in Fig. 1. His most important contribution was the development of
general procedures for verification and validation of models and simulations. An extension of the
phases of modeling and simulation was made by Nance39 and Balci40 to include the concept of the
life cycle of a simulation (Fig. 3). Major phases added by Nance and Balci to the earlier description
were System and Objectives Definition, Communicative Models, and Simulation Results. Even
though the Objectives Definition and Simulation Results phases were specifically identified by
Jacoby and Kowalik,36 there is no indication this work was recognized. Communicative Models
were described by Nance and Balci as "a model representation which can be communicated to other
humans, can be judged or compared against the system and the study objective by more than one
human."39

Work in the risk assessment community, specifically, nuclear reactor safety and environmental
impact of radionuclides, has not directly addressed the phases of modeling and simulation. They
have concentrated on the possible sources that could contribute to total uncertainty in risk
assessment predictions. Reactor safety analyses have developed extensive methods for
constructing possible failure and event tree scenarios that aid in risk assessment.2, 5, 7, 9, 19, 41

Analyses of the risk of geologic repositories for the disposal of low-level and high-level nuclear
waste have used scenario analyses, and they have identified sources of indeterminacy and
inaccuracy occurring in other phases of the risk analysis. Specifically, they have identified different
types of sources occurring in conceptual modeling, mathematical modeling, computer code
implementation, and experimentally measured or derived model input data.42, 43

The development of the present framework for the phases of modeling and simulation builds
on much of this previous work. Some of this work, however, we were not aware of until very
recently. Our framework could be viewed as a synthesis of this reviewed literature, and the
addition of two elements. First, a more formal treatment of the nondeterministic elements of the
system and its environment, and second, a dominant element incorporating the numerical solution
of partial differential equations. Our unification of these perspectives will be presented and
discussed in Section 2.3.

2.2 Sources of Variability, Uncertainty, and Error

Sources of variability, uncertainty, and error are associated with each phase of modeling and
simulation. Examining the literature in many fields that deal with nondeterministic systems (e.g.,
operations research, structural dynamics, and solid mechanics) one finds that most authors do not
carefully distinguish between what they mean by variability, uncertainty, and error, or worse, their
definitions contradict one another. Even when these terms have been defined, their definitions are
typically couched in the restricted context of the particular subject, or they do not address the issue
of error.2, 7, 9, 10, 41 During the last ten years some authors in the risk assessment field have
begun to clearly distinguish between some of these sources; particularly the distinction between
variability and uncertainty.2, 15, 16, 21-27, 44-54 This field is the first to use the separate notion
and treatment of variability (aleatory uncertainty) and uncertainty (epistemic uncertainty) in practical
applications. We are convinced of the constructive value of this distinction and we will adopt 
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essentially the same definitions used by these authors. Recommended texts which emphasize the
mathematical representation aspects of variability and uncertainty are Refs. 55-62.

We use the term variability to describe the inherent variation associated with the physical
system or the environment under consideration. Sources of variability can commonly be singled
out from other contributors to total modeling and simulation uncertainty by their representation as
distributed quantities that can take on values in an established or known range, but for which the
exact value will vary by chance from unit to unit or from time to time. As mentioned earlier,
variability is also referred to in the literature as stochastic uncertainty, aleatory uncertainty, inherent
uncertainty, and irreducible uncertainty. An example of a distributed quantity is the exact
dimension of a manufactured part, where the manufacturing process is well understood but
variable and the part has yet to be produced. Variability is generally quantified by a probability or
frequency distribution when sufficient information is available to estimate the distribution.

 We define uncertainty as a potential deficiency in any phase or activity of the modeling
process that is due to lack of knowledge. The first feature that our definition stresses is
"potential," meaning that the deficiency may or may not exist. In other words, there may be no
deficiency, say in the prediction of some event, even though there is a lack of knowledge if we
happen to model the phenomena correctly. The second key feature of uncertainty is that its
fundamental cause is incomplete information. Incomplete information can be caused by vagueness,
nonspecificity, or dissonance.55, 63 Vagueness characterizes information that is imprecisely
defined, unclear, or indistinct. Vagueness is characteristic of communication by language.
Nonspecificity refers to the variety of alternatives in a given situation that are all possible, i.e., not
specified. The larger the number of possibilities, the larger the degree of nonspecificity.
Dissonance refers to the existence of totally or partially conflicting evidence. Dissonance exists
when there is evidence that an entity or elements belong to multiple sets that either do not overlap
or overlap slightly. Mathematical theories available for representation of uncertainty are, for
example, evidence (Dempster/Shafer) theory,58, 64 possibility theory,65, 66 fuzzy set
theory,55, 62 and imprecise probability theory.57, 67

Since the cause of uncertainty is partial knowledge, increasing the knowledge base can reduce
the uncertainty. As mentioned earlier, in the literature our definition of uncertainty is also referred
to as epistemic uncertainty and reducible uncertainty. When uncertainty is reduced by an action,
such as observing, performing an experiment, or receiving a message, that action is a source of
information. The amount of information obtained by the action is measured by the resulting
reduction in uncertainty. This concept of information is called "uncertainty-based information."
Examples of this concept include: improving the accuracy of prediction of heat flux in a steel bar by
learning more about the thermal conductivity of the bar in the predictive model, improving the
prediction of the convective heat-transfer rate in turbulent flow by refining the turbulence model,
and improving the prediction accuracy for melting a component in a fuel fire by gaining more
knowledge of the typical atmospheric wind conditions.

We define error as a recognizable deficiency in any phase or activity of modeling and
simulation that is not due to lack of knowledge. Our definition stresses the feature that the
deficiency is identifiable or knowable upon examination; that is, the deficiency is not caused by
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lack of knowledge. Essentially there is an agreed-upon approach or ideal condition that is
considered to be more accurate. If divergence from the correct or more accurate approach is pointed
out, the divergence is either corrected or allowed to remain. It may be allowed to remain because of
practical constraints, such as the error is acceptable given the requirements, or the cost to correct it
is excessive. This implies a segregation of error types: an error can be either acknowledged or
unacknowledged. Acknowledged errors are those deficiencies that are recognized by the analysts.
When acknowledged errors are introduced by the analyst into the modeling or simulation process,
the analyst typically has some idea of the magnitude or impact of such errors. Examples of
acknowledged errors are finite precision arithmetic in a computer, approximations made to simplify
the modeling of a physical process, and conversion of PDEs into discrete equations.
Unacknowledged errors are those deficiencies that are not recognized by the analyst, but they are
recognizable. Examples of unacknowledged errors are blunders or mistakes, that is, the analyst
intended to do one thing in the modeling and simulation but, for example, as a result of human
error, did another. There are no straightforward methods for estimating, bounding, or ordering the
contribution of unacknowledged errors. Sometimes an unacknowledged error can be detected by
the person who committed it; e.g., a double-check of coding reveals that two digits have been
reversed. Sometimes blunders are caused by inadequate human interactions and can only be
resolved by better communication. Redundant procedures and protocols for operations depending
on a high degree of human intervention can also be effective in reducing unacknowledged errors.

Our definitions of uncertainty and error may seem strange, or even inappropriate, to those
familiar with experimental measurements, or the science of physical measurements: metrology. In
experimental measurements, error is defined as “the difference between the measured value and the
true value.”68 Experimentalists define uncertainty as “the estimate of error.”68 We do not believe
these definitions are sufficient for modeling and simulation for two reasons. First, the
experimentalists definition of error depends on two factors; the measured value and the true value.
The measured value is well defined and perfectly clear. The true value is not known, except in the
special case of comparison with a defined standard, that is, an accepted true value. For the general
case then, the true value and the error are not known and they can only be subjectively estimated.2

Our definitions of error and uncertainty precisely segregate the meaning of the two terms with
knowledge, i.e., what is “known” (or can be ordered) and what is “unknown.” Second, by
defining uncertainty as an estimate of error the experimentalists are saying that, from the view of
knowledge theory, uncertainty and error are the same type entity. For example, if uncertainty were
to be zero, then either the error is zero, or the uncertainty is erroneous.

From our definitions variability and uncertainty are somewhat related, but error clearly has
different characteristics. Variability and uncertainty are normally thought to produce stochastic, or
non-deterministic, effects, whereas errors commonly yield a reproducible, or deterministic, bias in
the simulation. In some applications we expect that there will be sources that do not fall precisely
into either the variability category or the uncertainty category. Consider, for example, a newly
designed solid fuel gas generator that closely resembles previous designs and manufacturing
processes. Assume that very limited test results are available on the performance of this new
design. If modeling and simulation are used to predict the performance of the new gas generator,
the total predicted uncertainty will contain inherent variability similar to that associated with
previous designs, but it will also contain an uncertainty component based on the lack of knowledge
related to the effect of the design changes.

- 16 -



2.3 Proposed Phases of Modeling and Simulation

Figure 4 depicts our representation of the phases of modeling and simulation appropriate to
systems analyzed by the numerical solution of PDEs. The phases represent collections of tasks
required in a large scale simulation analysis. The ordering of the phases implies an information and
data flow indicating which tasks are likely to impact decisions and methodology occurring in later
phases. However, there is significant feedback and interaction between the phases, as is shown in
Fig. 4. These phases follow the recent work of Refs. 69, 70. The paragraphs below provide brief
descriptions of each of these phases. The modeling and simulation process is initiated by a set of
questions, posed by a designer or decision maker, for which the information to address the
questions can be provided (at least in part) through a computer simulation analysis.

Numerical Solution of the
Computer Program Model

Representation of the
Numerical Solution

Computer Programming
of the Discrete Model

Discretization and
Algorithm Selection for
the Mathematical Model

Conceptual Modeling
of the Physical System

Mathematical Modeling
of the Conceptual Model

Physical System
(Existing or Proposed)

Figure 4
Proposed Phases for Computational Modeling and Simulation

Conceptual Modeling of the Physical System.  Our initial phase encompasses developing a
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specification of the physical system and the environment. This includes determining which
physical events, or sequence of events, and which types of coupling of different physical
processes will be considered. It also includes identifying elements of the system and environment
that will be treated as nondeterministic. These determinations must be based on the general
requirements for the modeling and simulation effort. The physical system can be an existing
system or process, or it can be a system or process that is being proposed. During the conceptual
modeling phase, no mathematical equations are written, but the fundamental assumptions of the
possible events and physical processes are made. Only conceptual issues are considered, with
heavy emphasis placed on determining all possible factors, such as physical and human
intervention, that could possibly affect the requirements set for the modeling and simulation.
Identifying possible event sequences, or scenarios, is similar to developing a fault-tree structure in
the probabilistic risk assessment of high consequence systems, such as in nuclear reactor safety
analyses. Even if a certain sequence of events is considered extremely remote, it should still be
included as a possible event sequence in the fault tree. Whether or not the event sequence will
eventually be analyzed is not a factor that impacts its inclusion in the conceptual modeling phase.
After the system and environment are specified, options for various levels of possible physics
couplings should be identified, even if it is considered unlikely that all such couplings will be
considered subsequently in the analysis. If a physics coupling is not considered in this phase, it
cannot be resurrected later in the process. Another task conducted in this phase of the analysis is
the identification of all of the system and environment characteristics that might be treated
nondeterministically. Consideration is given as to whether these characteristics are to be treated as
fixed, stochastic, or unknown. However, details concerning their representation and propagation
are deferred until later phases.

Mathematical Modeling of the Conceptual Model.  The primary task in this phase is to develop
precise mathematical models, i.e., analytical, statements of the problem (or series of event-tree-
driven problems) to be solved. Any complex mathematical model of a problem, or physical
system, is actually composed of many mathematical submodels. The complexity of the models
depends on the physical complexity of each phenomenon being considered, the number of physical
phenomena considered, and the level of coupling of different types of physics. The mathematical
models formulated in this phase include the complete specification of all PDEs, auxiliary
conditions, boundary conditions, and initial conditions for the system. For example, if the problem
being addressed is a fluid-structure interaction, then all of the coupled fluid-structures PDEs must
be specified, along with any fluid or material-property changes that might occur as a result of their
interaction. The integral form of the equations could also be considered, but this type of
formulation is not addressed in the present discussion.

Another function addressed during this phase of analysis is selecting appropriate
representations and models for the nondeterministic elements of the problem. Several
considerations might drive these selections. Restrictions set forth in the conceptual modeling phase
of the analyses may put constraints on the range of values or types of models that might be used
further in the analysis. Within these constraints the quantity and/or limitations of available or
obtainable data will play an important role. A probabilistic treatment of nondeterministic variables
generally requires that probability distributions can be established, either through data analysis or
through subjective judgments. In the absence of data, qualified “expert opinion” or similar type
information from other sources regarding the relative likelihoods may be incorporated. If there is a
significant lack of information, it is possible that only bounding or set representations may be
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appropriate for uncertainties.

Our emphasis on comprehensiveness in the mathematical model should not be confused with a
model's attempt to represent physical complexity. The predictive power of a model depends on its
ability to correctly identify the dominant controlling factors and their influences, not upon its
completeness. A model of limited, but known, applicability is often more useful than a more
complete model. This dictum of engineering seems to be forgotten today with the advent of rapidly
increasing computing power. The clear tendency, observable in all fields of engineering, is to use
more complex models and then "beat them to death" with the computer. Some of the more flagrant
examples of this tendency are found in the use of Navier-Stokes equations to compute the lift on a
streamlined body at low angle of attack, the use of time-iterative Navier-Stokes equations to
compute attached supersonic flow over a vehicle, and the use of finite elements through the
thickness of a thin shell (rather than shell elements) to compute the stress.

An additional point concerning the incompleteness of models should be made. Any
mathematical model, regardless of its physical level of detail, is by definition a simplification of
reality. Any complex engineering system, or even individual physical processes, contain
phenomena that are not represented in the model. Statements such as "full physics simulations" can
only be considered as marketing jargon. Our point was succinctly stated nearly twenty years ago
by Box71: "All models are wrong, some are useful."

Discretization and Algorithm Selection for the Mathematical Model.  This phase accomplishes
two tasks related to converting the mathematical models into a form that can be addressed through
computational analysis. The first task involves conversion of the PDE form of the mathematical
model into a discrete, or numerical, model. Simply stated, the mathematics are translated from a
calculus problem to an arithmetic problem. In the discretization phase all of the spatial and temporal
differencing methods, discretized boundary conditions, discretized geometric boundaries, and grid
generation methods are specified in analytical form. In other words, algorithms and methods are
prescribed in mathematically discrete form, but the spatial and temporal step sizes are not specified.
The discretization phase focuses on the conversion from continuum mathematics to discrete
mathematics, not on numerical solution issues. We strongly believe that the continuum
mathematical model and the discrete model should be separately represented in the phases of
modeling and simulation.72 The discretization phase deals with questions such as consistency of
the discrete equations with the PDEs, stability of the numerical method, approximations of
mathematical singularities, and differences in zones of influence between the continuum and
discrete systems.

The second task of this phase of the analysis is the specification of the methodology that will
dictate computer runs to be performed in a later phase of the analysis in order to accommodate the
nondeterministic aspects of the problem. For example, a Monte Carlo method or response surface
method could be chosen for propagating variabilities. Nondeterministic sources include system
parameters, boundary conditions, and initial conditions that may vary randomly from component-
to-component and/or system-to-system. Modeling too can be nondeterministic in nature when
alternative models are constructed to address the same aspects of the problem. Presumably only
one model is correct (or more correct) for the task, but this is not generally known beforehand,
i.e., in a prediction. In addition, a preferred model may be too expensive to be used exclusively in
the analysis and, as a result, less accurate models would be used for portions of the analysis.

- 19 -



Computer Programming of the Discrete Model.  This phase is common to all computer
modeling: algorithms and solution procedures defined in the previous phase are converted into a
computer code. The computer programming phase has probably achieved the highest level of
maturity because of decades of programming development and software quality assurance
efforts.73, 74 These efforts have made a significant impact in areas such as commercial graphics,
mathematics, and accounting software, telephone circuit-switching software, and flight control
systems. On the other hand, these efforts have had little impact on corporate and university-
developed software for computational fluid dynamics, solid dynamics, and heat transfer
simulations, as well as most applications written for massively parallel computers.

Numerical Solution of the Computer Program Model.  In this phase the individual numerical
solutions are actually computed. No quantities are left arithmetically undefined or continuous; only
discrete parameters and discrete solutions exist with finite precision. For example, a spatial grid
distribution and a time step is specified; space and time exist only at discrete points, although these
points may be altered during subsequent computer runs.

Multiple computational solutions are usually required for nondeterministic analyses. These
multiple solutions are dictated by the propagation methods and input settings determined in the
discretization and algorithm selection phase. Multiple solutions can also be required from the
mathematical modeling phase if alternative models are to be investigated. For some propagation
methods the number and complete specification of subsequent runs is dependent on the computed
results. When this is the case, these determinations are made as part of this phase of the analysis.

Representation of the Numerical Solution.  The final phase of the modeling and simulation
process concerns the representation and interpretation of both the individual and collective
computational solutions. The collective results are ultimately used by decision makers or policy
makers, whereas the individual results are typically used by engineers, physicists, and numerical
analysts. Each of these audiences have very different interests and requirements. The individual
solutions provide detailed information on deterministic issues such as the physics occurring in the
system, the adequacy of the numerical methods to compute an accurate solution to the PDEs, and
the system’s response to the deterministic boundary and initial conditions. For the individual
solutions the primary task is the construction of continuous functions based on the discrete
solutions obtained in the previous phase. Here the continuum mathematics formulated in the
mathematical modeling phase is approximately reconstructed based on the discrete solution.

We have specifically included representation of the numerical solution as a phase in the
modeling and simulation process because of the sophisticated software that is being developed to
comprehend modern complex simulations. This area includes three-dimensional graphical
visualization of solution, animation of solution, use of sound for improved interpretation, and use
of virtual reality which allows analysts to "go into the solution space." Some may argue that this
final phase is simply "post-processing" of the computational data. We believe, however, this
description does not do justice to the rapidly growing importance of this area and the possibility
that it introduces unique types of errors. In addition, by referring to this phase as representation of
the numerical solution, we are able to include types of errors that are not simply due to the
modeling and simulation of the system, but also to the processing of the computed solution and to
the conclusions drawn therefrom.
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The collective solutions provide information on the nondeterministic response of the system.
For the collective solutions the primary task is the assimilation of individual results to produce
summary data, statistics, and graphics portraying the nondeterministic features of the system.
These results are utilized to assess the simulation results from a high-level perspective and compare
them to requirements of the analysis.

Summary. The phases of modeling and simulation described above illustrate the major
components involved in planning and conducting a large-scale simulation analysis. When viewed
from the planning aspect, the issues confronted in each phase may be addressed simultaneously.
For example, in most large-scale system simulations the activities will be performed by different
groups of people with different areas of expertise, such as professional planners, physicists,
engineers, computer programmers, and numerical analysts. A “feedback” aspect indicated in Fig.
4, but not explicitly discussed here, is the use of sensitivity analyses in a large-scale analysis.
Sensitivity analyses and scoping studies are critical when there are hundreds of variabilities and
uncertainties in an analysis. Sensitivity analyses and scoping studies are clear examples of how
feedback from the solution representation phase occurs in a large-scale analysis. There is,
however, a clear sequential aspect to the phases as shown Fig. 4. Two key sequential features of
this illustration are that decisions must be made at each phase and that continuous parameters and
model specification information propagate through the phases. In most cases, the decisions made at
one phase will impact the models formulated or activities conducted in later phases. A single
simulation run will be characterized by assumptions "assigned" from choices set forth in each of
the phases. When simulations are actually performed and the simulation results are analyzed, total
modeling and simulation uncertainty can be attributed to the various assumptions and inputs and
ultimately (where it is of interest to do so) to the phases themselves.

3. Weapon in a Fire Example

3.1 Description of the Problem

This example problem, and the one given in Section 4, are used to expand upon the activities
conducted in the phases of modeling and simulation and provide different examples for sources of
variability, uncertainty, and error that occur in each of the phases. We consider the coupled
thermal-material analysis of a weapon in an open-pool fuel-fire environment. Assume that the
weapon may be damaged, but that the level of damage is unknown. This example would be
characteristic of a weapon carried by an aircraft that crashed during take-off or landing. Assume
that the type of weapon is known, but no other information about the weapon before the accident is
known. The weapon contains high explosive that is normally a solid, and the weapon has an
integrated electrical-mechanical arming, fusing, and firing system. For this example problem, the
purpose of the analysis is to compute a probabilistic estimate of whether the high explosive will
detonate. Stated somewhat differently, the goal of the analysis is to compute a risk assessment of
the detonation safety of the weapon in a crash-and-burn scenario.

The purpose of our example problem is to point out the myriad of factors and possibilities that
enter into a complex, real-world, engineering simulation. In our example problem we only discuss
variabilities, uncertainties, and errors in the conceptual modeling and mathematical modeling
phases. These are the only phases discussed in this example because they determine the scope and
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complexity of the analysis. Although no computations are made here, the potential magnitude of
the required computing effort should become clear.

3.2 Conceptual Modeling Activities

Figure 5 illustrates the activities conducted in each of our phases of modeling and simulation.
In Fig. 5 we identify four activities for the initial phase of the modeling and simulation process:
system/environment specification, scenario abstraction, coupled physics specification, and
nondeterministic specification. Although nondeterministic specification could be considered as a
subset of system/environment specification, we have separated these two activities to place
emphasis on nondeterministic solutions in modeling and simulation.

The system/environment specification activity involves the careful delineation between what is
considered part of the system and what is considered part of the environment. Elements of the
system can be influenced by the environment, but the system cannot influence the environment. It
is obvious that multiple system/environment specifications can be employed, depending on the
requirements of the modeling and simulation effort. The system/environment specification activity
primarily introduces uncertainties that arise in defining the physical modeling scope of the problem.
The wider the scope, the more possibilities there are for uncertainties due to lack of knowledge
about aspects of the modeled system and environment. Note that errors can also arise in the activity
of defining the physical system, but these are less of a concern.

Scenario abstraction consists of the determination of all possible physical events, or sequences
of events, that may affect the goals of the analysis. According to our definitions given in Section 2,
primarily uncertainties will populate this activity. For relatively simple systems, such as fluid flow
with no interaction with any structures or materials, scenario abstraction can be straightforward.
For complex engineered systems exposed to a variety of interacting factors, scenario abstraction is
a mammoth undertaking. The best example we can give for how this should be accomplished for
complex systems is the probabilistic safety assessment of nuclear power plants. As the many-
branched event tree is constructed for complex scenarios, the probability of occurrence of certain
events becomes extremely low. Typically little analysis effort is expended on these extraordinarily
rare possibilities. If one is dealing with very high consequence systems, however, these extremely
improbable scenarios must be examined. Guidance concerning whether these events should be
included is usually determined by conceptually estimating the risk, i.e., the product of the expected
frequency of occurrence and the magnitude of the consequence of the event.

Coupled physics specification consists of identifying and clarifying what physical and chemical
processes could be considered in the modeling and also what level of coupling could be considered
between them. Computational analysts tend to immediately focus on the “practical” or “affordable”
levels of coupled physics analyses. This is an efficient approach in many instances in the sense that
little time is spent with higher levels of coupling that may not be allowable within the scope
(schedule and budget) of the analysis. However, the danger of this approach is to eliminate from
possible consideration those analyses that may be required for assessment of certain types of
indeterminacy or risk. By identifying alternate levels of coupling, acknowledged errors are clearly
the source that will result in inaccuracy in predictions from the analysis. The ordering of the
accuracy, or physical fidelity, of the alternate models can be difficult or impossible for complex 
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multiphysics/chemistry systems.

In the nondeterministic specification activity, decisions are made concerning what aspects of
the system and environment will be considered deterministic or nondeterministic. Variabilities and
uncertainties are the dominant sources in the nondeterministic specification activity. Variabilities
arise because of inherent randomness in parameters or conditions of the process or the event. For a
complex engineered system, uncertainties occur because of lack of knowledge about initial factors,
such as the following, that might have impacted the system: Was the system incorrectly
manufactured or assembled? How well was the system maintained? Was the system damaged in
the past and not recorded? These are examples where it may not be possible to reduce the lack of
knowledge, and reduce the uncertainty, by improved sampling of past events. However, the
uncertainty can sometimes be reduced by certain actions taken with respect to the system that limits
or further defines the state of key elements of the system. Often these are policy or procedural
decisions.

