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FAQs in Numerical Simulation

Example: Stanford ASC combustor calculation

• (Uncertainty) How accurately does a mathematical model describe

the true physics and what is the impact of model uncertainty

(structural or parametric) on outputs from the model?

• (Error Estimation) Given a mathematical model, how accurately is

a specified output approximated by a given numerical method?

• (Reliability) Given a mathematical model and numerical method,

can the error in numerical solutions and specified outputs be reliably

estimated and controlled by adapting resources?
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Uncertainty Quantification in Numerical
Simulation

• Sources of uncertainty in numerical simulation.

• A simple Burger’s equation example with 3 parametric sources of

uncertainty.

• Mars atmospheric reentry with 130 input parametric sources of

uncertainty.

• What can happen when sources of model uncertainty are not

adequately understood.

• Some standard approaches to uncertainty quantification

• Uncertainty lectures

– (Dr. Oberkampf) Uncertainty quantification using evidence

theory.

– (Prof. Ghanem) Error Budgets as a path from uncertainty to

model validation.
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Sources of Uncertainty in Simulation

Unfortunately, most numerical simulations of physical systems are rife

with sources of uncertainty. Some examples include

• Geometrical uncertainty (Is the geometry exactly known?)

• Initial and boundary data uncertainty (Are initial/boundary

conditions precisely known?)

• Structural uncertainty (Do the equations model the physics?)

– Turbulence models

– Combustion models

– Number of moments in moment closure approximations

• Parametric uncertainty (How accurate are model parameters?)

– Imperical equations of state and constitutive models

– Reaction rates and relaxation times

– Transport properties and catalycity
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Uncertainty Quantification Approaches

Apply statistical techniques directly to simulations

• Monte Carlo simulation and variants

• Stratefied sampling

• Latin hypercube sampling

• Response surface method

Recast a mathematical model of a physical process as a stochastic PDE

and solve using deterministic methods

• Perturbation expansion methods for random fields

• Stochastic operator expansions

• Polynomial Chaos methods (see Prof. Ghanem)

5



Simple Example: Burger’s Equation

Example: Modified Burger’s Equation

ut + f(u)x = ν uxx, (x, t) ∈ [0, 1]×R+

u(x, 0) = sin(2πx)

with 2-parameter flux

f(u) = c0 u+ (1 + c1)u2/2 .

Applet: http://science.nas.nasa.gov/∼barth/stanford workshop/PDE.hml
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Example: Mars Atmospheric Entry

Example: Aerothermal CFD analysis of Mars atmospheric entry.

Uncertainty Analysis of Laminar Aeroheating Prediction

for Mars Entries, Deepak Bose and Michael Wright (NASA

Ames RC), AIAA Paper 2005-4682, 2005.

• Uncertainty analysis for peak forebody heating predicted using the

DPLR CFD code

• 130 input parameters

• Monte Carlo sensitivity analysis used to “shortlist” important

parameters

• Full Monte Carlo uncertainty analysis on shortlisted parameters

• Presentation courtesy of Michael Wright, Code TSA, NASA Ames.
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Uncertainty Quantification Gone Awry

Congressional Budget Office (CBO) budget projections

CBO Budget Uncertainty Fan in 2000:

CBO Budget Uncertainty Fan in 2004:
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Error Estimation Lectures

• (Prof. Peraire) 2-sided error bounds and accuracy certificates

– Certifiably accurate computations

– Error control via adaptivity

• (Prof. Houston) FEM error estimation for functionals via duality

– Error representation for functionals J(u) via duality

– Weighted and unweighted error estimates

– Error control via adaptivity

• (Barth) Error estimation for finite volume methods

– Godunov finite volume methods rewritten as a Petrov-Galerkin

FE method.

– Applying standard error estimation techniques in the finite

volume setting
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Error Estimates for Functionals

Space-time hyperbolic PDE (p− = 1 at inflow and p+ = 0 at outflow):

Lu− f = 0, (interior)

p− (u− g) = 0, (initial/boundary data)

Weighted error estimates for functionals:

|J(u)− J(uh)| ≤
∑

K

|(rh, φ− πhφ)K |+
∑

∂K

〈jh, φ− πhφ〉∂K |

where

rh ≡ Luh − f (Element Residual)

jh ≡







p− [uh]+− (Interior Jump Residual)

p− (g − uh) (Boundary Jump Residual)

Unweighted error estimates for functionals:

|J(u)− J(uh)| ≤ CintCstab‖hsrh‖, s > 0
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Error Estimates via Duality

φ is solution of the infinite-dimensional dual problem. Suppose V is the

space of Hs functions and Vh ⊂ V a suitable finite-dimensional

approximation space.

Abstract FEM method with weakly imposed BCs:

(Finite-Dimensional Primal Problem) Find uh ∈ Vh such that

B(uh, v) = (f, v) , ∀v ∈ Vh

(Infinite-Dimensional Dual Problem) Find φ ∈ V such that

B(v, φ) = (ψ, v) = J(v) , ∀v ∈ V
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Assessing Computability

The dual solution and functional error estimates contain a wealth of

information concerning computability of outputs.

|J(u)− J(uh)| ≤
∑

K

|(rh, φ− πhφ)K |+
∑

∂K

〈jh, φ− πhφ〉∂K |

Clearly, the computability of outputs deteriorates as gradients of the

dual solution grow in space and/or time.

An extreme example is fluid turbulence where the prospect of controlling

pointwise errors deteriorates rapidly with increasing Reynolds number.
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Computability of Outputs

Example: Backward facing step (Re=2000)

d
1/2

 1

1

Suppose J(u) is the streamwise velocity component averaged in cube in

space and over a unit time interval, i.e.

J(u) =

∫ 10

9

∫

d×d×d
u1dx

3dt
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Computability Outputs

Hoffman and Johnson (2002) have computed solutions of the backward

facing step problem using a FEM method with linear elements for

incompressible flow.

In velocity and pressure variables, (V, p), the following error estimate for

functionals is readily obtained in terms of the dual solution (ψ, φ)

|J(V, p)− J(Vh, ph)| ≤ C‖ψ̇‖∆t r0(V, p)‖
+ C‖D2φ‖‖h2 r0(V, p)‖
+ C‖φ̇‖‖∆t r1(V, p)‖
+ C‖Dφ‖‖h r1(V, p)‖

where ri are element residuals.
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Computability Outputs

The following stability factors have been computed by Hoffman and

Johnson (2002) for the backward facing step problem:

d ‖ψ̇‖ ‖∇ψ‖ ‖∇φ‖ ‖φ̇‖

1/8 124.0 836.0 138.4 278.4

1/4 39.0 533.4 48.9 46.0

1/2 10.5 220.3 16.1 25.2

These results clearly show the deterioration in computability as the box

width is decreased.
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Concluding Remarks

• Due to the vast increases in computing power, it’s an exciting time

in scientific computation.

• The time is right to advance the state-of-the-art in scientific

computing to a new level.

• The ability to quantify uncertainty and numerical errors in large

scale computations is the missing piece of the puzzle.
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