For our example problem of a weapon in a fire, the list below provides a number of possible
sources of variabilities, uncertainties, and errors applicable to the particular activities in the
conceptual modeling phase. Rather than attempt to list all of the possibilities, we give examples of
possible choices and sources of variabilities, uncertainties, and errors that could be included in
each of the activities:

System/Environment Specification
• Specification of aircraft as part of the system; everything else is part of the environment
• Inclusion of aircraft and fire as part of the system; everything else is part of the environment
• Inclusion of aircraft, fire, and emergency response activities as part of the system; everything

else is part of the environment
• Specification of what elements of physics, chemistry, and electronics are to be included in the

simulation

Scenario Abstraction
• Consideration of structural and electrical damage to the arming, fusing and firing system before

the start of the fire
• Uncertainty in structural damage due to the crash before the start of the fire
• Number of similar weapons and other weapons carried on-board the aircraft
• Effect of an adjacent weapon detonating during the crash and/or fire
• Uncertainty in aircraft crash area characteristics, e.g., water, trees, city
• Possible atmospheric source of electrical energy to the arming, fusing and firing system during

the crash and fire, e.g., lightning
• Possible effects of emergency response teams to the crash and fire, e.g., use of water to

extinguish the fire

Coupled Physics Specifications
• Consideration of fully coupled thermal/material/electrical system of one weapon, fuel pool,

aircraft, local structures and ground material, and local atmosphere
• Consideration of fully coupled thermal/material response of one weapon
• Consideration of fully coupled thermal/material response of two weapons, with detonation of one

weapon
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Nondeterministic Specifications
• Manufacturing and assembly variability of components and the complete system
• Variability in material properties of components and subsystems before the crash 
• Lack of information concerning maintenance, storage history, and possible damage of the

weapon before the accident
• Uncertainty in aircraft crash fuel sources and quantity
• Uncertainty in wind speed and temperature and other meteorological conditions during the fire
• Uncertainty in thermal emissivity of surfaces before and during the fire

3.3 Mathematical Modeling Activities

As shown in Fig. 5, we have identified four general activities in the mathematical modeling
phase: 1) formulation of all the continuum equations for conservation equations of mass,
momentum, and energy; 2) formulation of all the auxiliary equations that supplement the
conservation equations, such as expressions for thermal conductivity, fluid dynamic turbulence
models, and chemical reaction equations; 3) formulation of all the initial and boundary conditions
required to solve the PDEs, and 4) the selection of a mathematical representation for the
nondeterministic elements of the system. In this phase, all three contributors are possible sources:
variabilities, uncertainties, and errors. (Note that for the remainder of the paper when we refer to
"errors" we will only be referring to acknowledged errors, unless otherwise stated.) The most
common variabilities and uncertainties are, respectively, those due to inherent randomness of
parameters in known physics, and those due to limited, or inadequate, knowledge of the physics
involved. Note that parameter variability is by far the most commonly analyzed in nondeterministic
analyses. The most common errors introduced are those due to mathematically representing the
physics in a more simplified or approximate form. Together, the mathematical modeling
uncertainties and errors are sometimes referred to as "model form errors" or "model structural
errors" in the literature.

Examples of uncertainties that occur in the formulation of the conservation equations are limited
knowledge of the physics of multiphase flow, limited knowledge of turbulent reacting flow, and
uncertainty in the modeling of fluid/structure/chemical interactions. Examples of variabilities and
uncertainties that occur in formulation of the auxiliary physical equations are, respectively, poorly
known material properties resulting from manufacturing variability, and unreliable fluid flow
turbulence models. It may be argued that deficiencies in turbulence models should be considered as
errors rather than uncertainties. This is based on the argument that the accuracy of turbulence
models could be ordered, e.g., algebraic models, one-equation models, and two-equation models.
In a general sense, this ordering could be accepted; but for individual flow fields there is no
guarantee that any one model will be better than any other model. Examples of variabilities in initial
and boundary conditions are dimensional tolerances in component geometry due to manufacturing
and assembly variances, initial temperature distribution in a solid, and turbulence levels in the
approaching wind. Examples of uncertainties in initial and boundary conditions are unknown
damaged weapon and component geometry, unknown damaged aircraft geometry, and unknown
location of the weapon relative to the fire, aircraft, and wind direction.

Acknowledged errors in the nondeterministic representation are often the result of inferring a
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model (probabilistic or otherwise) that is based on incomplete understanding of the variable or
phenomenon. Only in those rare cases where the models can be derived from first principles, given
the assumptions of the model, are the representations known and exact. Uncertainties are
introduced through this activity in the specification of, or fitting of, parameters associated with
these representations. For example, if the dimension of a manufactured component is represented
through a normal probability distribution and there are limited production data on the dimension,
then there is uncertainty associated with the mean and variance estimates for that distribution.

Some examples of acknowledged errors in mathematical modeling are the assumption that a
flow field can be modeled as a two-dimensional flow when three-dimensional effects may be
important, the assumption of a steady flow when the flow is actually unsteady, the assumption of
continuum fluid mechanics when noncontinuum effects may be a factor, and the assumption of a
rigid boundary when the boundary is flexible. These examples of acknowledged errors are all
characteristic of situations in which physical modeling approximations were made to simplify the
mathematical model and the subsequent solution.

For the sample problem of a weapon in a fire, the list below provides examples of mathematical
modeling choices and sources of variabilities, uncertainties, and errors for each of the mathematical
modeling activities:

Conservation Equations
• Use of unsteady two-dimensional analysis, or unsteady three-dimensional analysis
• Statement of the fluid, structural, and electrical circuit conservation equations
• Statement of the detailed coupling of the fluid, structural, and electrical-circuit conservation

equations

Auxiliary Physical Equations
• Use of algebraic, one-equation, two-equation, or large-eddy-simulation turbulence models
• Specification of reacting flow materials; aircraft fuel, weapon components, aircraft structure and

subsystems, crash site surroundings, etc.
• Use of equilibrium or nonequilibrium chemical reaction models
• Specification of the number of gas species used in chemical reaction models
• Specification of which materials will be considered to change phase (melting, solidification,

vaporization, and condensation)
• Variability or uncertainty in thermodynamic and transport properties of all materials
• Uncertainty due to use of transport and thermodynamic properties outside their range of validity
• Inappropriate or inaccurate statistical models to represent variability in continuous parameters

Nondeterministic Representations
• The assignment of a normal distribution to characteristics of various components of the system

based on considerations in their manufacturing process
• Assigning a uniform distribution to the aircraft fuel quantity
• Using a set of bounding values to represent meteorological considerations during the fire
• Making a set of assumptions concerning the maintenance and storage history of the weapon prior

to the accident but not conveying to users that the analysis was conditional on these assumptions
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Boundary and Initial Conditions
• Uncertainty in damaged weapon geometry before the fire
• Uncertainty in damaged aircraft and surroundings geometry before and during the fire
• Variability of thermal contact resistance in all solid-solid interfaces before and during the fire
• Change in geometry of systems and components due to melting and vaporization
• Variability and uncertainty of wind and temperature conditions near the crash site

3.4 Discretization and Algorithm Selection Activities

The discretization and algorithm selection phase consists of determining the approaches to be
used for converting the continuum model of the physics into a discrete mathematics problem and
converting the continuous representation of the nondeterministic elements to a discrete set of
analyses. Converting the continuum model is fundamentally a mathematics-approximations topic,
errors and not uncertainties are the dominant issue in this phase. Some may question why this
conversion process should be separated from the solution process. We argue that this conversion
process is the root cause of more difficulties in the numerical solution of nonlinear PDEs than is
generally realized. Taking a historical perspective, early numerical methods and solutions were
developed for linear PDEs, such as simple heat conduction, Stokes flow, and linear structural
dynamics. Modern numerical solutions have attacked nonlinearities such as high-Reynolds-number
laminar flow and shock waves and, in hindsight, these have proven more difficult than anticipated.
Additional nonlinear physics such as turbulent flow, combustion, detonation, multiphase flow,
phase changes of gases, liquids and solids, fracture dynamics, and chaotic phenomena are also
being attacked with limited success. When strongly nonlinear features are coupled, the
mathematical underpinnings become very thin and the successes become fewer. Recent
investigators75 have clearly shown that the numerical solution of nonlinear ordinary and PDEs can
be quite different from exact analytical solutions even when using established methods that are well
within the numerical stability limits. This phenomena has been referred to as the "dynamics of
numerics" as opposed to the "numerics of dynamics."76 It is becoming increasingly clear that the
mathematical features of strongly nonlinear and chaotic systems can be fundamentally different
between the continuous and discrete form, regardless of the grid size.77 It has been pointed out
that the zones of influence between the continuum and numerical counterparts are commonly
different, even in the limit as the mesh size approaches zero.72

Determining an appropriate approach to selecting representative nondeterministic elements and
values and then implementing this approach is a second set of activities associated with this phase.
The nondeterministic elements of the system generally take on values over a continuous range.
System responses and performance criterion, however, are generally calculated and analyzed for a
discrete set of sub-problems where values for these nondeterministic elements are completely
specified. Inferences are then based on the discrete results, hence it is important that these sub-
problems be selected to be representative (or that their results be reweighted in the analysis to
achieve this representative aspect). Furthermore, all assumptions and all selections made to bound
the nondeterministic elements of the problem should be well documented so that inferences based
on the resulting analyses are understood to be conditional on these assumptions.

As shown in Fig. 5, we identify four activities in this phase: discretization of the conservation
laws (PDEs), discretization of the boundary and initial conditions, selection of propagation
methods, and the design of the computer experiments. Errors that occur in the discretization

- 27 -



processes can be very difficult to isolate for a complex physical process or a sophisticated
numerical method. In finite differencing, one method of identifying these errors is to analytically
prove whether the method is consistent: that is, does the finite difference method approach the
continuum equations as the step size approaches zero? For simple differencing methods, this is
straightforward. For complex differencing methods such as essentially non-oscillatory schemes
and second-order, multidimensional upwind schemes, determining the consistency of the
algorithms for a wide range of flow conditions and geometries is difficult.

Several related issues are also treated as part of the discretization activities: Are the conservation
laws satisfied for finite grid sizes? Does the numerical damping approach zero as the mesh size
approaches zero? Do aliasing errors exist for zero mesh size? Note that discretization of PDEs are
also involved in the conversion of Neumann and Robin's, i.e., derivative, boundary conditions to
difference equations. We have included the conversion of continuum initial conditions to discrete
initial conditions not because there are derivatives involved, but because spatial singularities may
be part of the initial conditions. An example is the decay of vortex for which the initial condition is
given as a singularity. Our point is also valid, indeed much more common, when singularities or
discontinuities are specified as boundary conditions. Some may argue that because these
discontinuities and boundary singularities do not actually occur in nature, it is superfluous to be
concerned about whether they are accurately represented. This argument misses the point
completely. If these nonlinear features exist in the continuum mathematical model of the physics,
the issue is whether the discrete model represents them accurately, not whether they exist in nature.
In other words, the focus should be on verification (solving the problem right), as opposed to
validation (solving the right problem).

The two activities in this phase that address nondeterministic elements and their values are
selection of propagation methods and design of computer experiments. Both address the
conversion of the nondeterministic elements of the analysis into multiple runs, or solutions, of a
deterministic computational simulation code. Selection of a propagation method involves the
determination of an approach, or approaches, to propagating variabilities and uncertainties through
the computational phases of the analysis. Examples of methods for propagating variabilities
include: reliability methods;41 sampling methods such as Monte Carlo or Latin Hypercube;78, 79

or statistical design approaches.80 Methods for the propagation of uncertainties defined using
nonprobabilistic representations, e.g., possibility theory and fuzzy sets, are a subject of current
research.64, 81-83 The design of computer experiments that is performed as a part of this phase is
driven to a large extent by the availability of resources and by the requirements of the analysis.
Establishing an experimental design often involves more than just an implementation of the
propagation method specified above. The problems associated with large analyses can often be
decomposed in a way that permits some variables and parameters to be investigated using only
portions of the code or, perhaps, simpler models than are required for others. This decomposition
of the problem and selection of appropriate models, together with the formal determination of
inputs for the computer runs, can have a major effect on the uncertainty introduced into the analysis
in this phase.

3.5 Computer Programming Activities

The correctness of the computer programming phase is most influenced by unacknowledged
errors, i.e., mistakes. In Fig. 5 we have identified three basic activities: input preparation, module
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design and coding, and compilation and linkage. The topic of reducing unacknowledged errors,
i.e., mistakes, in this phase is thoroughly covered in many software quality assurance texts.73, 74

This does not mean, however, this phase is a trivial element of modeling and simulation. Some
computational researchers experienced only with model problems, even large-scale model
problems, do not appreciate the magnitude of the issue. They feel it is simply a matter of
carelessness that can easily be remedied by quality assurance practices. The high number of
inconsistencies, static errors, and dynamic, i.e., run-time, errors in well tested commercial
computer codes was recently investigated by Hatton.84 He conducted two major studies of the
reliability and consistency of commercial science and engineering software. One set of tests
evaluated coding defects without running the code; i.e., static tests. The other set of tests evaluated
the agreement of several different codes which used different implementations of the same
algorithms, acting on the same input data. Note that all of these tests were verification tests; none
used experimental data. He has concluded: “All the evidence ... suggest that the current state of
software implementations of scientific activity is rather worse that we would ever dare to fear, but
at least we are forewarned.”

The capturing and elimination of programming errors, while not generating much excitement
with computational researchers, remains a major cost factor in producing highly verified software.
Even with the maturity of the software quality assurance methods, assessing software quality is
becoming more difficult because of massively parallel computers. In our opinion, the complexities
of optimizing compilers for these machines, of message passing, and of memory sharing are
increasing faster than the capabilities of software quality assessment tools. As a case in point,
debugging computer codes on massively parallel computers is moving toward becoming a
nondeterministic process. That is, the code does not execute identically from one run to another
because of other jobs executing on the massively parallel machine. It is still a fundamental theorem
of programming that the correctness of a computer code and its input cannot be proven, except for
trivial problems.

3.6 Numerical Solution Activities

As shown in Fig. 5, we have identified four activities occurring in the numerical solution
phase: spatial grid and time-step convergence, iterative convergence, nondeterministic propagation
convergence, and computer round-off. The primary deficiency that occurs in this phase is the
occurrence of acknowledged errors. Numerical solution errors have been investigated longer and in
more depth than any other errors discussed previously. Indeed, they have been investigated since
the beginning of computational solutions.85 These deficiencies in the solution of the discrete
equations are properly called errors because they are approximations to the solutions of the original
PDEs.

Of the four activities listed in the numerical solution phase, perhaps the one that requires most
explanation is iterative convergence. By this we mean the finite accuracy to which nonlinear
algebraic, or transcendental, discrete equations are solved. Iterative convergence error normally
occurs in two different procedures of the numerical solution: 1) during the iterative convergence
that must be achieved within a time step and 2) during the global iterative convergence of an elliptic
PDE. Examples of the iterative convergence that must be achieved during a time step are intra-time-
step iteration to solve the unsteady heat conduction equation when the thermal conductivity
depends on temperature, intra-time-step iteration to determine the liquid-solid boundary in a
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melting or solidification problem, and the iterative solution for nonlinear analytic expressions for
transport or thermodynamic properties. In finite volume schemes, for example, conservation of
mass, momentum, and energy can be violated with inadequate iterative convergence at each time
step.

Nondeterministic propagation convergence refers to activities related to adjustments in, or
further specification of, inputs determining the multiple deterministic computer runs. Some
methods for uncertainty propagation and experimental design rely on run-time results to help direct
further computer experimentation. Reliability methods, for example, focus on finding a specific
point (for functional expansion) that provides a 'best approximation' to system performance.

Although we identified four activities in the numerical solution phase, these activities are seen
to produce three types of acknowledged errors. The first error type is due to the discretized
solution of the PDEs; spatial grid error and time-step error are of this type. The second type is a
consequence of reducing the initial nondeterministic problem with infinitely many solutions to a
manageable problem with a finite set of representative analyses and responses. Any finite number
of deterministic solutions produces an error of this type. The third type is due to the approximate
solution of the discrete equations, that is, those errors made in the solution to the given discrete
equations. Iterative convergence and round-off errors are of this type and they account for the
difference between the exact solution to the discrete equations and the computer solution obtained.

All texts dealing with the numerical solution of PDEs address the topic of estimating the
magnitude of the spatial grid convergence error. Some of these texts also deal with the errors
associated with temporal convergence, iterative convergence, and round-off. Even though grid
convergence error is fairly well understood, it is our view that it is commonly the largest
contributor to error in numerical simulations. The reason for this paradox is simple: cost. The grid
size used for a numerical solution is commonly at the limit of computer time or budgetary
constraints. For large-scale engineering simulations, such as a fire in a building or the thermal-
hydraulic safety analysis in a nuclear reactor, the grid is far from spatially resolved. The grid is
simply considered "acceptable" for the simulation at hand and the solution is used. Our point is not
that these type simulations are "useless," but that improved understanding is needed about how
these solutions should be used.

3.7 Solution Representation Activities

In the solution representation phase shown in Fig. 5, we have identified five activities: post-
processor input, preparation, module design and coding, compilation and linkage, data
representation, and data interpretation. Input and programming and compilation activities are
dominated by unacknowledged errors, as pointed out previously in our discussion of the computer
programming phase.

Data representation errors originate as a result of the inaccurate or inappropriate construction of
continuous functions from the discrete solution in the post-processor. Examples are oscillations of
the continuous function in between discrete solution points due to the use of a high-order
polynomial function in the post-processor, extrapolation of solution variables outside the discrete
solution domain of independent variables, and inappropriate interpolation of the discrete solution
between multiblock grids. We believe that these are acknowledged errors based on the question:
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"What is the mathematically correct reconstruction of the continuum functions from the PDEs using
the discrete solution points?" When viewed from this perspective, one becomes concerned about
the issue because this is not the perspective taken in modern data visualization packages. The view
of these general purpose packages is that there is no connection between the two. Reconstruction is
done based on speed, convenience, and robustness of the package.

Data interpretation errors are made by the interpreter, i.e., the user, based on observation of the
representation of the numerical solution. In other words, data interpretation errors occur when a
user incorrectly interprets the numerical solution. Consequently, these errors should be viewed as
unacknowledged errors. An example of an interpretation error is concluding that a predicted
solution is chaotic when it is not (and vice versa). Importantly, our definition of data interpretation
errors does not include inappropriate decisions made by the user based on the simulation, such as
incorrect design choices or inept policy decisions.

3.8 Summary Comments

In this example we have identified the activities conducted in each phase of modeling and
simulation and we have discussed a number of variabilities, uncertainties, and errors that occur in
different phases. Drawing distinctions among variability, uncertainty, and error is, we believe,
crucial for the correct representation and propagation of sources through the modeling and
simulation process. In addition, such distinctions provide a natural path for considering the
reduction or possible elimination of sources. If a source is a variability, then the magnitude of
variability might be reduced by a procedural change, for example, a change in quality control
requirements or restriction of activities during certain weather conditions. If a source is an
uncertainty, its magnitude could be reduced by gathering more information, for example, obtaining
additional experimental data or improving the modeling of a physical phenomenon. If a source is
an acknowledged error, its magnitude could be reduced, for example, by adding more
computations with higher grid resolution. If a source is an unacknowledged error, it could be
found and eliminated, for example, by independently checking the correctness of input data in a
large-scale simulation.

Once a large-scale simulation has been completed and the results are applied to their intended
purposes, then a more global perspective of total variability, uncertainty, and error should be
adopted. For example, suppose that a large-scale simulation was conducted that involved
thousands of individual computations. Many of these computations may be part of a Monte Carlo
simulation to predict the effects of multiple sources of variability and uncertainty. Once all of the
sources are aggregated, or convolved, into a global modeling and simulation result, then the users
of the results may not be concerned with the contribution of each source. At this point, it is not
generally useful to continue to distinguish them. Consequently, we recommend that the abbreviated
term "total uncertainty" or “prediction uncertainty” be used to mean "Total variability, uncertainty,
and error in modeling and simulation predictions."
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4. Missile Flight Example

4.1 Description of the Problem

In this example we consider an analysis of the flight of a rocket-boosted, aircraft-launched
missile. In our analysis we make the following assumptions about the missile:

1) The missile is unguided during its entire flight, i.e., only ballistic flight is considered.
2) The missile is propelled by a solid fuel rocket motor for the initial portion of its flight, and it 

is unpowered during the remainder of the flight.
3) The missile is fired from a launch rail attached to the aircraft in flight.
4) The only aerodynamic surfaces on the missile are fins to provide flight stability.

The analysis considers the missile flight to be in the unspecified future, i.e., the analysis is an
attempt to predict future plausible events, not analyze an event in the past.

Figure 5 illustrates the activities that are conducted in each of the six phases of modeling and
simulation. Also shown for each activity are the dominant sources of variability, uncertainty, and
error that typically occur in each activity. We now discuss in detail the activities that are conducted
in each of the phases and explain how these activities are applied to the missile flight example.

4.2 Conceptual Modeling Activities

As seen in Fig. 5, we have identified four major activities that are conducted in the conceptual
modeling phase: system/environment specification, scenario abstraction, coupled physics
specification, and nondeterministic specifications. The system/environment specification activity
consists primarily of careful specification of what physical or conceptual elements are considered
as part of the system and what are considered part of the environment. When we say physical or
conceptual elements are part of the system we mean that it is possible that any of the elements can
interact with one another. This concept is similar to a system as defined in thermodynamics. The
state of a system is influenced by processes internal to the system, i. e., endogenous processes,
and also processes or activities external to the system, i. e., exogenous effects. Exogenous
processes or activities are considered to be part of the environment. A system is influenced by the
environment, but the environment cannot be influenced by the system.32 In other words, the
system and the environment do not interact; the system can respond to the environment, but the
environment cannot respond to the system. System/environment specifications are a matter of
engineering judgement and are not unique. As a result, these specifications pose one of the most
difficult conceptual issues in modeling and simulation.

Figure 6 shows three possible system/environment specifications for the example problem.
They are listed from the most inclusive to least inclusive. System/Environment Specification 1
considers the missile and the atmosphere near the missile to be part of the system, whereas the
launching aircraft and target are considered part of the environment. An example of an analysis that
would be allowed with this specification is the flow field of the missile and the rocket exhaust is
coupled to flow field of the launching aircraft, i.e., the missile and rocket exhaust could interact
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with the aircraft flow field, but the aircraft structure could not change its deformation due to the
rocket exhaust. Another example allowed by this system/environment specification would be the
analysis of the missile flight inside an enclosure or tunnel, e.g., near the target. System/
Environment Specification 2 considers the missile and the aerothermal processes occurring on the
missile to be part of the system, whereas the atmosphere near the missile, the launching aircraft,
and the target are considered part of the environment. This specification allows analyses that couple
the missile and its aerothermal effects. For example, one could consider the deformation of the
missile due to aerodynamic loading and thermal heating, and then couple these deformations into
recomputing the aerodynamic loading and thermal heating. System/Environment Specification 3
considers the missile to be the system, whereas the aerothermal processes, the atmosphere near the
missile, the launching aircraft, and the target are considered part of the environment. Even though
this is the simplest specification considered, it still allows for significant complexities in the
analysis.

 Missile is considered to be the
system; aerothermal processes,

atmosphere near missile,
launching aircraft, and target are

considered to be part of the
environment

Rigid body flight dynamics
(neglect all other couplings)

COUPLED PHYSICS
SPECIFICATION 3

Coupled flight dynamics,
aerodynamics,

and structural dynamics
(neglect all other couplings)

COUPLED PHYSICS
SPECIFICATION 2

Coupled flight dynamics,
aerodynamics,

heat transfer, structural dynamics,
and rocket motor analyses

COUPLED PHYSICS
SPECIFICATION 1

  Missile  flight under hostile
conditions

SCENARIO
ABSTRACTION 3

 Missile flight under abnormal
conditions

SCENARIO
ABSTRACTION 2

Missile flight under normal
conditions

SCENARIO
ABSTRACTION 1

 Missile and aerothermal process-
es of the missile are considered to
be the system; atmosphere near
missile, launching aircraft, and

target are considered to be part of
the environment

SYSTEM/ENVIRONMENT
SPECIFICATION 2

  Missile and atmosphere near
the missile are considered to
be the system; launching air-

craft and target are considered
to be part of the environment

SYSTEM/ENVIRONMENT
SPECIFICATION 1

Mass properties of the missile V
Aerodynamic coefficients D
Propulsion characteristics U
Atmospheric characteristics D
Aerothermal characteristics D
Target characteristics D
Initial Conditions D

NONDETERMINISTIC
SPECIFICATION 2

Mass properties of the missile V
Aerodynamic coefficients V
Propulsion characteristics V,U
Atmospheric characteristics V,U
Aerothermal characteristics V
Target characteristics V,U
Initial Conditions V

NONDETERMINISTIC
SPECIFICATION 1

SYSTEM/ENVIRONMENT
SPECIFICATION 3

Figure 6
Conceptual Modeling Activities for the Missile Flight Example
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Scenario abstraction attempts to identify all possible physical events, or sequences of events,
that may affect the goals of the analysis. For relatively simple systems, isolated systems, or
systems with very controlled environments or operational conditions, scenario abstraction can be
straightforward. Complex engineered systems, however, can be exposed to a variety of natural and
abnormal operating conditions, hostile environments, or a myriad of human-caused or accidentally
caused failure modes. Scenario abstraction for these complex systems is a mammoth undertaking.
The field of engineering that has achieved the highest development of scenario abstraction is
probabilistic risk assessment (PRA) of nuclear power plants. PRA techniques construct a many-
branched event tree for complex operating and failure scenarios. Even though the probability of
occurrence of certain events may be extremely low, these events must be considered and analyzed
for failure of nuclear power plants and other high consequence systems. The scenario abstraction
considered here includes both event tree construction and decision tree construction, that is,
decision tree construction does not necessarily depend on events, but it can identify possible results
based on decisions or analyses that could be pursued.

As shown in Fig. 6, the missile flight example identifies three broad classes of scenarios;
missile flight under normal, abnormal, and hostile conditions. Normal conditions are those that can
be reasonably expected, such as typical launch conditions from aircraft that are expected to carry
the missile, near nominal operation of the propulsion system, and reasonably expected weather
conditions. Examples of flight under abnormal conditions would be improperly assembled missile
components; explosive failure of the propulsion system; and flight through adverse weather
conditions, such as snow or lightning. Examples of flight under hostile conditions would be
detonation of near by explosive systems, damage to missile components resulting from small arms
fire, and damage from laser or microwave defensive systems. The three scenario categories
considered here have been commonly used for military systems, e.g., nuclear weapons. With the
increasing concern of terrorist attacks on civilian systems, such as buildings, commercial aircraft,
bridges, and dams, this categorization may, unfortunately, prove to be more broadly useful in the
future.

Coupled physics specification, Fig. 5, identifies and carefully distinguishes the possible
alternatives for physical and chemical processes in the system, and the coupling between them for
the system/environment specification and scenario abstraction under consideration. A clear
statement of the possible levels of physics coupling is required because of the wide variety of
physics that may occur in a complex system. In the missile flight example, Fig. 6, we identify
three levels of physics coupling, although more alternatives could be identified. Coupled Physics
Specification 1 couples essentially all of the physics that could exist in the problem. For example,
this specification could couple the structural deformation and dynamics with the aerodynamic
loading and thermal loading due to atmospheric heating. It could also couple the deformation of the
solid fuel rocket motor case due to combustion pressurization, the heat transfer from the motor case
into the missile airframe structure, and the non-rigid body flight dynamics on the missile. Coupled
Physics Specification 2 couples the missile flight dynamics, aerodynamics, and structural
dynamics, neglecting all other couplings. This coupling permits the computation of the deformation
of the missile structure due to inertial loading and aerodynamic loading and then the aerodynamic
loading and aerodynamic damping due to the deformed structure. This would be a coupled, time
dependent, fluids/structures interaction simulation. Coupled physics Specification 3 assumes a
rigid missile body; not only is physics coupling disallowed, but the missile structure is assumed
rigid. The missile only is allowed to respond to inputs or forcing functions from the environment.
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Structural dynamics is removed from the analysis; i.e., only rigid body dynamics is considered.

Before we consider the last activity, nondeterministic specification, consider the possible
sources of total uncertainty that could occur in the three activities discussed so far.
System/environment specification and scenario abstraction activities introduce uncertainties into the
modeling and simulation process. This occurs primarily because of what is not included, or
scenarios that are not imagined. The wider the scope of the analysis or the more complex the
system, the more possibilities there are for uncertainties due to lack of knowledge about aspects of
the modeled system and environment. Indeed, an underlying weakness of modern technological
analysis is events, effects, and possibilities not initially considered.86 For example, automatic
control systems designed to ensure safe operation of complex systems during normal operation or
during maintenance of the system can fail, or the safety system can be overridden. During
construction of coupled physics specifications, the primary source of total uncertainty introduced
into the analysis is acknowledged error. A hierarchical ordering of levels of physical coupling in
conceptual models can commonly be constructed. Based on experience with similar systems,
previous analyses, risk of adverse safety, performance, economic consequences, and budget and
schedule considerations, decisions are then made concerning which physics coupling is chosen.
However, when physics couplings are neglected, an acknowledged error is introduced.

In the nondeterministic specification activity, Fig. 5, decisions are made concerning what
aspects of the system and environment will be considered deterministic or nondeterministic. A
deterministic system and environment exhibits one system response given a specification of all
mathematical models and parameters of the system. Certain nonlinear systems, even when all
models and parameters are specified, can yield multiple responses or even chaotic responses. We
include these types of systems in the class of nondeterministic systems, although they are not
addressed in the present work. The predominant cause of nondeterministic system response is
inherent randomness in model parameters, initial conditions, or parameters specifying the
environment. We have referred to these types of sources producing nondeterministic features as
variabilities. Uncertainties in model parameters, initial conditions, or the environment also occur
because of a lack of knowledge about these factors. The uncertainty can often be reduced by
obtaining relevant data or by taking actions that limit the state of key elements of the system or the
environment. Often such actions are policy or procedural decisions. Examples of these cases are:
Was the system incorrectly manufactured or assembled? Has inadequate or improperly conducted
system maintenance significantly altered certain system characteristics? Was the system damaged in
the past, but the damage is unknown? In other situations it may not be possible to reduce the lack
of knowledge, and reduce the uncertainty.

For the missile flight example we list only two alternative nondeterministic specifications
shown in Fig. 6. Nondeterministic Specification 1 includes the following variabilities (indicated by
a V in Fig. 6): mass properties of the missile, aerodynamic force and moment coefficients,
aerothermal heating characteristics, and initial conditions at missile launch. These are considered
variabilities because they are usually associated with random variation due to manufacturing
processes or physically random processes. If a large number of missiles are manufactured, for
example, sufficient inspection data would normally exist so that a representative probability
distribution for each parameter could be constructed. Nondeterministic Specification 1 also
includes the following as variabilities and/or uncertainties (indicated by a V,U in Fig. 6):
propulsion characteristics, atmospheric characteristics, and target characteristics. These quantities
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could be considered as variabilities, but their nondeterministic feature is usually dominated by lack
of knowledge. For example, propulsion characteristics of solid rocket motors can vary
substantially with age and temperature of the propellant. Suppose that statistical models which
incorporate age and temperature of the propellant have been constructed. If the age of the propellant
in a particular motor is not known or the temperature of the propellant is not known, a statistical
model is of little value in estimating the variation in the performance of the motor. A similar
argument can be made for estimating the uncertainty in atmospheric characteristics, for example,
wind conditions. Without specifying additional knowledge, such as location on earth, month of the
year, or even time of the day, statistical models are of limited value.

For nondeterministic Specification 2, Fig. 6, we chose one parameter of the mass properties of
the missile as a variability, and one characteristic of the propulsion system as an uncertainty. We
pursue Specification 2 in the example problem to distinguish the characteristics of each and to
show how they might be represented differently in a computational simulation. All other
parameters are considered deterministic (indicated by a D in Fig. 6).

4.3 Mathematical Modeling Activities

As shown in Fig. 5, we have identified four major activities in the mathematical modeling
phase: formulation of the partial differential equations, choice of all the auxiliary equations that
supplement the differential equations, formulation of all the initial and boundary conditions
required to solve the PDEs, and selection of the mathematical representation of nondeterministic
elements of the analysis. The PDEs commonly represent conservation equations for mass,
momentum, and energy, but they can originate from any mathematical model of the system. The
auxiliary equations are equations which are required to complete the PDEs. Examples of these
would be turbulence modeling equations in fluid dynamics, equations of state in hydrodynamics,
material constitutive equations in solid dynamics, and neutron cross-sections in neutron transport.
The auxiliary equations can be of any type, e.g., algebraic equations, integral equations, or PDEs.
The boundary and initial conditions provide the required closure equations needed for all PDEs.

 Formulation of the nondeterministic representations is based on the needs of the analysis
together with the quantity and quality of relevant information available. When the nondeterministic
specification indicates that a range of values are of interest for a parameter or characteristic of the
analysis, it may or may not include constraints on this range. Within these constraints an
appropriate representation for the nondeterministic element will depend on available and/or
obtainable relevant information. Probabilistic models (distributions or frequency functions) are
appropriate only when enough information is available to determine relative likelihoods of different
values over a range. In the absence of this information, one attempts to produce bounding values,
or may hypothesize distributions for these elements and perform further analysis conditional on
these bounding values or hypothesized distributions.

Variabilities commonly dominate the nondeterministic features of the auxiliary physical
equations and boundary and initial condition activities. The most common variabilities are those
due to inherent randomness of continuous parameters in these equations. Variabilities are nearly
always represented by probability distributions. In some cases the form of these distributions are
inferred from first principles of the processes involved in determining the parameter values. In
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most cases the distributions are chosen based on convenience. Parameters associated with the
probability distributions are then estimated when sufficient data are available or assigned values
based on a subjective assessment when insufficient data are available.

Uncertainties can have a large impact on the nondeterministic formulation of the PDEs because
the key issue can be limited, or inadequate, knowledge of the physical processes involved.
Examples of uncertainties that occur in the PDEs are limited knowledge of the equations for
turbulent reacting flow, conflicting models for crack propagation in materials, and competing
models for elastic deformation of composite materials. For physical processes that are well
understood, deficiencies in certain models should be considered as errors rather than uncertainties.
This guideline is based on the argument that if significant knowledge of the process exists, a set of
alternative models can be convincingly ordered in terms of increasing accuracy. In the modeling of
fluid dynamic turbulence, the models can be generally ordered in terms of increasing accuracy as
follows: algebraic models, two-equation models, Reynolds stress models, and large eddy
simulation models. In general, this ordering is appropriate, but for individual flow fields there is
no guarantee that any one model will be more accurate than any other because certain lower order
models can be very accurate for specific cases.

Acknowledged errors in PDE models are those due to mathematically representing the physics
in a more simplified or approximate form than the best available. It is invariably the case that for
any mathematical model chosen to represent some physical process, one can identify higher fidelity
models that are known to exist. In our definitions given in Section 2.2, this is precisely what is
meant by acknowledged error. Higher fidelity models are usually not chosen because of the higher
computational costs associated with their solution. The ratio of computational cost for a higher
fidelity model to a lower fidelity model is commonly high, sometimes exceeding a factor of a 100.
Analysts ordinarily choose a given level of model fidelity based on practical issues, such as
computational resources available, options in computer codes they are familiar with, and schedule
constraints, as well as technical issues. Some examples of acknowledged errors in mathematical
modeling are the modeling of a process in two spatial dimensions when three spatial dimensions
may be needed; the assumption of a steady state when unsteady effects may be important; and the
assumption of homogenous material properties when mesoscale features play a substantial part.
These examples of acknowledged errors are all characteristic of situations in which physical
modeling approximations were made to simplify the mathematical model and the subsequent
solution.

For the missile flight example, two mathematical models are chosen; a six-degree-of-freedom
(6-DOF) model and a three-degree-of-freedom (3-DOF) model, Fig. 7. Both models are consistent
with the conceptual model being analyzed: System/Environment Specification 3, Scenario
Specification 1, Coupled Physics Specification 3, and Nondeterministic Specification 2 (Fig. 6).
The translational equations of motion can be written as

    m dV
dt

= FΣ , (1)

where m  is the mass of the vehicle,  V  is the velocity, and   FΣ  is the sum of all forces acting on
the vehicle. The rotational equations of motion can be written as
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     I dωω
dt

= MΣ + ωω ×× I ⋅⋅ ωω , (2)

where   I  is the the inertia tensor of the vehicle,  ωω  is the angular velocity, and   MΣ  is the sum of
all moments acting on the vehicle. Eq. (1) represents the 3-DOF equations of motion, and Eqs. (1)
and (2) represent the 6-DOF equations of motion. A brief description of the derivation of the 3-
DOF and 6-DOF equations of motion are given in Appendix A. Although these are ordinary
differential equation models instead of the PDE models stressed in the present work, key aspects of
the present framework can still be exercised.

MATHEMATICAL MODELING
ACTIVITIES

Specification of Partial Differential Equations

Specification of Auxilary Physical Equations

Specification of Boundary and Initial Conditions

Specification of Nondeterministic Representations

MATHEMATICAL MODEL 1

DIFFERENTIAL EQUATIONS

Six-degree of freedom

equations of motion

• Missile mass

• Missile moments of inertia

• Missile center of mass

• Missile aerodynamic force coefficients

• Missile aerodynamic moment coefficients

• Propulsion system thrust

• Propulsion system thrust location

• Propulsion system mass flow rate

• Fluid properties of the atmosphere

• Atmospheric wind speed and direction

• Specification of aerothermal effects

• Target localized wind speed and direction

• Ground surface coordinates near target

AUXILIARY PHYSICAL
EQUATIONS

INITIAL CONDITIONS

• Aircraft launch position

• Aircraft launch velocity

• Aircraft launch angle of attack

• Aircraft launch angular rates

MATHEMATICAL MODEL 2

• Missile mass

• Missile aerodynamic force coefficients

• Propulsion system thrust

• Propulsion system mass flow rate

• Fluid properties of the atmosphere

• Atmospheric wind speed and direction

• Specification of aerothermal effects

• Target localized wind speed and direction

• Ground surface coordinates near target

AUXILIARY PHYSICAL
EQUATIONS

NONDETERMINISTIC
REPRESENTATION

• Initial missile mass: normal distribution

• Rocket motor thrust: specified values

CONCEPTUAL MODEL (3,1,3,2)

System/Environment Specification 3

Scenario Abstraction 1

Coupled Physics Specification 3

Nondeterministic Specification 2

DIFFERENTIAL EQUATIONS

Three-degree of freedom

equations of motion

INITIAL CONDITIONS

• Aircraft launch position

• Aircraft launch velocity

NONDETERMINISTIC
REPRESENTATION

• Initial missile mass: normal distribution

• Rocket motor thrust: specified values

Figure 7
Mathematical Models for the Missile Flight Example
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For these two mathematical models of flight dynamics, one can unequivocally order the models
in terms of fidelity. Indeed, the physics and mathematics of the 6-DOF equations are so well
understood that there is no need for experimental validation of these models. Their accuracy is only
limited by the accuracy of the assumption of a rigid body, accuracy of the measured mass
properties, and accuracy of the forces and moments acting on the vehicle. However, as mentioned
above, for models of complex physical processes or systems this ordering is commonly not
possible.

Figure 7 lists all of the auxiliary equations and initial conditions that are needed for each
mathematical model. As is to be expected of higher fidelity models, the 6-DOF model requires
physical information beyond that which is required by the 3-DOF model. This poses the question:
When does the lack of information of the additional needed parameters in a higher fidelity model
counteract its accuracy when compared to a lower fidelity model? Although this question is not
addressed in the present work, it is an issue that must be weighed in many analyses. It is fallacious
to claim that the higher the fidelity of the physics model, the better the results. Uncertainty of
parameters and greater computer resources needed to solve higher fidelity models are critical
factors in total uncertainty estimation. In addition, constraints on computer resources can obviate
the usefulness of a higher quality model.

Two nondeterministic parameters will be considered in the missile flight example: the initial
mass of the missile and the propulsion thrust characteristics. Both parameters appear in each of the
mathematical models chosen so that direct comparisons of their effect on each model can be made.
It is assumed that sufficient inspection data of manufactured missiles is available for the missile
mass to justify a normal distribution with known mean and standard deviation. Thrust
characteristics are considered to be an uncertainty that derives from nonspecificity, i.e., multiple
situations are possible.55, 63 We assume the nonspecificity is due to the temperature of the solid
propellant. We choose a nominal value and two bounding values: normal operating temperature,
highest allowed temperature within the manufacturer’s specification, and the lowest allowed
temperature. The high temperature condition causes the thrust to be higher and the burn time to be
shorter, and the low temperature condition causes the thrust to be lower and the burn time to be
longer. We assume that the thrust versus time profiles of the high and low temperature motors are
accurately known from experimental data. It is clear that the uncertainty in propulsion thrust can be
steadily reduced as information is added to the analysis. For example, if the temperature at launch
could be specified within some experimental measurement uncertainty, then the propulsion
uncertainty could be greatly reduced or eliminated. If age of the specific motor to be fired were
known, then the uncertainty in performance due to age of the propellant could be eliminated. With
this combined level of information, one could characterize the propulsion characteristics as a
variability.

4.4 Discretization and Algorithm Selection Activities

The discretization and algorithm selection phase accomplishes two related tasks. First, it
converts the continuum mathematics model, i.e., the differential equations, into a discrete
mathematics problem suitable for numerical solution. Second, it provides the methodology that will
be used to determine how a discrete set of computer solutions can be most appropriately used to
accommodate the nondeterministic features of the analysis. The conversion from continuous to
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discrete mathematics is fundamentally a mathematics-approximation topic; errors and not
uncertainties are the dominant loss-of-confidence issue in this phase. (Note that for the remainder
of the report when we refer to "errors," we will only be referring to acknowledged errors, unless
otherwise stated.) Some may question why this conversion process should be separated from the
solution process. We argue that this conversion process is the root cause of more difficulties in the
numerical solution of nonlinear PDEs than is generally realized.75, 87 When traditional
nondeterministic methods are applied to systems described by differential equations, then one is
dealing with stochastic differential equations. The discrete solution to these type equations,
however, is much less developed than for deterministic differential equations.88

As shown in Fig. 5, we identify four activities in the discretization and algorithm selection
phase: discretization of the PDEs, discretization of the boundary conditions (BCs) and initial
conditions (ICs), selection of the propagation methods, and design of computer experiments. The
types of errors that should be identified in the discretization of the PDEs, BCs, and ICs are those
associated with possible inconsistencies between the discrete form of the equations in the limit and
the continuum form of the equations. This normally is evaluated by analytically proving that the
numerical algorithm approaches the continuum equations as the discretization size approaches zero.
For simple differencing methods, this is straightforward. For complex differencing schemes, such
as essentially non-oscillatory schemes, flux limiter schemes, and second-order, multidimensional
upwind schemes, determining the consistency of the schemes can be difficult. For complex
multiphysics in coupled PDEs, it is impossible to prove. Related issues are also treated in the
discretization activities of differential equations, such as: Are the conservation laws satisfied for
finite spatial grid sizes, or are mass, momentum, and energy only conserved in the limit? Does the
numerical damping approach zero as the mesh size approaches zero? Note that discretization of
PDEs are also involved in the conversion of Neumann and Robin's, i.e., derivative, boundary
conditions into discrete equations. We have included the conversion of continuum initial conditions
to discrete initial conditions not because there are derivatives involved, but because spatial
singularities may be part of the initial conditions. An example is the time dependent decay of a
vortex for which the initial condition is given as a singularity. Our point is also valid, indeed much
more common, when singularities or discontinuities are specified as part of the boundary
conditions.

The selection of propagation methods and design of computer experiments in Fig. 5 both
address the conversion of the nondeterministic elements of the analysis into multiple runs, or
solutions, of a deterministic computational simulation code. Selection of a propagation method
involves the determination of an approach, or approaches, to propagating variabilities and
uncertainties through the computational phases of the analysis. Examples of methods for
propagating variabilities include: reliability methods;41 sampling methods such as Monte Carlo or
Latin Hypercube;78, 79 or statistical design approaches.80 Methods for the propagation of
uncertainties defined using non-probabilistic representations, e.g., possibility theory and fuzzy
sets, are a subject of current research.64, 81-83 The design of computer experiments task
performed as a part of this phase is driven to a large extent by the availability of resources and by
the requirements of the analysis. Establishing an experimental design often involves more than just
implementation of the propagation method specified above. The problems associated with large
analyses can often be decomposed in a way that permits some variables and parameters to be
investigated using only portions of the code or, perhaps, simpler models than are required for
others. This decomposition of the problem and selection of appropriate models, together with the
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formal determination of inputs for the computer runs, can have a major effect on the estimate of
uncertainty introduced into the analysis in this phase. This activity is performed here because this
detailed specification of inputs and models will impact programming requirements, as well as the
running of the computer model in the numerical solution phase. These tasks may be performed
differently for different mathematical models and may involve the specification of probabilities
associated with different model choices, where available information warrants specification of
probabilities.

For the missile flight example, the same discretization method was applied to both 6-DOF and
the 3-DOF mathematical models. This resulted in two discretized models, but they only differ in the
differential equations being solved. A Runge-Kutta-Fehlberg 4(5) method was chosen to solve each
system of ODEs.89 The RKF method is fifth order accurate at each time step, and the integrator
coefficients of Ref. 90 were used. The method provides an estimate of the local truncation error,
i.e., truncation error at each step, so that the estimated numerical solution error can be directly
controlled by adjusting the step size as the solution progresses. The local truncation error is
computed by comparing a fourth order accurate solution with the fifth order accurate solution. A
more detailed description of the numerical integration procedure in given in Appendix B.

The method chosen for propagation of variability was the Latin Hypercube Sampling (LHS)
method. LHS is a random sampling method for choosing discrete values from a probabilistically
defined nondeterministic variable or parameter, and often provides an advantage in efficiency over
strict Monte Carlo sampling. However, that advantage is degraded by the fact that direct estimates
of sampling error cannot be computed without replicating the LHS runs. For propagation of the
uncertainty, we simply chose three possible propulsion characteristics to bound the solution and
provide a nominal result. The experimental design task for this example is simple because one of
our objectives is to compare models of different fidelity. Hence, the experimental design calls for
performing the same number of Latin Hypercube calculations for both the 3-DOF and 6-DOF
models. In an actual analysis this phase would include selecting how to mix computer runs
between the 3-DOF and 6-DOF models and determination of how results from both models might
be combined to maximize the value of the computations. This maximization process is a research
topic of major importance for complex systems.

4.5 Computer Programming Activities

Figure 5 identifies three activities in the computer programming phase: input preparation,
module design and coding, and compilation and linkage. Input preparation refers to the analyst's
conversion of the mathematical and discrete model elements into equivalent data elements usable by
the application code. The second and third activities relate to the building of the application code
itself. Here subroutine modules are designed and implemented through a high-level programming
language. This high-level code is then compiled into object code and linked to the operating system
and libraries of additional object code to produce the final executable code.

The correctness of the computer programming phase is most influenced by unacknowledged
errors, i.e., mistakes. The potential for mistakes in all three of these activities is enormous. In
addition to the most obvious programming bugs (which still occur frequently, despite being
obvious), there is the more subtle problem of undefined code behavior. This occurs when a
particular code syntax is undefined within the programming language, leading to executable code
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whose behavior is compiler-dependent. Compilation and linkage introduce the potential for further
errors unbeknownst to the developer. Primary among these are bugs and errors in the numerous
libraries of object code linked to the application. These libraries can range from the ubiquitous,
such as trigonometric functions, to matrix inversion and the solution of special classes of ODEs
and PDEs. Such libraries allow the developer to reuse previously developed data handling and
numerical analysis algorithms. Unfortunately, the developer also inherits the undiscovered or
undocumented errors in these libraries. There is also the possibility that the developer
misunderstands or makes an error in the values passed to the library routines.

The computer code that was used for the missile flight example was the TAOS code.91 This is
a general-purpose flight dynamics code that can be used for a wide variety of guidance, control,
and optimization problems for flight vehicles. We used only the ballistic flight option to solve both
the 6-DOF and 3-DOF equations of motion. Concerns with coding, compilation, and linkage on
massively parallel computers were not a factor in this example problem because program execution
was performed only on Unix workstations.

4.6 Numerical Solution Activities

 As shown in Fig. 5, we have identified four activities occurring in the numerical solution
phase: spatial and temporal convergence, iterative convergence, nondeterministic propagation
convergence, and computer round-off accumulation. Spatial and temporal convergence addresses
the accuracy of numerical solutions using finite spatial grids and finite time steps. These two can be
grouped into the general category of truncation error due to the discrete solution of PDEs. By
iterative convergence we mean the finite accuracy to which nonlinear algebraic, or transcendental,
discrete equations are solved. Iterative convergence error normally occurs in two different
procedures of the numerical solution: 1) during the iterative convergence which must be achieved
within a time step and 2) during the global iterative convergence of an elliptic PDE, i.e., a
boundary value problem. Examples of the iterative convergence which must be achieved during a
time step are: intra-time step iteration to solve the unsteady heat conduction equation when the
thermal conductivity depends on temperature, and the iterative solution of nonlinear constitutive
equations. Iterative convergence error is different from error caused by finite precision arithmetic,
i.e., round-off error.

Nondeterministic propagation convergence refers to activities related to adjustments in, or
further specification of, inputs determining specifics of the multiple deterministic computer runs.
Some methods for uncertainty propagation and experimental design rely on run-time results to help
direct further computer experimentation. Reliability methods, for example, focus on finding a
specific point (for functional expansion) that provides a “best approximation” to system
performance. Convergence to this point is determined by the change in the movement of the
approximation to this point from one computer run to the next. It is clear that the nondeterministic
propagation convergence error, as well as those discussed in the previous paragraph, are all
acknowledged errors.

For the flight dynamics example, the numerical solution method used a variable time step so
that the local truncation error could be directly controlled at each step. The local truncation error is
estimated at each step for each state variable for each system of differential equations. For the 6-
DOF model there are 12 state variables, and for the 3-DOF model there are 6 state variables. Before
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a new time step can be accepted in the numerical solution, a relative error criterion must be met for
each state variable. If the largest local truncation error of all the state variables is less than 0.6 of
the error criterion, then the step size is increased. Quantification of local solution error is important
not only to measure its impact on an individual solution, but also to precisely determine its
interaction with the variability and uncertainty in the problem. In the solution of PDEs for complex
systems, general procedures for estimating solution error are very difficult to develop and
compute. Global estimates of a posteriori solution error are commonly made with finite element
methods, but local error estimates are not available. For finite difference and finite volume methods
Richardson’s method can be used to estimate local truncation error, but this becomes quite
computationally expensive for complex problems.

4.7 Solution Representation Activities

In the solution representation phase shown in Fig. 5, we have identified five activities: input
preparation, module design and coding, compilation and linkage, data representation, and data
interpretation. The first three activities are very similar to those discussed in the computer
programming phase. The data representation task includes two types of similar activities: first, the
representation of individual solutions over the independent variables of the PDEs and, second, a
summary representation that combines elements of the multiple individual deterministic computer
runs. Representation of individual solutions refers to the construction of a continuum solution
based on the numerical solution at discrete points in space and time. Data representation errors
originate as a result of the inaccurate or inappropriate construction of continuous functions from the
discrete solution of the PDEs in the post processor. Examples are oscillations of the continuous
function between discrete solution points due to the use of a high-order polynomial function in the
post processor and interpolation of the discrete solution between multiblock grids such that
conservation of mass, momentum, and energy are not conserved. Note that we mean inaccurate
construction with respect to the discrete solution, not with respect to the continuum PDEs. To
clarify this point, consider the numerical solution of a shock wave passing through a fluid or a
solid and the shock wave is physically modeled as a discontinuity in the continuum PDEs. If the
discretization method approximates the discontinuity with a continuous function, e.g., a shock
capturing method, then in the discrete representation the shock wave is no longer discontinuous.
As a result, the construction error should be judged with respect to the continuous function
approximation of the discrete solution; the discontinuity was lost in the discretization and it cannot
be recovered here.

Representation of a nondeterministic simulation from the individual deterministic computer
runs refers to the compilation of these multiple solutions into statistical or probabilistic measures
that can be used to address the requirements of the analysis. This can include developing summary
descriptions of the solution and discriminating which parts of the represented solutions will be
reported through tables and figures. Errors can occur in the representation of a nondeterministic
solution as a result of integrating the ensemble of individual solutions in a way which is
inconsistent with the specified propagation method. Data representation errors are principally
acknowledged errors in that a correct or consistent discrete-to-continuum mapping is known from
the choice of discretization methods.

The data interpretation activity refers to the human perceptions or impressions that are formed
based on the observation of the represented solutions. If the perceptions or impressions are correct,
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then knowledge or understanding is generated. If they are incorrect, then an unacknowledged error
has occurred. In other words, data interpretation errors occur when a user incorrectly interprets the
numerical solutions. Examples of interpretation errors are: concluding that a computed solution is
chaotic when it is not, or interpreting a computed flow as turbulent when it is only a spurious
numerical solution. Importantly, our definition of data interpretation errors does not include
inappropriate decisions made by the user based on the interpretation, such as incorrect design
choices or inept policy decisions.

4.8 Summary Comments

Figure 8 illustrates the multiple models, numerical solutions, and solution representations that
are addressed in the missile flight example. As shown in the figure, six conceptual models are
identified, many more are implied, but only one is selected for further development and analysis.
This single conceptual model spawns two alternative mathematical descriptions, both of which are
carried through the remaining phases of the modeling and simulation process. For simplicity,
Figure 8 then shows the further development of only one of these mathematical models, although it
is understood that identical development of Mathematical Model 1 is taking place in parallel with
Mathematical Model 2. The discretization and programming phases identify alternative model
choices that are not considered further. Continuing into the numerical solution phase,
nondeterministic effects that were identified in the conceptual model and further defined in the
mathematical modeling phase are computed via multiple deterministic numerical solutions. How
these solutions were computed was specified in the propagation method identified in the
discretization and algorithm selection phase. Finally, in the solution representation phase, the
multiple solutions are reintegrated to represent the nondeterministic solution.

It is clear from the missile flight example that the modeling and simulation process for complex
systems involves the identification and use of multiple scenarios, analyses, and computations. At
each phase of this process it is often possible to identify more than one viable choice of models or
parameters that can be used to obtain a computational result. As these multiple model choices
propagate through subsequent phases, a tree structure of potential computational results is
developed.
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5. Missile Flight Example Computational Results

Before the computational results from the missile flight example are presented, a few details
must be given concerning the calculations. The missile is assumed to be launched from an aircraft
flying straight and level at an altitude of 30 kft. above sea level and at a speed of 700 ft/sec.
Assume a spherical, non-rotating earth. Define an earth fixed, three-dimensional, cartesian
coordinate system, where x is vertical, z is in the direction of the aircraft flight, and y is normal to
the xz plane (Fig. 9). Let the origin of the xyz coordinate system be at sea level, directly below the
missile center-of-gravity at the initial condition. Assuming zero disturbance of the aircraft on the
missile during launch and assuming uniform freestream flow approaching the missile, then the
initial conditions for the 6-DOF equations of motion are

x = 30, 000 ft., y = z = 0.
Vx = Vy = 0., Vz = 700 ft/sec.
α  = β = φ = 0.
p = q = r = 0.

α, β, and φ are the pitch, yaw, and roll angles of the missile, respectively. p, q, and r are the roll
rate, pitch rate, and yaw rate of the missile, respectively. The initial conditions for the 3-DOF
equations of motion are given by the x, y, z and Vx, Vy, and Vz conditions given above. Assume
the fluid properties of the atmosphere are given by the 1976 U.S. Standard Atmosphere and that
the winds are zero over the entire trajectory.92 The trajectory calculation is terminated when x = 0.,
i.e., at sea level.

For convenience, detailed missile characteristics were taken to be those of the Improved Hawk
missile, since these were readily available.93 Missile moments of inertia, center of mass, rocket
motor thrust, and mass flow rate of the rocket motor are given in Appendix C. All of these
parameters are functions of time during rocket motor operation but are constant after motor
burnout. The rocket motor nominally operates for 24.5 sec., which is about half of the total flight
time of the missile. The aerodynamic force and moment coefficient derivatives are assumed
constant with pitch, yaw, and roll angle of the missile, i.e., linear aerodynamics is assumed.
However, the aerodynamic force and moment coefficient derivatives are functions of Mach
number. Detailed information on the aerodynamic force and moment coefficients is given in
Appendix C. The system response measure discussed in the body of this report is the final range of
the missile, since it captures most of the trajectory characteristics of interest. Detailed results of the
flight dynamics are given in Appendix D and a sample input file for the TAOS code is given in
Appendix E.

To illustrate the combined effects of variability, uncertainty, and error in the example, we select
500 values of initial mass through the Latin Hypercube Sample method. We then compute 500
values of range using combinations of the two mathematical models, the three thrust models, and
five selected values of numerical integration solution error. Our purpose is to study and understand
the effects and interactions of these sources of total uncertainty. We do not address in this report
how all possible sources, many of which have be suggested earlier, could be represented and
propagated in this flight dynamics example nor do we address the most appropriate way to
summarize the effects of these total uncertainty sources for decision makers.
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5.1 Effects of Mass Variability

The first source of total modeling and simulation uncertainty examined was the variability of
the initial mass of the missile. The mean initial mass was 1378.98 lb, of which 732 lb was inert
mass and 647 lb was propellant. As mentioned in Section 3.3, a normal probability distribution for
initial mass variability was assumed. The standard deviation, σw, was assumed to be 10 lb.
Although it is not important for this example, σw = 10 lb is consistent with actual missile systems
of this size.94 We investigated the effects of numerical solution error for both the 6-DOF and 3-
DOF models to be certain that this error was not entering into the mass variability results. We
computed solutions with per step, relative, truncation error criteria of 10-12, 10-9, and 10-6.
Comparing these solutions at the end of the trajectory we found that error criteria of 10-12 and
10-9 produced the same values of the final range to seven significant digits. As a result, we used
10-9 for all remaining calculations when solution error was not of interest. Using this error
criterion the computer run time on a SUN Sparc 20 workstation was 49 sec. and 1 sec.,
respectively, for one 6-DOF and one 3-DOF solution.

- 47 -



Since computer run time was not an issue, we computed 500 Latin Hypercube Sample (LHS)
solutions for both the 6-DOF and 3-DOF models. Shown in Fig. 10 is the histogram from the LHS
centering the weight at 1379 lb and using bins of width 5 lb. As can be seen with this number of
samples, the histogram is a good approximation to the assumed normal distribution. Using LHS
and 500 samples, the mean value was computed to be 1378.984 lb, and σw = 9.993 lb. The 500
samples is roughly a factor of 10 higher than is normally needed. We chose this large number to
essentially eliminate any sampling error in the analysis. Since the same random number generator
and the same seed were used on both the 6-DOF and 3-DOF models, each model computed
trajectories using exactly the same missile weights. Indeed, for all results given in this report,
exactly the same sampled initial missile weights were used.
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Figure 10
Histogram from LHS for Mass Variability

Figure 11 shows the computed range of the missile as a function of the initial mass for both the
6-DOF and 3-DOF models. The nominal thrust profile for the rocket motor was used. For both
models, the missile range is linear for this small variation in initial weight. It is clear from this very
well behaved system response measure that 5 to 10 LHS samples would have been typically
sufficient to characterize this response measure. However, for our analysis we required sampling
errors that were much less than typical analyses. It is also seen in Fig. 11 that the lower fidelity
model (3-DOF) introduces a bias error of 0.040 nautical miles in range which is constant for all
weights sampled. The generation of a bias error in the response of the system is disturbing because
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it might go undetected if the higher fidelity model results or experimental measurements were not
available. One does not, in general, expect this result. Lower fidelity models are used with the
hope that the computational results will at least be distributed around the correct answer. For this
relatively simple physics system one can easily see how this bias error in range occurs. The
arching trajectory of the missile in a plane causes a small positive mean angle of attack during most
of the trajectory. Computational results from the 6-DOF trajectory show this value to be about 0.01
to 0.02 deg. after the initial disturbance at launch decays (see Appendix D). This angle of attack
causes a lift component on the missile, i.e., a small gliding effect, which results in a slightly longer
trajectory. The lower fidelity model does not account for this physics, and as a result, the
prediction of range is consistently shorter. From this understanding of the physics, one can then
see that the magnitude of the bias will depend on a host of additional parameters that were not
investigated, e.g., initial launch altitude, initial launch angle, and the aerodynamic lift coefficient.
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Variability in Range due to Variability in Initial Weight

Figure 12 shows frequency data of the LHS samples as a function of range off-set from the
mean value range for the 6-DOF trajectory: 19.552 nm. That is, the range computed for the mean
weight of 1378.98 lb for the 6-DOF trajectory is defined to have zero offset. In this figure the bias
error in range of 0.040 nm of the 3-DOF model is seen as a shift of distribution to the left, i.e.,
shorter range. The frequency plot shows the distribution produced by each model is remarkably
similar, as might be expected from the results of Fig. 11. For the 6-DOF model the standard
deviation in range is computed to be 0.0770, whereas for the 3-DOF model, σR = 0.0766.
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Figure 12
Frequency Data from LHS for Range Offset Due to Initial Weight

When nearly identical frequency data are computed for different fidelity models and computer
resources restrict making all computations using the high fidelity model, the following design of
computer experiment strategy is commonly used. Runs are initiated with the same random number
seed with each model, and the distributions of the ranges of each model are plotted. These runs are
compared to determine whether a bias shift in the mean of the distributions has occurred. If a bias
does occur, then the lower fidelity model is “calibrated” to eliminate the bias and then used for the
hundreds or thousands of runs typically needed to estimate total uncertainty. This same calibration
strategy is used in computational simulations of complex processes when experimental
measurements are used for the benchmark.

5.2 Effects of Thrust Uncertainty

As we discussed in Sections 4.3 and 4.4, our approach to determining the uncertainty in the
trajectories due to uncertain temperature of the rocket motor is to compute bounding trajectories
using three thrust profiles: a nominal profile, the highest profile resulting from the highest
temperature allowed by the manufacturer, and the lowest profile resulting from the lowest
temperature allowed by the manufacturer. To be representative of thrust uncertainty in actual
motors, we chose the changes in performance that have been experimentally measured for the
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Standard Hawk motor.95 At the highest allowed temperature of 120oF, the total impulse of the
motor is 2% above the nominal performance, but the burn time is decreased by 7%. At the lowest
allowed temperature of -20oF, the total impulse of the motor is 2% below the nominal
performance, and the burn time is increased by 7%. Stated qualitatively, the high temperature
motor has a higher net performance over a shorter burn time, and the cold motor has a lower net
performance over a longer burn time.

Figure 13 shows the 6-DOF computed range of the missile for each of the three temperature
conditions of the motor as a function of initial weight variability. It can be seen from Fig. 13 that,
as expected, the motor temperature uncertainty produces a shift in range: the high temperature
motor flying 0.625 nm further than the nominal motor temperature, and the cold motor flying
0.616 nm shorter than the nominal motor. The linearity of the missile range as a function of weight
continues to hold for both the high and low motor temperature cases. It is also seen that the
uncertainty in range due to motor temperature uncertainty is significantly larger than that observed
due to weight variability. The uncertainty in range due to uncertain rocket motor temperature is
1.24 nm. The uncertainty in range due to mass variability can be calculated as 4σR = 4 x 0.077 =
0.308 nm, which is only 25% of the uncertainty due to thrust.
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Figure 14 shows the frequency data from the LHS for the 6-DOF model as a function of
missile range for each of the three motor temperatures. The mean range for the cold motor is
shifted 0.62 nm toward shorter range, whereas the hot motor is shifted the same amount toward
longer range. The standard deviation in range for the hot and cold motors are nearly identical:
(σR)hot = 0.0773 nm and (σR)cold = 0.0762 nm. Recall these are essentially the same as the value
of the nominal motor, (σR)nom = 0.0770 nm. The results for the hot and cold motors using the 3-
DOF model are very similar to the 6-DOF results presented in this section. The only difference is
that the 3-DOF results show the 0.040 nm bias in range, as discussed in the previous section.
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Frequency Data from LHS for Range Uncertainty due to Thrust Uncertainty

for 6-DOF Model

We argue that the source of the potentially large uncertainty in missile performance due to
motor temperature uncertainty should be characterized as lack of knowledge. Some would argue
that the motor temperature uncertainty could be characterized as a variability instead of an
uncertainty. The argument is that a probability distribution could be constructed based on
experimentally measuring motor temperatures for a large number of actual missile deployments.
The variability of motor temperature could then be represented by a probability distribution with
some mean and standard deviation. Although this is a reasonable approach, we argue that the
variability approach could lead to misleading estimates of system performance for certain
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deployment situations. For example, if the deployment was in Alaska during the winter versus
Saudi Arabia during the summer, the average range of the missile would be of little value.
Additional knowledge of the type of deployment could change the representation. A deployment at
a permanent installation with significant environmentally controlled space would be quite different
than a makeshift battlefield deployment. As more and different kinds of knowledge are introduced
into the analysis, representations other than probability distributions may be more appropriate,
e.g., fuzzy sets, belief functions, and possibility theory. Guidance on developing these
representations based on available information is not as well developed as probability theory.

5.3 Effects of Numerical Integration Error

As discussed in Sections 3.4 and 3.6, we are able to precisely control the numerical solution
error at each step of the numerical integration of the ODEs. The per step, relative, truncation error
is estimated using the Runge-Kutta-Fehlberg 4(5) method, and the time step is adjusted at each step
so that the truncation error is less than the specified error criterion. Figure 15 shows the computed
range of the missile for the 6-DOF model using the nominal thrust profile as a function of the mass
variability for five different per step, relative error criteria. There is no effect on calculated range
even though the error criterion is varied over eight orders of magnitude: up to 10% error per step.
This result was not expected. Intuition leads us to believe that as the error criterion increased
greatly, the accuracy of the solution would degrade. For certain state variables, like those that are
periodic, the solution accuracy degrades only slightly. Most variables, including output variables
that are derived from state variables, like range, do not degrade because the error criterion must be
satisfied by all 12 state variables. The state variables that have the highest frequency are those that
will restrict the growth of the time step and the resulting growth in solution error. The highest
frequency state variables are the pitch rate, q, and the yaw rate, r. Both p and q have a frequency of
1 to 2 Hz, which limits the maximum time step to 0.1 to 0.2 sec. so that this element of physics
can be adequately computed. All lower frequency state variables are computed much more
accurately than required by the error criterion.

Figure 16 shows the 3-DOF computed range using the nominal thrust profile as a function of
mass variability for five per step, relative, truncation error criteria. These five error criteria are the
same as those used in the 6-DOF calculation illustrated in Fig. 15. The 3-DOF model has a
completely different sensitivity to numerical solution error as compared to the high fidelity model.
For a relative error of 10-4, a slight roughness in the range as a function of weight can be seen.
For a 10-3 error, the amplitude in roughness of range increases to 0.035 nm. This variation in
amplitude can occur over a very small change in weight. For example, near the mean weight of
1379 lb, a jump of 0.035 nm can be seen over a change in weight of less than one-tenth of a
pound. This type of predicted system response roughness due to solution error has been seen by
many investigators, particularly those using first order response surface methods and those using
optimization methods that rely on numerical differentiation of the system response.
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Figure 15: Uncertainty in Range due to Solution Error and Mass Variability
for 6-DOF Model
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Figure 16: Uncertainty in Range due to Solution Error and Mass Variability
for 3-DOF Model
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As the numerical error is increased further, to 10-2 and 10-1, Fig. 16 shows that a drop in the
predicted range occurs. This introduces a bias error in range similar to that observed in the earlier
comparison of the 3-DOF and 6-DOF models. The bias error varies slightly with weight for 10-2

error but becomes constant at a value of 0.10 nm for 10-1 error. In addition, the range becomes an
extraordinarily smooth function of weight, with the same characteristic occurring at errors of 10-5

and smaller. To understand these unusual characteristics due to solution error, one must examine
how the integration step size is changing to control the per step error in the state variables of the 3-
DOF model. Contrary to the 6-DOF model, there are no periodic state variables in the 3-DOF
system. As a result, the step size can increase rapidly from the fixed initial value of 0.1 sec., i.e.,
all solutions presented in this report attempt to use ∆t = 0.1 sec. in stepping from t = 0. If the step
size results in an estimated truncation error that satisfies the error criterion, then the step is taken. If
the estimated error is 0.6 of the error criterion, then the time step is increased for the next step. If it
does not meet the error criterion, then the time step is decreased until the error criterion is met. For
the 3-DOF model, the time step increases rapidly because all of the state variables are extremely
smooth as a function of time, relative to the 6-DOF model. When the error criterion is changed
from 10-4 to 10-3, Fig. 16, there is a rapid loss in accuracy of the major physical characteristic of
the 3-DOF trajectory: the motor thrust profile. From the initial condition until 4.5 sec. the motor
thrust is roughly 19,000 lb. Then it rapidly drops to a sustained thrust value of about 3,600 lb. for
20 sec., after which thrust terminates. For error criteria less than 10-5, the numerical solution very
accurately captures these two rapid drops in thrust. As the error criteria increases up to 10-3, the
numerical error becomes more erratic, depending on how the time steps fall with regard to the two
rapid drops in thrust. For error criteria of 10-2 up to 10-1, the error requirement becomes so loose
that the time steps jump across the rapid drops in thrust with little notice.

5.4 Effects of Variability, Uncertainty, and Error

This section discusses the computational results for the combination of the mass variability,
thrust uncertainty, and solution error for both the 6-DOF and 3-DOF models. Shown in Fig. 17 is
the 6-DOF computed range as a function of mass variability, for all three thrust profiles, for the
complete range of numerical solution error. As was seen in Figs. 13 and 15, the dominant
characteristic is the very smooth variation in range as a function of initial weight for all three thrust
profiles, regardless of the numerical solution error. The high temperature and low temperature
motor cases are just as insensitive to solution error as the nominal motor temperature case shown in
Fig. 15. The frequency plots, although not shown here, also show essentially no effect of solution
error. For example, for the cold motor for a 10-9 and 10-1 relative error the mean range and
standard deviation are, respectively: R = 20.1771 and σR = 0.0773 and R = 20.1766 and σR =
0.0774. As discussed earlier, the higher fidelity model is remarkably insensitive to solution error
because of the temporal fine scale structure controlling the time step.

Figure 18 shows the 3-DOF computed range as a function of mass variability for a hot motor
for the complete range of solution errors. As the solution error increases, the range calculation
becomes even more erratic than that seen earlier for the 3-DOF model in Fig. 16. For an error
criterion of 10-3 and for weight samples in the range of 1349 to 1355 lb, a nearly constant bias of
0.07 nm toward shorter range occurs. For weights higher than 1355 lb, the computed range
wanders back to near the correct value. At a weight of 1399 lb, a discontinuous drop of 0.08 nm in
range occurs. When the error criterion increases to 10-2, the bias switches to longer ranges for 

- 55 -



1340 1360 1380 1400 1420

19

19.5

20

20.5

21

21.5

Initial Weight (lb)

F
in

al
 R

an
ge

 (
nm

)

Hot Motor

Nominal Motor

Cold Motor

relerr = 10−9

relerr = 10−4

relerr = 10−3

relerr = 10−2

relerr = 10−1

Figure 17
Uncertainty in Range due to Mass Variability, Thrust Uncertainty,

and Solution Error for 6-DOF Model

all weights. When the error criterion increases to 10-1, the bias error switches back to shorter
ranges for all weights. The frequency plots for this hot motor case, although not shown here, also
show erratic behavior for error criteria greater than 10-5. That is, the frequency plots for range
show even more sensitivity to solution error than the plot of range as a function of weight. The
computed characteristics of the cold motor case are similar to those for the hot motor case.

5.5 Summary Comments

Probably the most surprising computational results obtained in this example problem are those
related to the aggregation and interaction of numerical solution error with variability and
uncertainty. The counter intuitive result that the higher fidelity model is much less sensitive to
solution error than the lower fidelity model needs further comment. The discussion given earlier
for the controlling factor in solution error for each model provides an explanation to why this
surprising result occurs. These results have implications for the effect of numerical solution error
on uncertainty analyses when the mathematical model equations are given by PDEs. The per-step
numerical solution error in the present work was precisely controlled by the adaptive step-size
control of the ODE integrator. This level of solution error control and robustness does not
presently exist in the numerical solution of PDEs. Even if one only considers elliptic boundary
value problems, robust adaptive grid generation for the control of local spatial discretization error 
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Figure 18
Uncertainty in Range due to Mass Variability and Solution Error

for the High Temperature Motor for 3-DOF Model

does not presently exist. For certain special cases, such as linear boundary value problems or
problems with no large gradients, reliable methods for adaptive grid control do exist.

It is our view that the present results for the widely different sensitivity of each mathematical
model to solution error would only apply to the numerical solution of PDEs with robust, adaptive,
grid generation methods. If one were to use non-adaptive grid generation methods for the solution
of the PDEs, very different sensitivities would occur than those observed here. Non-adaptive grid
methods would be analogous to a constant time step method in the solution of ODEs. For the
present example problem we computed numerical solutions using a constant time step over the
length of the trajectory for the 6-DOF and 3-DOF models. Table 1 shows the numerical error in
range for various constant time steps for both models using the nominal weight and nominal thrust.
As the time step increases, the numerical error for both models increases, but the 6-DOF model
error increases more rapidly. When the time step becomes roughly half of the period of the finest
scale structure in the 6-DOF model, the error increases exponentially. For a time step of 0.1, the
error in the 6-DOF solution has become so large that the trajectory is no longer computable. For the
3-DOF model, the same time steps cause a gradual increase in the solution error. This table shows
the opposite sensitivity to numerical error as compared to the adaptive time step method.
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Time Step 0.001 0.01 0.07 0.09 0.1

6-DOF 0.0000 0.004 0.038 0.397   ∞
3-DOF 0.0000 0.004 0.040 0.052 0.058

Table 1
Error in Range for 6-DOF and 3-DOF for Constant Time Steps

6. Summary and Conclusions

We have presented a comprehensive, new framework for modeling and simulation that blends
the perspective of three technical communities; the systems view from the operations research
community, propagation of uncertainty from the risk assessment community, and the numerical
solution of partial differential equations from the computational physics community. The activities
that are conducted in each of the six phases of modeling and simulation are discussed in detail.
Consistent with recent work in the risk assessment community, we carefully define and distinguish
between variability and uncertainty. In addition, we delineate and discuss acknowledged and
unacknowledged errors. In each of the activities in each phase of modeling and simulation we
discuss which type of source (variability, uncertainty, or error) typically dominates the activity.
Particular emphasis is given to distinguishing the continuous and discrete mathematical modeling
activities, and to the nondeterministic features of the analysis. The emphasis includes discussions
of the representations of variability and uncertainty, and their propagation methods. Our
framework applies regardless of whether the discretization procedure for solving the partial
differential equations is based on finite elements, finite volumes, or finite differences.

The formal distinction between variability and uncertainty in this framework drives one toward
different mathematical representations for variability and uncertainty; probabilistic representations
for variability and various other modern information theories for representation of uncertainty. One
approach that has been used for uncertainty is Bayesian probability. This approach takes a
subjective view of probability as a measure of degree of belief in a hypothesis. Although we
believe this is a step in the right direction to represent uncertainty, we do not believe it is
satisfactory. We recommend research into modern theories of uncertainty-based information; such
as evidence (Dempster/Shafer) theory, possibility theory, fuzzy set theory, and imprecise
probability theory. These theories, however, are not well developed when compared to
probabilistic inference. In addition, none of these theories, except fuzzy set theory, have been
applied to engineering analysis problems. If one were to take the step and represent variability
probabilistically and uncertainty with a non-probabilistic theory, then one must face the question of
propagating these concurrently in the modeling and simulation process; they are not combinable.
Propagation methods of this type are even more of a research topic.

Two example analyses were provided to demonstrate the flexibility and wide range of
applicability of this framework and to formally detail some of the technical aspects of the approach.
The weapon in a fire example provided a listing of possible sources of variability, uncertainty and
error that might contribute to total uncertainty in the first three modeling phases of the analysis. The
second example, involving missile flight dynamics, focused on a more limited set of sources, but
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provided specific details of how these sources might be accommodated using this framework.
System responses were calculated to illustrate how these components of total modeling uncertainty
could be estimated and propagated.

We believe the usefulness of the present framework results from two aspects. First, it
formalizes and merges a broad range of activities conducted in complex system modeling and
modern computational simulation. It collects into one picture all of the activities so that each one
can be clearly distinguished, relationships can be unambiguously depicted, and assumptions can be
formalized. The framework can be viewed as a many-branched event and decision tree and, as
such, the connection and propagation of scenarios, nondeterminism, and modeling decisions and
assumptions are unequivocal. Second, it identifies how and where all sources of variability,
uncertainty, and error contribute to the total uncertainty in the modeling and simulation process.
For the analysis of complex systems, this formal recognition of sources of nondeterminism and
error shows the compounding effect and rapid growth of each source through the modeling and
simulation process. Some have referred to this growth of total uncertainty through the modeling
and simulation process as “overwhelming.” However, it is an issue that must be faced by analysts,
and decision makers who use the results of modeling and simulation.
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 Appendix A: Flight Dynamics Equations of Motion

A.1  Introduction

The equations of motion for both the 3DOF model and the 6DOF model are derived in this 
Appendix.  Both sets of equations are derived for fixed-mass vehicles.  They can be applied to 
variable mass vehicles (e.g., a rocket-powered missile) by accounting properly for the forces and 
moments due to the propulsion system and by integrating the mass flow equation along with the 
vehicle equations of motion in the integration procedure. The derivation of the equations of 
motion given in this Appendix follows closely the derivation given in the TAOS reference man-
ual.91

In order to discuss the equations of motion, we will need to define three coordinate sys-
tems: an Earth-centered, Earth-fixed, Cartesian (ECFC) coordinate system, an Earth-centered, 
inertial, Cartesian (ECIC) coordinate system, and a body-fixed Cartesian coordinate system.  

A.2  Coordinate Systems

A.2.1   Earth-Centered, Earth-Fixed, Cartesian (ECFC) Coordinate System

One coordinate system for describing the translational motion of a vehicle over the surface 
of the Earth is an Earth-centered, Earth-fixed, Cartesian (ECFC) coordinate system.  As shown in 
Figure A-1, the origin for this coordinate system is located at the center of the Earth, with the x- 
and y- axes in the Equatorial plane and the z-axis pointing through the North Pole.  The x-axis is 
always aligned with the Greenwich meridian ( ) and the y-axis is always aligned 
with the  meridian.  Note that the ECFC coordinate system rotates with the Earth about the z-
axis.

A.2.2  Earth-Centered, Inertial, Cartesian (ECIC) Coordinate System

Newton’s Second Law, which is needed for deriving the translational equations of mo
applies to an inertial reference frame.  The ECFC coordinate system defined above rotates
time and so is not an inertial reference frame.  Since the trajectories we are concerned with
relatively short duration, we can neglect the effect of the Earth’s rotation about the Sun and 
an Earth-centered inertial coordinate system.  As shown in Figure A-2, the origin of the EC
coordinate system is the center of the Earth with the x- and y-axes in the Equatorial plane a
z-axis pointing through the North Pole.  The ECIC coordinate system is fixed in space.  Thu
ECFC coordinate system defined previously rotates with respect to the ECIC coordinate sys
the Earth’s rotation rate, ωΕ.  

longitude 0°=
90°
- A-1 -



Figure A-1
The Earth-Centered, Earth-Fixed Cartesian (ECFC) Coordinate System91

Figure A-2
The Earth-Centered, Inertial Cartesian (ECIC) Coordinate System91
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A.2.3  Body-Fixed Cartesian Coordinate System

The forces and moments acting on the body and its mass properties are most naturally 
described in a coordinate system based on the body of the vehicle. The body-fixed, Cartesian 
coordinate system is shown in Figure A-3a. Note that this coordinate system has its origin at the 
center of mass with the x-axis oriented toward the front of the vehicle. In a winged or finned vehi-
cle, the y-axis points toward the right wing or right fin (looking in the positive x-axis direction) 
and the z-axis is oriented downward to form a right-handed coordinate system. 

Since the 3DOF model represents the vehicle as a point which is, by definition, the center 
of mass, this is the only body coordinate system used in the 3DOF model. The 6DOF model 
requires information about the location and magnitude of all forces acting on the body as well as 
the magnitude of all moments on the body.  It is sometimes convenient to define an auxiliary body 
coordinate system to simplify the input files. The auxiliary body coordinate system has the same 
orientation as the primary body coordinate system, but is offset to some other convenient location. 
An auxiliary body coordinate system is also shown in Figure A-3b. 

A.3  Translational Equations of Motion

The translational equations of motion are derived from Newton’s second law applied
point mass:

(EQ A-1)

Figure A-3
Body-FixedCoordinates91

(a) (b)

F∑ maI=
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where the  represents all the forces acting on the vehicle, m is the mass of the vehicle, and  
is the acceleration in an inertial reference frame. In the 3DOF model, (EQ A-1) describes the 
motion of the vehicle while in the 6DOF model, it describes the translational motion of the vehi-
cle’s center-of-mass.

While Newton’s second law applies to inertial coordinate systems, it is convenient fo
jectory analysis problems to express the acceleration in a non-inertial earth-fixed coordinat
tem.  Therefore, the inertial acceleration in (EQ A-1) must be transformed to the earth-fixed
coordinate system.  As noted above, the ECFC coordinate system rotates with respect to t
tial coordinate system (ECIC) at the Earth’s rotation rate, . The general relationship for 
forming a vector quantity, , between a fixed reference frame and one rotating at an ang
rate, , with respect to the fixed frame is given by:

. (EQ A-2)

  (EQ A-1) can be rewritten using (EQ A-2) as:

(EQ A-3)

where  and  are the position and velocity of the vehicle, respectively, and all of the vecto
in the ECFC coordinate system.  

(EQ A-3) is a second-order differential equation which can be written as a set of cou
first order equations:

(EQ A-4)

(EQ A-5)

If an initial position, , and velocity, , with respect to the Earth are known at t=t0, and 
if the vehicle’s mass and the forces acting on it are known, these equations can be integrat
determine the trajectory of the vehicle.   In the case of the unguided Hawk missile studied i
flight dynamics example, the forces are the gravitational force, propulsion, and aerodynam
forces.  The assumptions and parameters for these forces during the flight of the missile ar
in Appendix C.

A.4   Rotational Equations of Motion

The rotational equations of motion for rigid body (6DOF) dynamics are derived by no
that the rate of change of the angular momentum of the body is equal to the sum of the mo
acting on it:

F∑ a
I

ωE

td
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(EQ A-6)

The angular momentum is given by

(EQ A-7)

where  is the inertia tensor and  is the angular velocity of the vehicle in the inertial refer-
ence frame. 

Transforming the derivative in (EQ A-6) to the body-fixed coordinate system using (EQ 
A-2) and assuming a constant mass, one can obtain:

(EQ A-8)

This equation relates the total moment acting on the vehicle to the angular acceleration of the 
vehicle in the body-fixed coordinate system.  The total moment acting on the vehicle is composed 
of the aerodynamic moment and the propulsive moment.  Details of the assumptions and parame-
ters for computing these moments as a function of flight conditions are given in Appendix C.

(EQ A-8) is a set of coupled, first-order differential equations which are linear in , , 
and . Therefore this equation can be rewritten in the standard form  as follows:

(EQ A-9)

The angular acceleration obtained from solving (EQ A-9) can be integrated to give the 
angular velocity in the inertial (ECIC) reference frame. 

In order to fully define the state of the vehicle in the 6DOF model, we also need equations 
describing its angular orientation.  The vehicle’s orientation with respect to the inertial fram
described by the coordinate transformation matrix, , between the ECIC reference fram
the body-fixed reference frame.  Let the elements of this matrix be denoted as :
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(EQ A-10)

The elements of the transformation matrix can be thought of as unit vectors defining the 
body coordinate system in terms of the inertial ECIC frame. Therefore,

(EQ A-11)

 The tranformation is orthogonal and so we can express the inertial unit vectors in terms of 
the body unit vectors as:

(EQ A-12)

The inertial unit vectors do not change with time so differentiating them with respect to 
time and setting the result equal to zero yields equations giving the rate of change of the body unit 
vectors in terms of the transformation components and the angular velocity.  (EQ A-2) has again 
been applied to carry out the derivative in the (rotating) body -fixed coordinate system. The 
resulting equations, called Poisson’s kinematical equations, are:

(EQ A-13)

(EQ A-14)
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(EQ A-15)

Given the initial orientation of the vehicle and the angular velocity as a function of time, 
these first-order differential equations can be integrated to give the orientation of the vehicle as a 
function of time.

A.5  The State Vector

The trajectory of the vehicle is defined by its state vector, which is a function of time.  For 
a point mass trajectory, the state vector is composed of the instantaneous position and velocity of 
the vehicle:

(EQ A-16)

C
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V
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z
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= =
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For rigid body trajectories, the state vector is the position and velocity of the center-of-
mass of the vehicle plus the angular orientation and angular velocity.  It is given by:

(EQ A-17)

The equations of motion derived in the previous sections can be expressed as a set of cou-
pled first-order differential equations.  For the point mass trajectories, the equations are:

(EQ A-18)
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where , , and  are the x-, y-, and z- components of the acceleration, respectively.  Expressions 
for , , and  can be obtained from the x-, y-, and z- components of  (EQ A-3) as follows:

(EQ A-19)

In our calculations, we assume a non-rotating Earth: . Under this assumption, (EQ A-19) 
simplifies to

(EQ A-20)
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For rigid body trajectories, the coupled equations are:

(EQ A-21)

The first six elements of the derivative vector are the same as those for the point mass tra-
jectory.  The derivatives , , and , are obtained by solving (EQ A-9). The transformation 
matrix derivatives  are obtained from (EQ A-13) - (EQ A-15).  

The trajectory of the missile for the 3DOF model or the 6DOF model is obtained by inte-
grating the appropriate set of coupled equations to obtain the state vector as a function of time. 
Details of the numerical integration procedure used for the flight dynamics example are given in 
Appendix B.
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 Appendix B: Numerical Integration Procedure

In Appendix A, we derived the equations of motion for both a 3DOF model and a 6DOF 
model of vehicle flight dynamics. These equations of motion were solved for the air-to-ground 
missile flight dynamics example using the Trajectory Analysis and Optimization Software 
(TAOS).91 In this Appendix, we discuss the numerical procedures used to solve the equations of 
motion and review how various numerical effects were quantified in the final results.

B.1  The Augmented State Vector

In Appendix A, the equations of motion were written in terms of the state vector of the 
missile. For a point mass trajectory, the state vector is composed of the instantaneous position and 
velocity of the missile. For a rigid body trajectory, the state vector is composed of the position and 
velocity of the center-of-mass of the vehicle plus its angular orientation and angular velocity. 
TAOS augments these nominal state vectors with three additional variables: the mass of the vehi-
cle, the flight path length, and the ground range. The mass is added to the state vectors so that 
variable mass vehicles can be modeled. The path length and ground range are key outputs associ-
ated with the trajectory that require integration to compute and, therefore, are included as part of 
the state vector.

Thus, the augmented state vector for a point mass trajectory is 

(EQ B-1)

where x, y, and z are the components of the position vector; , , and  are the components of the 
velocity vector; m is the mass; r is the path length; and rS is the ground range. 

 The augmented state vector for a rigid body trajectory is given by:
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 (EQ B-2)

where x, y, z, , , , m, r, and rS were previously defined; ωx, ωy,  and ωz are the components of 
the angular velocity vector, and the Cij define the orientation of the vehicle with respect to the 
ECIC (Earth-Centered, Inertial Coordinate System) reference frame. 

The state vector is computed numerically by integrating with respect to time a set of first-
order, coupled differential equations for the state vector. For the point mass trajectories, the equa-
tions are:
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(EQ B-3)

where

(EQ B-4)

The mass flow rate, , is an input to the problem;  is the magnitude of the velocity; and  
is the ground speed. Recall from Appendix A that the simplified equations in (EQ B-4) result 
from the assumption of a non-rotating Earth.  (EQ B-3) is a system of nine, first-order, nonlinear 
differential equations.

For rigid body trajectories, the coupled equations are:
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(EQ B-5)

The first six and last three elements of the 6DOF derivative vector are the same as those 
for the point mass trajectory. The derivatives , , and  are obtained from solving (EQ A-
9). The transformation matrix derivatives  are obtained from (EQ A-13)-(EQ A-15).  (EQ B-5) 
is a system of twenty-one, first order nonlinear differential equations.

As we saw in Appendix A, (EQ A-9) is a system of linear equations which can be written 
in the standard matrix notation. The equations are generally well-behaved and are solved using 
Gaussian elimination at each derivative evaluation. 
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B.2  Runge-Kutta Integration

Given an initial state vector , numerical integration techniques will compute a new 
state vector at time . TAOS uses an embedded Runge-Kutta-Fehlberg technique to do the 
integration.89 A Runge-Kutta method estimates the function to be integrated at specified points 
forward in time and combines these function evaluations to match the lower-order terms in a Tay-
lor series expansion for the solution. It is possible to find function evaluation points which can be 
combined with different coefficients to yield different order of accuracy estimates for the solution. 
These combinations of evaluation points and coefficients make up the class known as “em
ded” Runge-Kutta integrators. The advantage to this approach is that the difference in estim
for the solution given by the different order methods can be used to estimate the magnitude
integration error. This estimate can then be used to ensure that each time step taken meets
fied per-step truncation error criterion. The per-step integration error estimate can also be u
estimate an optimum value for the next time step.

The state vector is integrated using a fifth-order accurate formula with coefficients fo
by Cash and Karp:90

(EQ B-6)

where

(EQ B-7)

The term  shows that the numerical integration error is of the order . The coeffic
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The “embedded” fourth-order formula is:

(EQ B-8)

where 

The fourth-order and fifth-order accurate solutions can be used to estimate a relative, per-s
truncation error, . The elements of  are the relative, per-step truncation error of each 
dent variable in the system of equations to be integrated:

(EQ B-9)

where  for the 3DOF model and  for the 6DOF model.

The next three sections discuss how this estimate of integration error at each step is
to control the integration error and estimate the next time step.

B.3  Requirement to Satisfy Relative Error Criterion for all Variables

In order to accept a given time step, , the integrator requires that each element o
error vector defined in (EQ B-9) be less than a user-defined relative, per-step truncation err
That is, for a step to be accepted, the following equations must be satisfied for the 3DOF a
6DOF equations of motion: 
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(EQ B-10)

If one or more elements of the error vector do not meet the error criterion, the time step is 
rejected and a new time step is estimated as described in Section B.5 below.

One implication of applying the relative error criterion to each component of the error 
vector is that variables that have rapidly changing derivatives (oscillatory functions) or no deriva-
tive at all (step functions) tend to dominate the determination of the step size. 

B.4  Switching from Relative Error to Absolute Error

(EQ B-9) will not be usable when a component of the state vector is very near the floating-
point zero of the computer. Therefore, one must switch from the relative error criterion to an abso-
lute error criterion for this case. In TAOS, the per-step truncation error estimate is modified from 
that in (EQ B-9) as follows:

. (EQ B-11)

 are non-zero scale factors for each component of the state vector. For a given state variable, 
, the scale factor is given by: 

(EQ B-12)

where limit Si is the limiting value for each component in the state vector. The limiting value is the 
point at which the error criterion switches from a relative criterion to an absolute criterion. The 
limiting values for each state variable are given in Table .

Note that the limiting values given in Table  differ from those in Ref. 91. The values given 
above are correct for the version of TAOS used to perform the calculations described in this 
report. The limiting values for the elements of  were later changed to  as described in 
Reference 91.

B.5  Estimating the next ∆t

If the per-step truncation error using (EQ B-9) or (EQ B-11) exceeds the specified error 
tolerance, , a smaller time step is attempted. The time step estimation algorithm is somewhat 
heuristic in nature and described elsewhere;89 therefore we will simply state the method used 
without further justification.

Let  be the estimated error in the state vector for a given time step, . Let  be 
the largest element of , i.e., the maximum relative error. The new attempted time step is com-
puted using:

∆Si Et< i 1 2 …9, ,= 3DOF( )

∆Si Et< i 1 2 …21, ,= 6DOF( )

∆Si

Si t ∆t+( ) S′i t ∆t+( )–

f
i
scale

---------------------------------------------------------=

f
i
scale

Si

f
i
scale Si( ) max Si limit Si,( )=

C 1
6–×10

Et

∆S ∆told ∆max
∆S
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(EQ B-13)

Table B-1
Limiting Values of State Variables

State Variable Limiting Value Comment

x 1.0 ft. 3DOF and 6DOF

y 1.0 ft. 3DOF and 6DOF

z 1.0 ft. 3DOF and 6DOF

0.01 ft./s 3DOF and 6DOF

0.01 ft/s 3DOF and 6DOF

0.01 ft/s 3DOF and 6DOF

 radians/s 6DOF only

 radians/s 6DOF only

 radians/s 6DOF only

6DOF only

6DOF only

6DOF only

6DOF only

6DOF only

6DOF only

6DOF only

6DOF only

6DOF only

m  slugs 3DOF and 6DOF

r  ft. 3DOF and 6DOF

rS  ft. 3DOF and 6DOF

∆tnew 0.90∆told
Et

∆max
-----------

0.25
=

x·

y·

z·

ωx 1
6–×10

ωy 1
6–×10

ωz 1
6–×10

C11 1
5–×10

C12 1
5–×10

C13 1
5–×10

C21 1
5–×10

C22 1
5–×10

C23 1
5–×10

C31 1
5–×10

C32 1
5–×10

C33 1
5–×10

1
6–×10

1
6–×10

1
6–×10
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This new attempted time step is a conservative estimate of a time step that should yield a 
per step truncation error that will satisfy the error criterion. Since the integration method is fifth-
order, small changes in time step can lead to very large changes in integration error. To provide a 
bound on the maximum reduction in the time step for a given attempted step, the new time step is 
constrained to satisfy:

 . (EQ B-14)

Similarly, after either the relative error or absolute error criterion is satisfied for each ele-
ment of the state vector, the size of the next time step is also estimated. The time step is based on 
how well the current time step has satisfied the required error criterion. The goal of the time step 
adjustment is to choose the next time step so that it is nearly as large as possible while still satisfy-
ing the error criterion. If the error criterion is easily satisfied, a larger time step will be attempted; 
if the error criterion is barely satisfied, the time step will change little. 

The estimate of the new time step is given by:

(EQ B-15)

Again, small changes in time step can lead to very large changes in integration error. To provide a 
bound on the maximum increase in the step size, it is constrained using:

 . (EQ B-16)

Generally, numerical integration methods also use a minimum time step to prevent the 
integrator from using exceedingly small time steps. This minimum time step value is an input 
parameter to the code. The invocation of the minimum time step implies that the per step trunca-
tion error exceeds the requested error criterion in at least one state variable. Since we wished to 
have tight control over the numerical solution error in the computations for the flight dynamics 
problem, we were careful to select a minimum time step smaller than that ever used by the inte-
grator. Our value was  s.

TAOS is programmed such that the initial time step attempted (i.e., at ) is  0.1 s. 
This arbitrary initial value for the time step has no effect on the solution accuracy because the 
solution accuracy is controlled by the per step truncation error criterion.

B.6  Print Interval Effects

It is generally desirable to have trajectory information at uniformly spaced intervals; the 
use of a variable step-size integrator therefore necessitates providing some method for estimating 
the state vector at uniform intervals based on the non-uniform steps actually taken by the integra-
tor. A common approach is to interpolate using the values of the state vector obtained from the 
integrator. This would cause a data representation error, in the terminology discussed in Sections 
3 and 4. TAOS takes an alternate approach that eliminates the interpolation error, but this 

∆tnew 0.1∆told≥

∆tnew 0.90∆told
Et

∆max
-----------

0.20
=

∆tnew 5∆told≤

1
8–×10

t 0=
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approach can affect the numerical integration process itself. Let us define the print interval as the 
(uniform) time interval for which the user wants state vector information. The essence of the 
approach used in TAOS is that the time step used by the integrator is adjusted so that the integra-
tor computes the value of the state vector at all of the print intervals. We describe the details of 
this approach and potential effects on the calculations below.

Suppose the integrator is at time t1 and the current time step, ∆t, has satisfied the per-step 
truncation error criterion. Suppose further that taking this time step would advance the integrator 
past the next print interval. TAOS will reduce the time step, ∆t, to a new value  such that the 
integrator will advance just to the print interval. The new reduced time step  will then be 
checked to ensure that it satisfies the per-step truncation error criterion. If the time step  satis-
fies the error criterion, the state vector will be computed and saved as an acceptable numerical 
integration step. Now the question is how to proceed with the integration from the print interval. 
Normally, the process of ensuring that the error criterion is satisfied results in a new recom-
mended time step according to the methods of Section B.5. Three options for proceeding are 
available:

1. Back up to t1 and proceed with the recommended time step , associated with the accept-
able time step, ∆t, that would have stepped over the print interval. While this method elimi-
nates any effects of the print interval on the numerical integration, it complicates the 
implementation of the integrator. As a result, this option was not implemented.

2. Proceed from the print interval with the recommended time step, , associated with the 
reduced time step . However,  is likely to be artificially small as a result of the time 
step reduction required to hit the print interval. This approach thus maximizes the effect of the 
print interval on the numerical integration and was also deemed unsatisfactory.

3. Proceed from the print interval with the recommended time step, , associated with the 
acceptable time step, ∆t, that would have stepped over the print interval. This approach keeps 
the implementation of the integrator relatively straightforward while minimizing the impact of 
the print interval on the numerical integration. This method is used in TAOS.

Occasionally we observed that the (reduced) time step, , required to land on the print 
interval failed to satisfy the per-step truncation error criterion. When this happened, the associated 
recommended new time step, referred to as  above, was used to re-initiate the process of 
finding an acceptable time step from time t1. 

In order to monitor the behavior of the integrator, TAOS provides the option to output the 
largest and smallest step size taken in each print interval. If these are equal to the print interval 
itself, the print interval is dominating the time step selection process and each time step has less 
error (by an indeterminate amount) than the error criterion suggests. While this is not a problem 
for most analyses, it was for most of the calculations in this report. As discussed in the body of 
this report, we wished to investigate the effect of numerical error and, therefore, we wanted to 
directly control the error. For the detailed trajectories described in Appendix D, we used a print 
interval of 0.005 s. in order to capture all of the details of the trajectories. This print interval dom-
inated the time step selection process for the 3DOF model most of the time, but did not dominate 

∆t′
∆t′

∆t′

∆tnew

∆t′new
∆t′ ∆t′new

∆tnew

∆t′

∆t′new
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the time step selection process in the 6DOF model. We were able to tolerate this for the detailed 
trajectories since the purpose of these runs was to illustrate the flight dynamics of the missile. 

For all of the runs discussed in the body of the report, we were only concerned with the 
final range. Therefore, we used a print interval larger than the length of the trajectory in order to 
be certain that the print interval was not affecting the results. 
 - B-11 -
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 Appendix C: Detailed Problem Description

C.1  Introduction

The initial conditions, environment specification, and vehicle properties for the flight 
dynamics example are given in this Appendix. The mass properties and aerodynamic force coeffi-
cients are given in either the body coordinate system or auxiliary body coordinate system as 
described in Appendix A. We provide a brief review of these two coordinate systems below.

The primary body coordinate system is shown in Figure C-1a. Note that this coordinate 
system has its origin at the center of mass with the x-axis oriented toward the front of the vehicle. 
Since the 3DOF model represents the vehicle as a point which is, by definition, the center of mass, 
this is the only body coordinate system used in the 3DOF model. The 6DOF model requires input 
about the location of the aerodynamic forces as well as their magnitude. It is convenient to define 
an auxiliary body coordinate system to simplify the input files. The auxiliary body coordinate sys-
tem has the same orientation as the primary body coordinate system, but is offset to some other 
convenient location. An auxiliary body coordinate system is shown in Figure C-1b. For our calcu-
lations, the origin of the auxiliary body coordinate system was located at the nose of the missile.

C.2  Initial Conditions

The flight dynamics example studied in this report is the flight of an unguided, rocket-
boosted, air-launched missile. For convenience, detailed missile characteristics were taken to be 
those of the Improved Hawk missile, since these were readily available.93 

Figure C-1 
Body Coordinate Systems91

(a) (b)
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stant 
Calculations were done using both a 6DOF model and a 3DOF model with TAOS (version 
98.7), the Trajectory Analysis and Optimization Software.91 This Appendix describes the input 
parameters required in TAOS.

We assume the launching aircraft is flying straight and level at an altitude of 30,000 ft. 
above mean sea level at the time of launch. We assume that the missile at launch is undisturbed 
due to the aricraft flow field or release from the aircraft.  Therefore, the missile is launched hori-
zontally, at zero angle of attack and zero sideslip angle, and with zero angular rates. The missile is 
launched due north along the Greenwich meridian from the Equator. The initial conditions for the 
missile launch are summarized in Table C-.

C.3  Environment Specification

We assume a spherical, non-rotating Earth with the Earth’s radius, gravitational con
and acceleration of gravity based on the U.S. Department of Defense World Geodetic System 1984 
values.96 The values are summarized in Table C-2.

The atmospheric properties are given by the 1976 U.S. Standard Atmosphere.92 It is 
assumed that there is no wind over the entire path of the trajectory.

Table C-1
Initial Conditions

Parameter Symbol Initial Value

altitude h 30,000 ft.

longitude δ 0.0o

latitude λ 0.0o

velocity v 700 ft./s

flight path angle γ 0.0o

heading angle ψ 0.0o

yaw Ψ 0.0o

pitch Θ 0.0o

roll Φ 0.0o

rate about body x-axis p 0.0 deg/s

rate about body y-axis q 0.0 deg/s

rate about body z-axis r 0.0 deg/s

mass m 42.86 slugs
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C.4  Propulsion 

The trajectory is split into two phases -- a boost phase and a coast phase. For the Improved 
Hawk rocket motor at nominal operating temperature, the boost phase lasts for 24.9 seconds. The 
propulsion properties used to characterize this phase are a static thrust profile and a mass flow 
rate. The actual thrust experienced in flight is calculated from the static thrust under vacuum con-
ditions, tvac, minus the atmospheric pressure, p, acting on the exhaust nozzle of the motor. This 
gives the equation for the net thrust:

(EQ C-1)

As noted in the body of the report, we considered the effects of uncertainty in the initial 
temperature of the motor. In addition to a nominal motor temperature, we considered flight with a 
hot motor and a cold motor, corresponding to the highest operational temperature allowed by the 
manufacturer and the lowest operational temperature allowed by the manufacturer, respectively. 
To be representative of thrust uncertainty in actual motors, we used changes in performance that 
have been experimentally measured for the Standard Hawk motor.95 At the highest allowed tem-
perature of 120o F, the total impulse of the motor is 2% above nominal performance while the 
burn time is 7% shorter. At the lowest allowed temperature of -20o F, the total impulse is 2% 
below nominal and the burn time is 7% longer. To obtain input tables for the hot and cold motors, 
we adjusted the tabular values for the nominal motor as follows:

(EQ C-2)

(EQ C-3)

(EQ C-4)

(EQ C-5)

(EQ C-6)

(EQ C-7)

Table C-2
Earth Model Properties

Description Symbol Value

Earth radius reqtr 2.09256463255 x 107 ft

gravitational constant G 1.40764438125 x 1016 ft3/s2

acceleration of gravity g 32.1740485 ft/s2

thrust tvac 0.5248p–=

thot 0.93tnom=

tvac hot, 1.02tvac nom, 0.93⁄=

m· hot m· nom 0.93⁄=

tcold 1.07tnom=

tvac cold, 0.98tvac nom, 1.07⁄=

m· cold m· nom 1.07⁄=
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The static thrust and mass flow rate as a function of time for each of the three motor tem-
peratures are given in Table C-3.

The thrust data are plotted in Figure C-2. During the first five seconds, the thrust of the 
nominal motor varies in an oscillatory fashion near a nominal value of 19,000 lbs. The nominal 
thrust then drops rapidly to a value near 3,000 lbs. and remains near this lower level until finally 
tapering off between 22 and 24.9 seconds. Note that the thrust of the hot motor is higher and of 
shorter duration than that of the nominal motor while the thrust of the cold motor is lower and of 
longer duration.

The mass flow rate data are plotted in Figure C-3. The mass flow rate for the nominal tem-
perature motor oscillates near -2.2 slugs/s during the high thrust portion. It falls to a lower rate of 
-0.5 to -0.75 slugs/s at approximately 5 seconds and remains at this lower rate until finally taper-
ing off to zero between 21 and 24.9 seconds. The mass flow rate as a functon of time is, as would 
be expected, very similar to the thrust versus time. However, they are not simply different by a 
constant factor. One of the reasons for this is the efficiency of the nozzle is not constant during 
motor burn.

In the 6DOF model, the point at which the thrust acts must also be specified in order to 
allow proper calculation of moments. For our problem, the location was specified as (-14.46 ft, 
0.0 ft, 0.0 ft) in the auxiliary body coordinate system defined above (i.e., with the origin located at 
the nose of the missile). The point at which the thrust acts was assumed constant with time.  
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Table C-3
Thrust Data for Nominal,93 Cold, and Hot Motors

Nominal Motor Cold Motor Hot Motor

Time 
(s) (lb) (slugs/s)

Time 
(s) (lb) (slugs/s)

Time 
(s) (lb) (slugs/s)

0.000 1110.6 0.000 0.000 1017.19 0.000 0.000 1218.08 0.000

0.001 20525.9 -2.306 0.00107 18799.4 -2.15514 0.00093 22512.3 -2.47957

0.200 19696.5 -2.208 0.214 18039.8 -2.06355 0.186 21602.6 -2.37419

0.400 18867.2 -2.109 0.428 17280.2 -1.97103 0.372 20693.1 -2.26774

0.600 18379.6 -2.030 0.642 16833.7 -1.8972 0.558 20158.3 -2.1828

0.800 18331.3 -2.045 0.856 16789.4 -1.91121 0.744 20105.3 -2.19892

1.000 18574.6 -2.074 1.07  17012.3 -1.93832 0.93 20372.1 -2.23011

1.200 18932.2 -2.117 1.284 17339.8 -1.9785 1.116 20764.3 -2.27634

1.400 19290.7 -2.159 1.498 17668.1 -2.01776 1.302 21157.5 -2.32151

1.600 19648.3 -2.202 1.712  17995.6 -2.05794 1.488 21549.7 -2.36774

1.800 19867.9 -2.228 1.926  18196.8 -2.08224 1.674 21790.6 -2.3957

 2.000 19671.9 -2.205 2.14  18017.3 -2.06075 1.86 21575.6 -2.37097

 2.200 19258.2 -2.156 2.354  17638.4 -2.01495 2.046 21121.9 -2.31828 

 2.400 18843.5 -2.106 2.568  17258.5 -1.96822 2.232 20667.1 -2.26452

 2.600 18599.3 -2.077 2.782  17034.9 -1.94112 2.418 20399.2 -2.23333

2.800 18526.4 -2.069 2.996 16968.1 -1.93364 2.604 20319.3 -2.22473

 3.000 18452.5 -2.060 3.21  16900.4 -1.92523 2.79  20238.2  -2.21505

 3.200 18644.6 -2.083 3.424  17076.4 -1.94673 2.976  20448.9 - 2.23978

 3.400 18836.6 -2.105 3.638  17252.2 -1.96729 3.162  20659.5 -2.26344

 3.600 19027.7 -2.128 3.852  17427.2 -1.98879 3.348 20869.1 - 2.28817

3.800 19225.7 -2.152 4.066  17608.6 -2.01121 3.534  21086.3 - 2.31398

4.000 19428.6 -2.176 4.28  17794.4 -2.03364 3.72  21308.8  -2.33978

 4.200 19306.5 -2.161 4.494  17682.6 -2.01963 3.906  21174.9 - 2.32366

 4.400 15515.2 -1.711 4.708  14210.2 1.59907  4.092  17016.7  -1.83978

 4.600 11724.0 -1.261 4.922  10737.9 -1.1785  4.278  12858.6 -1.35591

4.800  8697.1 -0.901 5.136 7965.57 -0.842056  4.464 9538.75 -0.968817

 5.000 7965.2 -0.814 5.35  7295.23 -0.760748  4.65  8736.03 -0.875269

tvac m· tvac m· tvac m·
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 5.200 7233.3 -0.727 5.564  6624.89 -0.679439  4.836  7933.3  -0.78172

 5.400 6596.0 -0.652 5.778  6041.2 -0.609346  5.022  7234.32 -0.701075

 5.600 5957.8 -0.576 5.992  5456.68 -0.538318  5.208  6534.36 - 0.619355

5.800 5320.5 -0.500 6.206 4872.98 -0.46729  5.394 5835.39 -0.537634

 5.850 5160.9 -0.481 6.2595  4726.81 -0.449533  5.4405  5660.34 -0.51720

 6.000 4480.3 -0.520 6.42  4103.45 -0.485981  5.58  4913.88  0.55914

 6.200 3766.1 -0.567 6.634  3449.33 -0.529907 5.766  4130.56 -0.609677

 6.400 3533.7 -0.517 6.848  3236.47 -0.483178  5.952  3875.67  -0.555914

6.600 3304.2 -0.468 7.062 3026.28 -0.437383 6.138  3623.96 -0.503226

 6.800 3180.1 -0.442 7.276  2912.61 -0.413084  6.324  3487.85 -0.475269

 7.000 3159.4 -0.437 7.49  2893.66 -0.408411  6.51 3465.15 - 0.469892

 7.200 3138.7 -0.433 7.704  2874.7 -0.404673  6.696  3442.45 -0.465591

 7.400 3159.4 -0.437 7.918  2893.66 -0.408411  6.882  3465.15 -0.469892

8.000 3221.4 -0.451 8.56 2950.44 -0.421495 7.44  3533.15 -0.484946

 10.000 3402.7 -0.489  10.7 3116.49 -0.457009  9.3 3731.99 -0.525806

 12.000 3581.9 -0.528 12.84 3280.62 -0.493458  11.16 3928.54 -0.567742

 14.000 3763.2 -0.566 14.98 3446.67 -0.528972 13.02 4127.38 -0.608602

 16.000 3946.4 -0.606 17.12  3614.46 -0.566355  14.88  4328.31 -0.651613

 18.000 4131.6 -0.645 19.26 3784.08 -0.602804 16.74 4531.43 -0.693548

 20.000  4347.3 -0.691 21.4 3981.64 -0.645794 18.6 4768.01 -0.743011

 20.200  4369.9 -0.696 21.614 4002.34 -0.650467 18.786 4792.79 -0.748387

 21.000  4150.3 -0.649 22.47 3801.21 -0.606542 19.53 4551.94 -0.697849

 22.000 3369.2 -0.482 23.54  3085.81 -0.450467  20.46  3695.25  -0.51828

 23.000 1020.0 -0.214 24.61 934.206 -0.2 21.39  1118.71 -0.230108

 24.000  280.2 -0.056 25.68  256.632 -0.0523364  22.32  307.316 -0.0602151

 24.900  17.2 0.000 26.643  15.7533  0.000  23.157  18.8645  0.000

 99.000  17.2 0.000 105.93  15.7533  0.000  92.07  18.8645  0.000

Table C-3
Thrust Data for Nominal,93 Cold, and Hot Motors

Nominal Motor Cold Motor Hot Motor

Time 
(s) (lb) (slugs/s)

Time 
(s) (lb) (slugs/s)

Time 
(s) (lb) (slugs/s)

tvac m· tvac m· tvac m·
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Figure C-2 
Static Thrust in Vacuum
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C.5  Mass Properties

The change in the center-of-mass and the moments of inertia as fuel is consumed are mod-
eled as piecewise linear functions that are a function of the mass of the missile. The values used 
are given in Table C-4. Note that the initial mass of the missile is 42.86 slugs and as time 
increases, mass decreases. Also note that the location of the center of gravity, , is given in the 
auxiliary body coordinate system. The moments of inertia are taken about the center of mass. The 
products of inertia, also taken about the center of mass, are assumed to be zero:  , , 
and .  

Since no information was available concerning how the mass properties would vary with 
the temperature of the motor, we used the nominal values given in Table C-4 for all trajectories.

Figure C-3 
Mass Flow Rate
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C.6  Aerodynamic Forces and Moments

Aerodynamic forces and moments are forces and moments which act on a vehicle due to 
its motion through the atmosphere. They can be described in a coordinate system based on the 
body of the vehicle. 

C.6.1  Aerodynamic Forces

The aerodynamic forces are modeled with a nondimensional force coefficient vector as:

(EQ C-8)

where  is the aerodynamic force coefficient vector, q is the dynamic pressure, and Sref is a ref-
erence area. The dynamic pressure, , is the increase in pressure on a vehicle due to its motion 
through the atmosphere and is given by 

(EQ C-9)

where  is the density of the atmosphere and  is the magnitude of the wind-corrected velocity 
or airspeed. In our case,  is equal to  because there is no wind.

For small angles of attack and sideslip, the aerodynamic force can be approximated as lin-
ear with respect to angle of attack and sideslip. The functional form for the linearized aerody-
namic force coefficients in the body coordinate system is given by:

Table C-4
Mass Properties of the Missile93

Mass
(slugs)

Xcg

(ft)

Ixx

(slug-ft2)

Iyy

(slug-ft2)

Izz

(slug-ft2)

0.00  -9.021 7.097 884.3 884.3

22.75 -9.021 7.097 884.3 884.3

23.25 -9.051 7.267 884.9 884.9

32.36 -9.552 9.537 914.5 914.5

42.86 -9.847 10.667 934.3 934.3

99.99 -9.847 10.667 934.3 934.3

Faero CFqSref=

Cf
q

q 1
2
---ρVw

2
=

ρ Vw

Vw V
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(EQ C-10)

(EQ C-11)

(EQ C-12)

where α and β are the angle of attack and sideslip angle, respectively; p, q, and r are the compo-
nents of the angular velocity vector about the body  , , and  axes, respectively;  and  
are reference lengths; and  is the magnitude of the wind-corrected velocity. 

In this linearized aerodynamics approach, the aerodynamic force coefficients are assumed 
to be a function of Mach number only. However, the aerodynamic forces depend not only on the 
aerodynamic force coefficients, but also on the dynamic pressure, α, β, p, q, and r. The physical 
description of each of the aerodynamic force coefficients is:

Aerodynamic force coefficient along the x-axis for zero angle of attack 
and zero side slip.

Rate of change of the aerodynamic force coefficient along the x-axis 
with respect to the angle of attack.

Rate of change of the aerodynamic force coefficient along the x-axis 
with respect to the side slip angle.

Aerodynamic force coefficient along the y-axis for zero side slip angle, 
zero rate of change in the side slip angle, and zero angular rates about the 
x and z axes.

Rate of change of the aerodynamic force coefficient along the y-axis 
with respect to the angle of side slip.

Rate of change of the aerodynamic force coefficient along the y-axis 
with respect to the rate of change of angle of side slip.

Rate of change of the aerodynamic force coefficient along the y-axis 
with respect to the angular rate about the x-axis.

Rate of change of the aerodynamic force coefficient along the y-axis 
with respect to the angular rate about the z-axis.

Aerodynamic force coefficient along the z-axis for zero angle of attack 
and zero side slip.

Aerodynamic force coefficient along the z-axis for zero angle of attack,  
zero rate of change in the angle of attack, and zero angular rates about 
the x and y axes.

Rate of change of the aerodynamic force coefficient along the z-axis 
with respect to the rate of change of the angle of attack.
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 In our analysis we used the aerodynamic force coefficients for the Improved Hawk missile given 
in Table C-5. Note that for the assumed symmetric missile,  and . 

All other force coefficients, i.e., , , , , , , , and , were 
assumed to be zero.

Graphs of the aerodynamic force coefficients given in Table C-5 are shown in Figure C-4 
through Figure C-6. Because of the symmetry between the CY coefficients and the CZ coeffi-
cients, only graphs of the CY coefficients are provided. 

As shown in Figure C-4, the axial force coefficient is smaller in magnitude when the 
motor is on. The exhaust plume reduces the base drag of the missile and results in a lower axial 
force.

Rate of change of the aerodynamic force coefficient along the z-axis 
with respect to the angular rate about the x-axis.

Rate of change of the aerodynamic force coefficient along the z-axis 
with respect to the angular rate about the y-axis.

Table C-5
Aerodynamic Force Coefficients and Derivatives93

Mach 
Number (thrust on)

 

(thrust off) (1/deg) (1/deg) (1/deg) (1/deg)

0.00 -0.346 -0.483 -0.411 255.4 -0.411 255.4 

0.40 -0.346 -0.483 -0.411 255.4 -0.411 255.4 

0.70 -0.335 -0.470 -0.436 271.1 -0.436 271.1 

0.90 -0.357 -0.489 -0.456 283.1 -0.456 283.1

0.95 -0.389 -0.544 -0.464 301.6 -0.464 301.6

1.00 -0.415 -0.598 -0.482 313.4 -0.482 313.4 

1.05 -0.438 -0.648 -0.475 309.1 -0.475 309.1 

1.10 -0.448 -0.651 -0.480 312.4 -0.480 312.4 

1.20 -0.447 -0.640 -0.492 319.7 -0.492 319.7 

1.56 -0.386 -0.561 -0.422 295.5 -0.422 295.5

1.96 -0.361 -0.511 -0.352 246.6 -0.352 246.6 

2.44 -0.344 -0.504 -0.311 217.3 -0.311 217.3

5.00 -0.218 -0.274 -0.178 125.2 -0.178 125.2

CZp

CZq

CZα
CYβ

= CZq
CYr

=

CX CX
CYβ

CYr
CZα

CZq

CXα
CXβ

CY0
CY

β
·

CYp
CZ0

CZα·
CZp
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The reference area and lengths used for the Improved Hawk missile were as follows:

(EQ C-13)

(EQ C-14)

We have set the longitudinal and transverse reference lengths equal to the diameter of the missile. 
It may seem unusal to use the diameter for the reference length in the longitudinal direction rather 
than the length of the vehicle. The approach we used (EQ C-14) allows the static margin of the 
vehicle to be expressed directly in diameters of the vehicle (or calibers in some usage); this is a 
common approach for long vehicles.

Figure C-4 
Axial Force Coefficient

Sref 1.0690ft
2

=

lrefx
lrefy

1.16667= ft=

0 1 2 3 4 5
-0.70

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

 

 

 Thrust on
 Thrust off

C
x

Mach Number
- C-12 -



Figure C-5 
 as a Function of Mach Number.
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C.6.2  Aerodynamic Moments

As is typical of fin-stabilized missiles, the example missile is statically stable. That is, 
when the missile is perturbed in angle of attack or angle of sideslip, then the angle of sideslip and 
angle of attack tend to return to zero.

For the 3DOF model, the aerodynamic moments are not defined. However, for the 6DOF 
rigid body trajectory, the aerodynamic forces act through the center of pressure which is normally 
different than the center of mass. The location of the aerodynamic force must then be provided in 
order to compute the aerodynamic moment. Since, in general, the center of pressure moves during 
flight, the location of the center of pressure must either be given as a function of flight conditions 
or an alternative approach using a fixed reference point and an aerodynamic moment vector can 
be used. We selected the latter approach for the calculations in this report. 

The aerodynamic moment vector is given by:

Figure C-6 
 as a Function of Mach Number.CYr
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(EQ C-15)

where  is the aerodynamic moment coefficient vector;  is the appropriate reference 
length for the longitudinal and horizontal axes; and q and Sref were defined earlier. As noted in the 
last section, we have chosen to set .

In TAOS, the total aerodynamic moment is computed in the body coordinate system and is 
given by:

(EQ C-16)

(EQ C-17)

(EQ C-18)

where Cl, Cm, and Cn are the aerodynamic coefficients about the x, y, and z body axes, respec-
tively; , Sref, , , , , and  were previously defined; (xref, yref, zref) is the aerody-
namic reference point, and (xcg, ycg, zcg) is the center of mass. The aerodynamic reference point 
used for this missile was located at the nose of the missile.

The aerodynamic moment coefficients can be linearized just as the aerodynamic force 
coefficients were to yield:

(EQ C-19)

(EQ C-20)

(EQ C-21)

where  is the fin-cant angle, and α, β, p, q, r, , , and  are as defined earlier. In a fin-
stabilized missile, the fins are angled in order to induce a roll about the x-axis of the missile. The 
second term in (EQ C-19) is the roll moment coefficient due to the fins.
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=
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The physical description of each of the aerodynamic moment coefficients is:

In practice, it is difficult to separate  from  in measurements of the aerodynamic 
moment coefficients. As a result, it is common practice to model the effects from these two terms 

Roll moment coefficient for zero angle of attack, zero side slip, zero fin-
cant angle, and zero angular rates about the x and z axes.

Rate of change of the roll moment coefficient with respect to the cant of 
the fins.

Rate of change of the roll moment coefficient with respect to the angle of 
attack.

Rate of change of the roll moment coefficient with respect to the side 
slip angle.

Rate of change of the roll moment coefficient with respect to the angular 
rate about the x-axis.

Rate of change of the roll moment coefficient with respect to the angular 
rate about the z-axis.

Pitching moment coefficient for zero angle of attack, zero rate of change 
of angular attack, and zero angular rates about the x and y axes.

Rate of change of the pitching moment coefficient with respect to the 
angle of attack.

Rate of change of the pitching moment coefficient with respect to the 
rate of change in the angle of attack

Rate of change of the pitching moment coefficient with respect to the 
angular rate about the x-axis

Rate of change of the pitching moment coefficient with respect to the 
angular rate about the y-axis

Yawing moment coefficient  for zero side slip angle, zero rate of side slip 
angle, and zero angular rates about the x and z axes.

Rate of change of the yawing moment coefficient with respect to the side 
slip angle.

Rate of change of the yawing moment coefficient with respect to the rate 
of change in the side slip angle

Rate of change of the yawing moment coefficient with respect to the 
angular rate about the x-axis

Rate of change of the yawing moment coefficient with respect to the 
angular rate about the z-axis

Cl0

Clδ

Clα

Clβ

Clp

Clr

Cm0

Cmα

Cmα·

Cmp

Cmq

Cn0

Cnβ

Cn
β
·

Cnp

Cnr

Cmα·
Cmq
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using one term or the other, but not both. This effectively combines the two terms into a single 
term that depends on either  or , since  and  are similar, but not the same. In our analysis, 
we selected  and set the  term to zero. A similar difficulty arises in trying to separate  
from . In our analysis we used  and set the  term to zero.

 The aerodynamic moment coefficients for the Improved Hawk missile used in our analy-
sis are given in Table C-6 and Table C-7. Note that for the assumed symmetric missile, 

 and .

Table C-6
Linearized Aerodynamic Moment Coefficient Derivatives for Cl

93

Mach 
Number (1/deg) (1/deg)

Mach 
Number (1/deg) (1/deg)

0.00 0.3244 -45.69 1.80 0.4705 -66.32 

0.50 0.3244 -45.69 1.90 0.4705 -66.69 

0.75 0.3369 -47.53 2.00 0.4670 -66.32 

0.95 0.3493 -49.00 2.25 0.4563 -63.74

1.00 0.3529 -49.74 2.50 0.4367 -60.79

1.05 0.3547 -50.11 2.75 0.4135 -57.85 

1.10 0.3529 -49.74  3.00 0.3903  -54.90

1.15 0.3386 -49.37 3.25 0.3672  -52.32

1.20 0.2709 -44.21  3.50 0.3493  -49.37

1.25 0.2852 -38.69  3.75 0.3351  -47.16

1.30 0.3351 -44.21 4.00 0.3208 -44.95

1.40 0.3957 -56.00  4.50 0.2923  -41.27 

1.50 0.4367 -61.90 5.00 0.2691 -37.95

1.60 0.4563 -64.48  5.50 0.2495  -36.48

1.70 0.4670 -65.95

α· q α· q
Cmq

Cmα·
Cn

β
·

Cnr
Cnr

Cn
β
·

Cmα
C– nβ

= Cmq
Cnr

=

Clδ
Clp

Clδ
Clp
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The fins are canted at a 0.25 degree angle so  is multiplied by 0.25 before use as 
shown in (EQ C-20). The fin cant causes roll moment which results in a roll rate directly related to 
the speed of the missile.

All other moment coefficients, i.e., , , , , , , , , and , 
were assumed to be zero. Recall from the earlier discussion that the effects of  are included in 

 while the effects of  are included in .

Graphs of the aerodynamic moment coefficients given in Table C-6 and Table C-7 are 
shown in Figure C-7 through Figure C-10. Because of the symmetry between the Cm coefficients 
and the Cn coefficients, only graphs of the Cm coefficients are provided. 

Table C-7
Linearized Aerodynamic Moment Coefficients for Cm and Cn

93

Mach Number (1/deg) (1/deg) (1/deg) (1/deg)

0.00 -4.953 -1385.3 4.953 -1385.3 

0.40 -4.953 -1385.3 4.953 -1385.3 

0.70 -5.281 -1470.2 5.281 -1470.2 

0.90 -5.542 -1535.6 5.542 -1535.6 

0.95 -5.657 -1711.6 5.657 -1711.6

1.00 -5.882 -1778.8 5.882 -1778.8 

1.05 -5.847 -1754.4 5.847 -1754.4

1.10 -5.928 -1772.9 5.928 -1772.9

1.20 -5.680 -1814.2 5.680 -1814.2 

1.56 -4.817 -1804.3 4.817 -1804.3

1.96 -3.967 -1505.3 3.967 -1505.3 

2.44 -3.432 -1326.8 3.432 -1326.8 

5.00 -1.889 -767.6 1.889 -767.6

Cmα
Cmq

Cnβ
Cnr

Clδ
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Figure C-7 
 as a Function of Mach Number.
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Figure C-8 
 as a Function of Mach Number.
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Figure C-9 
 as a Function of Mach Number.
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Figure C-10 
 as a Function of Mach Number.
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 Appendix D: Detailed Discussion of Trajectories

D.1  Brief Description of the Problem

As described in detail in Appendix C, the flight dynamics example concerned the 
unguided flight of an air-launched missile. The missile is launched at 30,000 feet from an aircraft 
traveling straight and level at a speed of 700 ft./s. The missile has fins for flight stability and the 
generation of a roll rate, but no other lifting surfaces. The initial mass of the missile is 42.86 slugs 
and the thrust profile reflected a nominal motor temperature. In this section, we compare details 
of the trajectory for the 3DOF and 6DOF models for a single nominal trajectory. We refer to these 
two trajectories as the “baseline” trajectories. 

The key difference between the 3DOF model and the 6DOF model is that the former
accounts for translational motion of the center-of-mass of the missile while the latter accoun
both translational and rotational motion. As we shall see, effects of the rotational motion ar
apparent in many of the output variables.

D.2  A Word About the Generation of the Plots

The graphs illustrating the detailed trajectories were generated using the results of T
runs for both the 3DOF and 6DOF mathematical models. The 3DOF and 6DOF computatio
used identical print intervals of 0.005 seconds and identical per-step truncation error criteri

. These baseline trajectories are not identical to the trajectories discussed in 
body of this report, even though the same input parameters and initial conditions were used
calculations in the body of the report and those reported in this Appendix. The reason for th
discussed in Appendix B, is that the print interval needed here to illustrate the detailed mot
the missile affects the numerical integration very slightly. 

For each output variable discussed below, we graph the result for the 6DOF model. 
result for the 3DOF model is clearly distinct from that of the 6DOF model, we show both th
6DOF and 3DOF results on the same axis. If the 6DOF and 3DOF results are not distingui
when plotted on the same graph, we plot the 6DOF result on one graph and plot the differe
between the 6DOF and 3DOF results on a second graph. Since the total flight time is differ
between the two models, the difference is computed through the last point in time in comm
between the two trajectories.

D.3  Position as a Function of Time

Although calculations were performed in the Earth-centered, fixed coordinate (ECFC
system described in Appendix A, we choose to present the position of the missile using co
nates referenced to the Earth’s surface. The origin for this coordinate system is the launch p
the missile projected on to the Earth’s surface. For our flight dynamics example, this point i
intersection of the Equator and the Greenwich meridian. As shown in Figure D-1, the “Nort
axis is aligned with lines of constant longitude and the “East” axis is aligned with lines of con
latitude. The third axis points away from the center of the Earth and is the altitude of the m

Et 1
12–×10=
- D-1 -
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The altitude, shown in Figure D-2, decreases smoothly from the initial launch altitude of 
30,000 ft. The difference plot shows that the altitude is always higher for the 6DOF model than 
the 3DOF model at the same time from launch. As noted above, the 6DOF model accounts for 
angular motion of the missile and includes the orientation of the missile and appropriate moments 
of inertia. As we shall see below, the x-axis of the missile is not aligned with the velocity vector in 
the 6DOF model but exhibits a coupled interaction between the angle of attack, angle of side slip, 
roll angle, and the angular rates of each of these quantities. There is a small mean angle of attack, 
referred to as “yaw of repose” in flight dynamics, due to the curved trajectory of the missile
small angle of attack in the plane of the motion generates a small lift and the missile flies fu
in the 6DOF model than the 3DOF model. 

The North position, shown in Figure D-3, increases smoothly as a function of time. T
missile flies nearly 20 nm north before the trajectory ends. The graph of the difference betw
the 6DOF and 3DOF results shows that the missile in the 6DOF simulation has flown appro
mately 91 feet further north than that in the 3DOF simulation at the time the missile in the 3
simulation impacts the ground. The missile in the 6DOF simulation actually impacts the gro
nearly 244 feet further north because it flies for an additional 0.116 seconds. 

Figure D-1
East and North Distances91
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Figure D-2
Altitude as a Function of Time.
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Figure D-3
North Position as a Function of Time
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The East position, shown in Figure D-4, is dramatically different for the two models. The 
3DOF model shows no deflection of the trajectory from the longitudinal plane, while the 6DOF 
models shows a deflection of a few feet. Again the rotational motion of the missile is key in 
explaining this difference. As we shall see below, the missile rolls clockwise about its x-axis 
(looking toward the nose of the missile). The pitching of the missile about the (ECFC) y-axis 
changes the direction of the angular momentum vector. The trajectory of the missile is deflected 
out of the pitch plane to the right (looking in the direction of flight) due to conservation of total 
angular momentum. 

D.4  Velocity and Mach Number as a Function of Time

Now consider Figure D-5, a graph of the magnitude of the velocity vs. time. The velocity 
rises very rapidly during the first 5 seconds of the trajectory corresponding to the high initial 
thrust of the motor. The velocity rises more slowly between 5 seconds and 22.5 seconds corre-
sponding to the lower average thrust during this time. There is a very small discontinuity in slope 
visible at 24.9 seconds. This slope discontinuity can be seen more clearly in the graph of the dif-
ference in velocity between the 6DOF and 3DOF models. The difference plot shows additional 
discontinuities in slope at approximately 31 seconds, 35 seconds, and 40 seconds. 

Figure D-4
East Position as a Function of Time
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Figure D-5
Velocity as a Function of Time
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The Mach number, shown in Figure D-6, shows similar features. Recall that the Mach 
number is the ratio of the missile velocity to the speed of sound at the altitude of the missile. The 
peak Mach number attained is 3.73 and the impact Mach number is 1.35. The source of the slope 
discontinuities will be discussed in Section D.6 below.

Figure D-6
Mach Number as a Function of Time
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D.5  Thrust, Mass Flow Rate, and Weight

The thrust profile for a motor at nominal operating temperature is shown in Figure D-7. 
During the first 0.001 seconds, the thrust increases very sharply and then varies slightly near a 
nominal value of 19,000 lbs. The thrust then drops rapidly to a value near 3,000 lbs. and remains 
at this lower level until finally tapering off between 22 and 24.9 seconds. The difference plot 
shows that the thrust is slightly greater for the 6DOF model than the 3DOF model, with the differ-
ence rising smoothly from 0 at  until the thrust cut-off at 24.9 s. The slight difference in 
thrust (less than 2 lbs.) is due to the slight difference in altitude between the two trajectories we 
saw in Figure D-2. Recall that the thrust is given by 

(EQ 0-1)

where  is the static thrust in vacuum and  is the atmospheric pressure. The atmospheric pres-
sure is a function of altitude and increases as altitude decreases. As we saw above, the missile has 
a small lift in the 6DOF model that causes it to fly farther than it does in the 3DOF model. As a 
result, its altitude at any given time is slightly higher than that in the 3DOF model and therefore 
the thrust is larger.

The thrust is associated with a mass flow rate of the motor as the fuel is burned. The mass 
flow rate is given as a function of time as an input to the problem (see Section C.3). The graph 
shown in Figure D-8 shows that there is no difference in mass flow rate between the 6DOF and 
3DOF models, as expected. The mass flow rate is roughly proportional to the thrust of the motor, 
as can be seen by the inverted profile in Figure D-8 as compared with the thrust in Figure D-7.

t 0=

thrust tvac 0.5248p–=

tvac p
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Figure D-7
Thrust as a Function of Time
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Figure D-8
Mass Flow Rate as a Function of Time

0 10 20 30 40 50
-0.8

-0.4

0.0

0.4

0.8

 

 

dm
/d

t 6D
O

F
-d

m
/d

t 3D
O

F
 (

sl
ug

s/
s)

Time (s)

0 10 20 30 40 50
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

 

 

 

dm
/d

t (
sl

ug
s/

s)
- D-10 -



Figure D-9 shows the weight of the vehicle during the trajectory. The mass decreases at 
distinctly different rates during the motor operation: a high rate of decrease during the high thrust 
initial pulse, and a lower rate of decrease during the sustained pulse. Interestingly, there is a slight 
difference in the weight of the vehicle between the 6DOF and 3DOF models that occurs almost 
immediately in the trajectory, but does not change after that. Since both the initial mass and mass 
flow rate are the same in the two models it is surprising that there is a difference in the computed 
weight. 

We investigated this slight discrepancy between the two models and determined that it is 
an effect of the numerical integration error. The mass flow rate drops sharply from 0 at  to -
2.306 slugs/s at  and then changes slightly to -2.208 slugs/s at . (See Table 
C-3 in Appendix C.) This can be viewed as a discontinuity in the derivative of the mass flow rate 
at . As we saw in Section B.2, Runge-Kutta integration estimates the value of a func-
tion using evaluations of its derivative at selected points in the time step interval. Slight differ-
ences in the time step result in the use of different points for the derivative evaluations. The use of 
different evaluation points in turn leads to slightly different estimates for the value of the function. 
In particular, the estimate of the integral across a large discontinuity in derivative will be espe-
cially sensitive to the time step used. In the calculations for the flight dynamics example, the 
6DOF and 3DOF models use different time steps to cross 0.001 s. due to the differences in the 
physics captured by the models. The 6DOF and 3DOF simulations thus compute slightly different 
estimates for the mass after integrating across the discontinuity in the derivative of the mass flow 
rate at 0.001 s. The difference in mass is reflected in the difference in weight between the two 
computations. 

The magnitude of the difference can be related to the per-step relative error criterion. Each 
integration step must satisfy this error criterion. In the worst case, one simulation will overesti-
mate the integral across the discontinuity in the derivative of the mass flow rate by the allowed 
error while the other simulation will underestimate the value of the integral by the same amount. 
Therefore, the magnitude of the difference due to integrating across the discontinuity in the deriv-
ative of the mass flow rate is limited to twice the relative error criterion. The initial weight of the 
missile is 1379 lbs. The observed difference in weight should thus be less than 

. The difference shown in the lower graph in Figure D-9 is 
 and is indeed consistent with a numerical integration error. 

The mass flow rate does not have any other discontinuities of this magnitude in any other 
part of the trajectory and so there is essentially no additional accumulation of error. 

t 0=
t 0.001 s= t 0.002 s=

t 0.001 s=

2 1.0
12–×10 1379×× 2.758

9–×10=
1.2

9–×10 lbs
- D-11 -



Figure D-9
Missile Weight as a Function of Time
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D.6  Axial Force

The axial component of the aerodynamic force -- that is the component of the aerody-
namic force along the x-axis of the missile -- is negative and is related to the aerodynamic drag on 
the missile. However, they are not the same. The drag is the aerodynamic force acting in the oppo-
site direction of the total velocity of the missile. Only at zero angle of attack and zero side slip is 
the axial force equal to the drag force. 

Figure D-10 shows the graph of axial force as a function of time and the difference plot for 
the two models. The key features of the axial force coefficient are a dip at around 1 second, a sud-
den drop at 24.9 seconds, and the apparent discontinuities in the derivative of  at about 31 sec-
onds, 35 seconds, and 40 seconds. There are sharp changes in the difference plot that correspond 
to each of the features in the  curve. In order to better understand these features, let us consider 
the axial force coefficient as a function of Mach number as shown in Figure D-11 and the Mach 
number as a function of time as shown in Figure D-6. The graphs in Figure D-11 represent the 
input model for the axial force coefficient.   As discussed in Appendix C, the axial force is larger 
in magnitude when the thrust is off than when the thrust is on.

Initially, the thrust is on and the upper of the two  curves in Figure D-11 is used to com-
pute the trajectory for both the 6DOF and 3DOF model. As the Mach number climbs rapidly in 
the early part of the trajectory, we see that there should be a dip in  as the missile crosses Mach 
1. This occurs around 1 second for each trajectory, as seen in Figure D-10. 

At 24.9 seconds,  increases sharply in magnitude from approximately -0.30 to -0.42. 
This sharp increase is a result of switching from using the upper  curve, when the thrust is on, 
to using the lower  curve, when the thrust is off. It is well known that motor thrust alters the 
drag on a body in flight because of a change in the base pressure drag. Therefore, this discontinu-
ity in  models a real discontinuity in the physics.

The discontinuities in the derivative of  for times greater than 24.9 seconds (Figure D-
10) are a reflection of the piecewise linear representation of  as a function of Mach number 
used as an input to the model (Figure D-11). The Mach number is decreasing smoothly in this 
region (Figure D-6) and so any discontinuities in the derivative of  as a function of Mach num-
ber are also apparent in a plot of  as a function of time. We stress that these discontinuities in 
the derivative of  are a direct result of the input model for  and, unlike the discontinuity at 
24.9 seconds, are not the result of any real physics. 

The difference plot for  shows that the difference between the 6DOF and 3DOF models 
grows relatively smoothly between 0 and 24.9 seconds. This difference arises because the Mach 
number differs as a function of time in the two models. The difference in Mach number results in 
a difference in the lookup value of  at any given time. The difference in  grows as the differ-
ence in Mach number grows.
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Figure D-10
Axial Force Coefficient as a Function of Time
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At 24.9 seconds, there is a step discontinuity of about  in the difference plot for 
. The difference in the models to the left of the discontinuity is a result of using the upper curve 

(thrust on) in Figure D-11. The difference to the right of the discontinuity is a result of using the 
lower curve (thrust off). Note that in Figure D-11, the slope of the lower  curve is noticeably 
steeper than the upper curve when the Mach number is near 3.4, the approximate value of the 
Mach number when the thrust is switched off. A given difference in Mach number will therefore 
result in a larger difference in lookup values for  when determined using the lower curve than 
that computed using the upper curve. The magnitude of the discontinuity is thus due to the differ-
ence in slope between the two  curves combined with the slight difference in Mach number 
between the two models.

Similarly, the sharp changes in  at approximately 31 seconds, 35 seconds, and 40 sec-
onds shown in Figure D-10 are due to a combination of the piecewise-linear model of  as a 
function of Mach number and the difference in Mach number as a function of time for the 6DOF 
and 3DOF models. As the Mach number decreases for both models in this time period (Figure D-
6), different segments of the piecewise-linear model are used for looking up values of . Look-
ing at the curve of  vs. time, discontinuities in the slope can be seen at 31, 35, and 40 seconds. 

Figure D-11
Axial Force Coefficient as a Function of Mach Number
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These slope discontinuities correspond to Mach numbers of 2.44, 1.96, and 1.56, respectively, in 
the  vs. Mach number table (Table C-5 in Appendix C). The near discontinuities in  at 31, 
35, and 40 seconds are due to the differences in slope on each side of these table points, combined 
with the difference in time when the 6DOF and 3DOF models cross these table points.

We are now in a position to understand a certain feature observed earlier in the plots of 
velocity and Mach number (Figure D-5 and Figure D-6).  is related to the axial force and from 
Newton’s laws, we know that the axial acceleration of the body is related to the axial force. 
the velocity is the first integral of the acceleration, we might expect to see some effects in t
velocity from the features we have observed in . Specifically, a step discontinuity in  w
appear as a discontinuity in the derivative of the velocity (the relative magnitude of the disc
nuity will depend on the size of the step discontinuity in relation to the other forces acting in
same direction). Thus, the step discontinuity observed in  at 24.9 seconds results in the 
tinuity in derivative in the velocity at 24.9 seconds (Figure D-5). Discontinuities in the deriva
of  will not be apparent in the velocity since the integral of a piecewise linear function is 
smooth. The step discontinuities in the difference plot of  appear as discontinuities in the
ative in the difference plot of the velocity for each model. This explanation of features appli
the Mach number curve as well since the Mach number is simply a scaled velocity (Figure

D.7  Total Angle of Attack

In the 6DOF model, the angle between the x-axis of the missile, , and the wind-co
rected velocity vector is defined to be the total angle of attack of the missile (Figure D-12). 
that for our calculations, the winds were assumed to be zero so the wind-corrected velocity
is simply the velocity vector of the missile. The total angle of attack is always greater than 
equal to zero. The total angle of attack is defined to be zero in the 3DOF model.

The total angle of attack as a function of time is shown in Figure D-13. It shows sma
0.4 deg.), relatively high-frequency launch oscillations that damp down in the first several s

Figure D-12
Total Angle of Attack91
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rsects 
onds. These launch oscillations arise as the missile begins to pitch over after leaving the aircraft. 
There is a small mean total angle of attack that persists throughout the trajectory. The small mean 
total angle of attack results in a small lift that causes the missile to fly longer in the 6DOF simula-
tion than the 3DOF simulation, as discussed earlier.

D.8  Yaw, Pitch, and Roll Angles

The orientation of the missile is described by three Euler angles: yaw, pitch, and roll. A 
consistently defined set of yaw, pitch, and roll angles can be used to relate the orientation of the 
body axes to any of several coordinate systems. We chose to use the most common set, those 
relating the body orientation to the local geodetic horizon coordinate system with a yaw-pitch-roll 
sequence. Since we assumed a spherical Earth, the local geodetic horizon coordinate system 
(based on ellipsoidal geometry) is the same as the local geocentric horizon coordinate system 
(based on spherical geometry). As shown in Figure D-14, the origin of the local geocentric hori-
zon coordinate system is located at the vehicle’s center of mass. The position vector, indica

, is the vector from the center of the Earth to the vehicle’s center of mass. The z-axis is a
with  but points in the opposite direction, i.e., toward the center of the Earth. The x and y 
are in a plane perpendicular to  and tangent to the Earth’s surface at the point that  inte
the Earth’s surface, S. The x-axis points north and the y-axis points east.

Figure D-13
Total Angle of Attack as a Function of Mach Number
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The yaw, pitch, and roll are the set of Euler angles defining the transformation from the 
local geodetic horizon coordinate system to the body coordinate system. The set of transforma-
tions is described in detail in Ref. 91. Figure D-15 shows the yaw and pitch angles. The yaw 
angle, , is the angle between the geodetic x-axis and the projection of the body x-axis onto 
the x-y plane of the local geodetic horizon coordinate system. The pitch angle, , is the angle 
between the body x-axis and the x-y plane of the local geodetic horizon coordinate system with 
positive pitch measured from the x-y plane toward the negative z-axis of the geodetic system. The 
roll angle (not shown) is simply the rotation about the body x-axis required to align the y- and z-
axes of the body coordinate system with those of the geodetic system once the yaw and pitch rota-
tions are complete.

Figure D-14
Local Geocentric Horizon Coordinate System91
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 The yaw angle for the 6DOF model is shown in Figure D-16. The figure shows that the x-
axis of the missile oscillates to the left and right of this plane by up to 0.03 deg. It is primarily to 
the right of this plane, which is consistent with the missile flying eastward a few feet (Figure D-
4). The yaw angle in the 6DOF model shows oscillatory behavior with a time-varying envelope 
reflecting the complex, coupled angular motion of the missile. The yaw is defined to be zero in 
the 3DOF model. 

 The pitch angle for both the 6DOF and 3DOF models is shown in Figure D-17. In the 
3DOF model, the body x-axis is assumed to be aligned with the velocity vector and therefore the 
pitch angle can be computed using the velocity vector. In the 6DOF model, the body axes can be 
misaligned with the velocity vector and the pitch reflects the angle of the body axes. For both 
models, the pitch angle shows a smooth decrease as a function of time, corresponding to the mis-
sile pitching over from horizontal as it falls to Earth. In the 6DOF model, there is a a small oscil-
lation on top of this pitching motion. This can be seen more clearly in the difference graph 
between the 6DOF and 3DOF models. Since the 3DOF pitch angle must be aligned with the 
velocity vector, the difference graph shows the angle above and below the velocity vector in the 
vertical north-south plane. The mean angle of the pitch oscillation is positive. This is the angle 
that directly contributes to the lift on the missile, resulting in a somewhat longer range for the 
6DOF model.

Figure D-15
Geodetic Yaw and Pitch Angles91
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Figure D-16
Yaw Angle as a Function of Time
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Figure D-17
Pitch Angle as a Function of Time
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The roll angle for the 6DOF model is shown in Figure D-18. Although the roll angle 
appears to oscillate, the missile actually rolls continuously in a clockwise direction (looking in the 
direction of flight) throughout the entire trajectory. The calculation of the roll angle requires it to 
be between -180 and 180 degrees and thus there are repeated step discontinuities between 180 and 
-180 degrees in the plot. Note that the roll angle is undefined in the 3DOF model. 

D.9  Roll Rate

The angular rate around the x-axis in the body coordinate system, or roll rate, is shown in 
Figure D-19. The roll rate is undefined in the 3DOF model. For the 6DOF model, the plot shows 
the roll rate of the missile grows rapidly from 0 at launch, peaking at about 680 deg/sec, and 
decreasing to about 270 deg/sec at the end of trajectory. The roll rate is generated by the fixed 
deflection of each of the four fins. The deflection generates a roll torque that is proportional to the 
square of the missile velocity. As a result, it can be seen that Figure D-19 is very similar to the 
velocity as a function of time (Figure D-5). 

Figure D-18
Roll Angle as a Function of Time
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D.10  Numerical Integration Time Steps

To provide an improved understanding of the numerical integration and its associated 
error, this section discusses the minimum and maximum time steps used during each print interval 
in the trajectory calculations. Figure D-20 shows plots of the largest time step, , taken in 
each print interval as a function of time. Figure D-21 shows plots of the smallest time step, , 
taken in each print interval as a function of time. In both figures, the top graph is a linear scale and 
the bottom graph is logarithmic in the dependent variable. 

The two sets of figures share several interesting features. First, it is clear that the time step 
used in the 3DOF calculation was very often equal to the print interval, 0.005 s. As explained in 
Appendix B, this means that the time step needed to satisfy the per-step truncation error criterion 
is larger than the print interval. The 3DOF calculation therefore has a higher, but unknown, accu-
racy than that specified by the error criterion.

Figure D-19
Angular Rate About the Body X-Axis
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Figure D-20
Maximum Time Step as a Function of Time
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Figure D-21
Minimum Time Step as a Function of Time
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Second, the time step used by the 3DOF calculation dropped by a factor of 5-10 at a small 
number of points. These points generally correspond to a time at which the Mach number is equal 
to one of the values occurring in the input tables for the aerodynamic force coefficients. As dis-
cussed earlier, the aerodynamic force coefficients are modeled as piecewise linear functions of 
Mach number. When the Mach number crosses one of the values used in the tables, at least one of 
the aerodynamic forces has a discontinuity in slope. The discontinuity in slope forces the integra-
tor to use a smaller time step in order to satisfy the error criterion.

 Third, the time step used by the 6DOF model is generally more than a factor of 5 smaller 
than that used by the 3DOF model. The difference would be much larger if the time step used in 
the 3DOF calculation had not been constrained by the print interval. The reason for the difference 
is that many of the state variables in the 6DOF model exhibit periodic motion, while the state vari-
ables in the 3DOF model vary quite smoothly and do not exhibit periodic motion. The integrator 
is a fifth-order accurate method and can use relatively large time steps in the 3DOF calculation; 
the time step must be much smaller in the 6DOF model to accurately capture the periodic behav-
ior of all of the state variables.

The variables that exhibit periodic motion in the 6DOF model are those relating to the 
angular degrees of freedom. The state variables with the highest frequencies are the pitch rate and 
yaw rate. Both have frequencies of 1-2 Hz. As discussed in Appendix B, state variables that show 
oscillatory behavior may force the integrator to use shorter time steps in order to satisfy the per-
step truncation error criterion. The time steps used in the 6DOF calculation, typically near 0.001s, 
are much shorter than the period of the motion, 0.5s, because of the requirement to satisfy a very 
stringent error criterion, .

As a final point, note that the  is always greater than the minimum time step  input 
parameter of s.

Et 1
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 Appendix E : Sample TAOS Files

TAOS takes two types of input file: problem files containing trajectory definition parame-
ters and table files containing tabular data such as thrust, mass flow, and aerodynamic coeffi-
cients. Sample input files representative of those used to perform the calculations in this report are 
given below.

Sample Problem File
#

(determine_error_settings)  # Problem to be solved

*title  Air-Launch Single-Stage Improved Hawk 

# Uncomment one of the two lines below to switch between 6DOF and 3DOF

# Applies to all of the trajectories and segments below

*sixdof

#*ptmass

*method rk45-var relerr = 1.0e-12 abserr = 1.0e-7  # Variable step RK-45 

                                                   # integrator.  Step size 

                                                   # determined by relerror

*atmos standard           # 1976 US Standard Atmosphere, U.S. 75 North, January

*earth spherical omega=0  # Spherical Earth, no rotation, gravitational const.

                          # and lbm to slug conversion factor default to 

                          # WGS-84 values

# No wind defined

# The missile trajectory

*trajectory  1  Improved-Hawk start on 1

  *initial      time=0.0      mass=42.86

     geodetic   alt=30000     long=0.0           lat=0.0

                vel=700       gama=0.0           psi=0.0   

                          # gamma = flight path angle (deg)

                  # psi = heading angle (deg)

                          # psi = 0 ==> heading due north initially

          # gama = 0 ==> initial velocity vector is horizontal

     geodetic   yaw=0.0       pitch=0.0          roll=0.0 # Not used in 3DOF
- E-1 -



     bodyi      p=0.0         q=0.0              r=0.0    # initial rates about

                                                          # the x, y, z axes. 

                                                          # Not used in 3DOF

  *segment  1  Boost 

    *integ  dtprnt=.0050   dtmin=1.e-8       # print interval and minimum dt 

                                             # for integration

    *aero  sref=1.0690   lrefx=1.16667   lrefy=1.16667  # ref area and lengths

                                                        # ref lengths for 6DOF

                                                        # only

           xref=0.0      yref=0.0        zref=0.0       # ref point is the nose

                                                        # 6DOF only

           #Linearized Aero Coefficients -- cyr and czq are 6 DOF only

           cx=(hawk_cx_on)      fcxon=1.0       fcxoff=1.0

           cybeta=(hawk_cyb)    cyr=(hawk_cyr)  fcyb=1.0  fcyr=1.0

           czalpha=(hawk_cza)   czq=(hawk_cza)  fcza=1.0  fczq=1.0

           #Linearized Aero Moment Coefficients -- 6DOF only

           cl=(hawk_cl)         clp=(hawk_clp)  fcl=1.0   fclp=1.0

           cmalpha=(hawk_cma)   cmq=(hawk_cmq)  fcma=1.0  fcmq=1.0

           cnbeta=(hawk_cnb)    cnr=(hawk_cnr)  fcnb=1.0  fcnr=1.0

    # No *fly block indicates alpha, betae, geocentric bank angle, 

    # and power setting are all set to zero in 3DOF mode.

    # No *limits block indicates no limits have been placed on body 

    # attitude angles in 3DOF

    *prop  x=-14.46       y=0.0       z=0.0        # Location used in 6DOF only

           tvc1=0.0       tvc2=0.0    fthr=1.0     fmdt=1.0    

                                              # tvc1 and tvc2 used in 6DOF only

           thrust=(hawk_thr)  mdot=(hawk_mdt)

    # Mass properties -- used in 6DOF only since aero coefficients are not 

    # a function of xcg.

    *mass  xcg=(hawk_xcg)   ycg=0.0          zcg=0.0

           fxcg=1.0         fixx=1.0         fiyy=1.0        fizz=1.0

           ixx=(hawk_ixx)   iyy=(hawk_iyy)   izz=(hawk_izz)

Sample Problem File
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           ixy=0.0          iyz=0.0          ixz=0.0

    *when  time>24.5  goto 2

  *segment  2  Coast 

    *integ  dtprnt=.0050   dtmin=1.e-8    # Want dtprint to be an even divisor

                                          # of 24.5 -- time at which thrust 

                                          # switches from on to off

    *aero  sref=1.0690          lrefx=1.16667   lrefy=1.16667

           xref=0.0             yref=0.0        zref=0.0

           cx=(hawk_cx_off)     fcxon=1.0       fcxoff=1.0

           cybeta=(hawk_cyb)    cyr=(hawk_cyr)  fcyb=1.0  fcyr=1.0

           czalpha=(hawk_cza)   czq=(hawk_cza)  fcza=1.0  fczq=1.0

           cl=(hawk_cl)         clp=(hawk_clp)  fcl=1.0   fclp=1.0

           cmalpha=(hawk_cma)   cmq=(hawk_cmq)  fcma=1.0  fcmq=1.0

           cnbeta=(hawk_cnb)    cnr=(hawk_cnr)  fcnb=1.0  fcnr=1.0

    *mass  xcg=(hawk_xcg)   ycg=0.0          zcg=0.0

           fxcg=1.0         fixx=1.0         fiyy=1.0        fizz=1.0

           ixx=(hawk_ixx)   iyy=(hawk_iyy)   izz=(hawk_izz)

           ixy=0.0          iyz=0.0          ixz=0.0

    *when  alt<0  stop

*units/fmt time    e22.15

   alt     e22.15                       # Set precision of output

          east   e22.15# to show 15 digits

   north   e22.15

   long    e22.15

           latgd   e22.15

   xecfc   e22.15

   yecfc   e22.15

           zecfc   e22.15

   vel     e22.15

   mach    e22.15

           xecfcdt e22.15

           yecfcdt e22.15

           zecfcdt e22.15

   gamgd   e22.15

Sample Problem File
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           psigd   e22.15

   p   e22.15

     q    e22.15

   r    e22.15

   yawgd   e22.15

   pitchgd e22.15

           rollgd  e22.15

           wt      e22.15

   mass    e22.15

           mdt     e22.15

   thrst   e22.15

   alphat  e22.15

           alpha   e22.15

           beta    e22.15

           cx      e22.15

           cy      e22.15

           cz      e22.15

   dynprs  e22.15

   plength e22.15

   range   e22.15     

   dtmin   e22.15

   dtmax   e22.15

# output desired data to a file.  These variables are common between 3DOF 

# and 6DOF

*file hawk6_9.dat

   time alt east north long latgd xecfc yecfc zecfc 

vel mach xecfcdt yecfcdt zecfcdt gamgd psigd 

p q r yawgd pitchgd rollgd

wt mass mdt thrst

alphat alpha beta cx cy cz dynprs 

    plength

range 

time dtmin dtmax

*end
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Sample Table File

#                                                                  

#   Aerodynamics => Improved Hawk (virtual rail configuration)

#

#   Ref:  L. Rollstin

#

#   Sref = 1.0690 ft**2

#   Lrefx = 1.16667 ft

#   Lrefy = 1.16667 ft

#

#   Xref = 0.0 ft (from nose)

#   Yref = 0.0 ft

#   Zref = 0.0 ft                                                              

#

#  Axial Force Coefficient - Coast

# --------------------------------

 

(hawk_cx_off)

table   aero_force

   start

      add   cx(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cx     =   0.483,    0.483,    0.470,    0.489,    0.544,

                    0.598,    0.648,    0.651,    0.640,    0.561,

                    0.511,    0.504,    0.274,

      neg

      mult  fcxoff

   end

#

#  Axial Force (cx) Power On
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# --------------------------

 

(hawk_cx_on)

table   aero_force

   start

      add   cx(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cx     =   0.346,    0.346,    0.335,    0.357,    0.389,

                    0.415,    0.438,    0.448,    0.447,    0.386,

                    0.361,    0.344,    0.218,

      neg

      mult fcxon

   end

#

#  Normal Force Coefficient Slope

# -------------------------------

 

(hawk_cza)

table   aero_force

   start

      add   cza(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cza    =  -0.411,   -0.411,   -0.436,   -0.456,   -0.464,

                   -0.482,   -0.475,   -0.480,   -0.492,   -0.422,

                   -0.352,   -0.311,   -0.178

      mult fcza

   end 
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#

#  Normal Force Damping

# ---------------------

 

(hawk_czq)

table   aero_force

   start

      add   czq(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         czq    =   255.4,    255.4,    271.1,    283.1,    301.6,

                    313.4,    309.1,    312.4,    319.7,    295.5,

                    246.6,    217.3,    125.2

      div  57.2958   # 180 degrees / pi radians

      mult fczq

   end 

#

#  Side Force Coefficient Slope

# -----------------------------

 

(hawk_cyb)

table   aero_force

   start

      add   cyb(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cyb    =  -0.411,   -0.411,   -0.436,   -0.456,   -0.464,

                   -0.482,   -0.475,   -0.480,   -0.492,   -0.422,
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                   -0.352,   -0.311,   -0.178

      mult fcyb

   end 

#

#  Side Force Damping

# -------------------

 

(hawk_cyr)

table   aero_force

   start

      add   cyr(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cyr    =   255.4,    255.4,    271.1,    283.1,    301.6,

                    313.4,    309.1,    312.4,    319.7,    295.5,

                    246.6,    217.3,    125.2

      div  57.2958

      mult fcyr

   end 

#

#  Pitching Moment Coefficient Slope

# ----------------------------------

 

(hawk_cma)

table   aero_moment

   start

      add   cma(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,
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                     1.96,     2.44,     5.00

         cma    =  -4.953,   -4.953,   -5.281,   -5.542,   -5.657,

                   -5.882,   -5.847,   -5.928,   -5.680,   -4.817,

                   -3.967,   -3.432,   -1.889

      mult fcma

   end

#

#  Pitching Moment Damping

# ------------------------

 

(hawk_cmq)

table   aero_moment

   start

      add   cmq(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cmq    = -1385.3,  -1385.3,  -1470.2,  -1535.6,  -1711.6,

                  -1778.8,  -1754.4,  -1772.9,  -1814.2,  -1804.3,

                  -1505.3,  -1326.8,   -767.6

      div  57.2958

      mult fcmq

   end

#

#  Yawing moment coefficient slope

# --------------------------------

 

(hawk_cnb)

table   aero_moment

   start
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      add   cnb(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cnb    =   4.953,    4.953,    5.281,    5.542,    5.657,

                    5.882,    5.847,    5.928,    5.680,    4.817,

                    3.967,    3.432,    1.889

      mult fcnb

   end

#

#  Yawing moment damping

# ----------------------

 

(hawk_cnr)

table   aero_moment

   start

      add   cnr(mach)

         mach   =    0.00,     0.40,     0.70,     0.90,     0.95,

                     1.00,     1.05,     1.10,     1.20,     1.56,

                     1.96,     2.44,     5.00

         cnr    = -1385.3,  -1385.3,  -1470.2,  -1535.6,  -1711.6,

                  -1778.8,  -1754.4,  -1772.9,  -1814.2,  -1804.3,

                  -1505.3,  -1326.8,   -767.6

      div  57.2958

      mult fcnr

   end

#

#  Rolling moment coefficient

# ---------------------------

 

(hawk_cl)
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table   aero_moment

   start

      add   cldel(mach)      #  cl-delta-fin-deflection

         mach   =    0.00,    0.50,    0.75,    0.95,    1.00,

                     1.05,    1.10,    1.15,    1.20,    1.25,

                     1.30,    1.40,    1.50,    1.60,    1.70,

                     1.80,    1.90,    2.00,    2.25,    2.50,

                     2.75,    3.00,    3.25,    3.50,    3.75,

                     4.00,    4.50,    5.00,    5.50

         cldel  =  0.3244,  0.3244,  0.3369,  0.3493,  0.3529,  

                   0.3547,  0.3529,  0.3386,  0.2709,  0.2852,  

                   0.3351,  0.3957,  0.4367,  0.4563,  0.4670,    

                   0.4705,  0.4705,  0.4670,  0.4563,  0.4367,  

                   0.4135,  0.3903,  0.3672,  0.3493,  0.3351,  

                   0.3208,  0.2923,  0.2691,  0.2495  

      mult  0.25  #  Fin deflection (deg)

      mult  fcl

   end

#

#  Rolling moment damping

# -----------------------

 

(hawk_clp)

table   aero_moment

   start

      add   clp(mach)

         mach   =     0.00,     0.50,     0.75,     0.95,     1.00,

                      1.05,     1.10,     1.15,     1.20,     1.25,

                      1.30,     1.40,     1.50,     1.60,     1.70,

                      1.80,     1.90,     2.00,     2.25,     2.50,

                      2.75,     3.00,     3.25,     3.50,     3.75,

                      4.00,     4.50,     5.00,     5.50
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         clp    =   -45.69,   -45.69,   -47.53,   -49.00,   -49.74,

                    -50.11,   -49.74,   -49.37,   -44.21,   -38.69,

                    -44.21,   -56.00,   -61.90,   -64.48,   -65.95,

                    -66.32,   -66.69,   -66.32,   -63.74,   -60.79,

                    -57.85,   -54.90,   -52.32,   -49.37,   -47.16,

                    -44.95,   -41.27,   -37.95,   -36.48

  

      div  57.2958

      mult fclp

   end

 

#                                                                  

#   Propulsion => Improved Hawk

#

#  Imp Hawk Thrust Curve from L. Rollstin, 1551

#  From Ameer file -- starts at t = 0 sec

#

(hawk_thr)

  table  thrust

  start

     sub  pres

     mult 0.5248

     add  tvac(time)

        time =   0.000,    0.001,    0.200,    0.400,    0.600,

                  0.800,    1.000,    1.200,    1.400,    1.600,

                  1.800,    2.000,    2.200,    2.400,    2.600,

                  2.800,    3.000,    3.200,    3.400,    3.600,

                  3.800,    4.000,    4.200,    4.400,    4.600,

                  4.800,    5.000,    5.200,    5.400,    5.600,

                  5.800,    5.850,    6.000,    6.200,    6.400,

                  6.600,    6.800,    7.000,    7.200,    7.400,

                  8.000,   10.000,   12.000,   14.000,   16.000,

                 18.000,   20.000,   20.200,   21.000,   22.000,

                 23.000,   24.000,   24.900,   99.000

        tvac  =  1110.6,  20525.9,  19696.5,  18867.2,  18379.6,

                18331.3,  18574.6,  18932.2,  19290.7,  19648.3,

                19867.9,  19671.9,  19258.2,  18843.5,  18599.3,
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                18526.4,  18452.5,  18644.6,  18836.6,  19027.7,

                19225.7,  19428.6,  19306.5,  15515.2,  11724.0,

                 8697.1,   7965.2,   7233.3,   6596.0,   5957.8,

                 5320.5,   5160.9,   4480.3,   3766.1,   3533.7,

                 3304.2,   3180.1,   3159.4,   3138.7,   3159.4,

                 3221.4,   3402.7,   3581.9,   3763.2,   3946.4,

                 4131.6,   4347.3,   4369.9,   4150.3,   3369.2,

                 1020.0,    280.2,     17.2,     17.2

     mult fthr

     min  0.0

  end

(hawk_mdt)

  table  mdot  units=slugs/sec

  start

     add  mdt(time)

        time =   0.000,    0.001,    0.200,    0.400,    0.600,

                  0.800,    1.000,    1.200,    1.400,    1.600,

                  1.800,    2.000,    2.200,    2.400,    2.600,

                  2.800,    3.000,    3.200,    3.400,    3.600,

                  3.800,    4.000,    4.200,    4.400,    4.600,

                  4.800,    5.000,    5.200,    5.400,    5.600,

                  5.800,    5.850,    6.000,    6.200,    6.400,

                  6.600,    6.800,    7.000,    7.200,    7.400,

                  8.000,   10.000,   12.000,   14.000,   16.000,

                 18.000,   20.000,   20.200,   21.000,   22.000,

                 23.000,   24.000,   24.900,   99.000

        mdt   =   0.000,    2.306,    2.208,    2.109,    2.030,

                  2.045,    2.074,    2.117,    2.159,    2.202,

                  2.228,    2.205,    2.156,    2.106,    2.077,

                  2.069,    2.060,    2.083,    2.105,    2.128,

                  2.152,    2.176,    2.161,    1.711,    1.261,

                  0.901,    0.814,    0.727,    0.652,    0.576,

                  0.500,    0.481,    0.520,    0.567,    0.517,

                  0.468,    0.442,    0.437,    0.433,    0.437,

                  0.451,    0.489,    0.528,    0.566,    0.606,

                  0.645,    0.691,    0.696,    0.649,    0.482,

                  0.214,    0.056,    0.000,    0.000

      mult fmdt
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   end

#

#   Mass Properties => Single-Stage Improved Hawk

#   (Winker Payload)

(hawk_xcg)

table   cg

   start

      add xcg(mass)

        mass    =  0.00,  22.75,  23.25,  32.36,  42.86,  99.99

        xcg     = -9.021, -9.021, -9.051, -9.552, -9.847, -9.847

      mult fxcg

   end

(hawk_ixx)

table   inertia

   start

      add ixx(mass)

        mass    =   0.00,  22.75,  23.25,  32.36,  42.86,  99.99

        ixx     =  7.097,  7.097,  7.267,  9.537, 10.667, 10.667

      mult fixx

   end

(hawk_iyy)

table   inertia

   start

      add iyy(mass)

        mass    =   0.00,  22.75,  23.25,  32.36,  42.86,  99.99

        iyy     =  884.3,  884.3,  884.9,  914.5,  934.3,  934.3

      mult fiyy

   end

(hawk_izz)

table   inertia

   start

      add izz(mass)

        mass    =   0.00,  22.75,  23.25,  32.36,  42.86,  99.99

        izz     =  884.3,  884.3,  884.9,  914.5,  934.3,  934.3

      mult fizz

   end
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1 MS 0827 9114 J. E. Johannes
3 MS 0825 9115 W. H. Rutledge
1 MS 0825 9115 M. A. McWherter-Payne
1 MS 0825 9115 K. Salari
1 MS 0825 9115 L. W. Young
1 MS 0836 9116 E. S. Hertel
1 MS 0836 9116 L. A. Gritzo
1 MS 0835 9121 J. S. Peery
1 MS 0555 9122 M. S. Garrett
1 MS 0847 9123 H. S. Morgan
1 MS 0847 9123 A. F. Fossum
1 MS 0847 9124 D. R. Martinez
3 MS 0847 9124 K. F. Alvin
1 MS 0847 9124 R. V. Field
1 MS 0557 9125 T. J. Baca
1 MS 0553 9126 R. A. May
1 MS 0827 9131 J. D. Zepper
1 MS 0828 9132 J. L. Moya
1 MS 0828 9132 K. V. Chavez
1 MS 0828 9132 T. Y. Chu
3 MS 0828 9133 M. Pilch
1 MS 0828 9133 R. S. Baty
1 MS 0828 9133 B. F. Blackwell
1 MS 0828 9133 K. J. Dowding
1 MS 0828 9133 A. R. Lopez
1 MS 0828 9133 K. E. Metzinger
25 MS 0828 9133 W. L. Oberkampf
1 MS 0828 9133 T. L. Paez
1 MS 0828 9133 C. Romero
1 MS 0828 9133 V. J. Romero
1 MS 0828 9133 A. Urbina
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1 MS 0828 9133 W. R. Witkowski
1 MS 1135 9134 D. B. Davis
1 MS 1135 9134 J. T. Nakos
1 MS 0321 9200 W. J. Camp
1 MS 0847 9211 M. S. Eldred
1 MS 0847 9211 J. R. Red-Horse
3 MS 0819 9211 T. G. Trucano
1 MS 1110 9222 D. E. Womble
1 MS 0847 9226 P. Knupp
1 MS 0820 9232 P. Yarrington
1 MS 0419 9800 R. G. Easterling
1 MS 0421 9814 J. M. Sjulin
1 MS 0423 9817 R. A. Paulsen
1 MS 0423 9817 S. E. Dingman
1 MS 9003 9900 D. L. Crawford
1 MS 0428 12000 D. D. Carlson
1 MS 0490 12331 J. A. Cooper
1 MS 0829 12323 F. W. Spencer
1 MS 0829 12323 M. L. Abate
3 MS 0829 12323 B. M. Rutherford
1 MS 0638 12326 D. E. Peercy
1 MS 0638 12326 D. L. Knirk
1 MS 0490 12331 P. E. D’Antonio
1 MS 0492 12332 D. R. Olson
1 MS 0405 12333 T. R. Jones
1 MS 0434 12334 R. J. Breeding
3 MS 0829 12335 K. V. Diegert
1 MS 1221 15002 R. D. Skocypec
1 MS 1179 15340 J. R. Lee
1 MS 0301 15400 J. L. McDowell
1 MS 9018 8940-2 Central Technical Files
2 MS 0899 9616 Technical Library
1 MS 0612 9612 Review & Approval Desk

For DOE/OSTI

- 155 -


	Table of Contents
	List of Figures
	1. Introduction
	2. Modeling and Simulation
	2.1 Review of the Literature
	2.2 Sources of Variability, Uncertainty, and Error
	2.3 Proposed Phases of Modeling and Simulation

	3. Weapon in a Fire Example
	3.1 Description of the Problem
	3.2 Conceptual Modeling Activities
	3.3 Mathematical Modeling Activities
	3.4 Discretization and Algorithm Selection Activities
	3.5 Computer Programming Activities
	3.6 Numerical Solution Activities
	3.7 Solution Representation Activities
	3.8 Summary Comments

	4. Missile Flight Example
	4.1 Description of the Problem
	4.2 Conceptual Modeling Activities
	4.3 Mathematical Modeling Activities
	4.4 Discretization and Algorithm Selection Activities
	4.5 Computer Programming Activities
	4.6 Numerical Solution Activities
	4.7 Solution Representation Activities
	4.8 Summary Comments

	5. Missile Flight Example Computational Results
	5.1 Effects of Mass Variability
	5.2 Effects of Thrust Uncertainty
	5.3 Effects of Numerical Integration Error
	5.4 Effects of Variability, Uncertainty, and Error
	5.5 Summary Comments

	6. Summary and Conclusions
	References
	Appendix A: Flight Dynamics Equations of Motion
	A.1 Introduction
	A.2 Coordinate Systems
	A.3 Translational Equations of Motion
	A.4 Rotational Equations of Motion
	A.5 The State Vector

	Appendix B: Numerical Integration Procedure
	B.1 The Augmented State Vector
	B.2 Runge-Kutta Integration
	B.3 Requirement to Satisfy Relative Error Criterion for all Variables
	B.4 Switching from Relative Error to Absolute Error
	B.5 Estimating the next Dt
	B.6 Print Interval Effects

	Appendix C: Detailed Problem Description
	C.1 Introduction
	C.2 Initial Conditions
	C.3 Environment Specification
	C.4 Propulsion
	C.5 Mass Properties
	C.6 Aerodynamic Forces and Moments

	Appendix D: Detailed Discussion of Trajectories
	D.1 Brief Description of the Problem
	D.2 A Word About the Generation of the Plots
	D.3 Position as a Function of Time
	D.4 Velocity and Mach Number as a Function of Time
	D.5 Thrust, Mass Flow Rate, and Weight
	D.6 Axial Force
	D.7 Total Angle of Attack
	D.8 Yaw, Pitch, and Roll Angles
	D.9 Roll Rate
	D.10 Numerical Integration Time Steps

	Appendix E : Sample TAOS Files
	Distribution

