# A Brief Overview of Uncertainty Quantification and Error Estimation in Numerical Simulation

#### Tim Barth

Exploration Systems Directorate
NASA Ames Research Center
Moffett Field, California 94035-1000 USA
Timothy.J.Barth@nasa.gov





# FAQs in Numerical Simulation



Example: Stanford ASC combustor calculation



- (Uncertainty) How accurately does a mathematical model describe the true physics and what is the impact of model uncertainty (structural or parametric) on outputs from the model?
- (Error Estimation) Given a mathematical model, how accurately is a specified output approximated by a given numerical method?
- (Reliability) Given a mathematical model and numerical method, can the error in numerical solutions and specified outputs be reliably estimated and controlled by adapting resources?



# Uncertainty Quantification in Numerical Simulation



- Sources of uncertainty in numerical simulation.
- A simple Burger's equation example with 3 parametric sources of uncertainty.
- Mars atmospheric reentry with 130 input parametric sources of uncertainty.
- What can happen when sources of model uncertainty are not adequately understood.
- Some standard approaches to uncertainty quantification
- Uncertainty lectures
  - (Dr. Oberkampf) Uncertainty quantification using evidence theory.
  - (Prof. Ghanem) Error Budgets as a path from uncertainty to model validation.



# Sources of Uncertainty in Simulation



Unfortunately, most numerical simulations of physical systems are rife with sources of uncertainty. Some examples include

- Geometrical uncertainty (Is the geometry exactly known?)
- Initial and boundary data uncertainty (Are initial/boundary conditions precisely known?)
- Structural uncertainty (Do the equations model the physics?)
  - Turbulence models
  - Combustion models
  - Number of moments in moment closure approximations
- Parametric uncertainty (How accurate are model parameters?)
  - Imperical equations of state and constitutive models
  - Reaction rates and relaxation times
  - Transport properties and catalycity



# Uncertainty Quantification Approaches



Apply statistical techniques directly to simulations

- Monte Carlo simulation and variants
- Stratefied sampling
- Latin hypercube sampling
- Response surface method

Recast a mathematical model of a physical process as a stochastic PDE and solve using deterministic methods

- Perturbation expansion methods for random fields
- Stochastic operator expansions
- Polynomial Chaos methods (see Prof. Ghanem)



# Simple Example: Burger's Equation



Example: Modified Burger's Equation

$$u_t + f(u)_x = \nu u_{xx}, \quad (x,t) \in [0,1] \times \mathbf{R}_+$$
  
$$u(x,0) = \sin(2\pi x)$$

with 2-parameter flux

$$f(u) = c_0 u + (1 + c_1) u^2 / 2$$
.

 $Applet: \ http://science.nas.nasa.gov/{\sim} barth/stanford\_workshop/PDE.hml$ 





# Example: Mars Atmospheric Entry



Example: Aerothermal CFD analysis of Mars atmospheric en

Uncertainty Analysis of Laminar Aeroheating Prediction for Mars Entries, Deepak Bose and Michael Wright (NASA Ames RC), AIAA Paper 2005-4682, 2005.



- Uncertainty analysis for peak forebody heating predicted using the DPLR CFD code
- 130 input parameters
- Monte Carlo sensitivity analysis used to "shortlist" important parameters
- Full Monte Carlo uncertainty analysis on shortlisted parameters
- Presentation courtesy of Michael Wright, Code TSA, NASA Ames.



# Range Based Sensitivity Analysis



### **Selected Input Parameters**

| Input category                                                 | Model                         | Paramete<br>r varied                 | No. of input<br>parameters | Variability for<br>sensitivity<br>analysis |
|----------------------------------------------------------------|-------------------------------|--------------------------------------|----------------------------|--------------------------------------------|
| Dissociation reaction rates                                    | $k = A_M T^n \exp(-D/T_a)$    | $A_{\scriptscriptstyle M}$           | 40                         | 1 order of magnitude                       |
| Exchange reaction rates                                        | $k = A T^{\eta} \exp(-D/T_a)$ | Α                                    | 7                          | 1 order of magnitude                       |
| Vibration-<br>dissociation<br>Coupling                         | $T_a = T^{\eta} T_V^{1-\eta}$ | η                                    | 5                          | ±0.15                                      |
| V- T Relaxation time                                           | Millikan and White            | slope                                | 40                         | ±10%                                       |
| Binary collision $\Omega^{1,1}, \Omega^{2,2} = Af(T)$ integral |                               | Α                                    | 36                         | ±30%                                       |
| Wall Catalysis                                                 |                               | $\gamma_{ m cat}$ , $oldsymbol{p}_2$ | 2                          | Entire range                               |
|                                                                | Total = 130                   |                                      |                            |                                            |



# **Uncertainty Estimates**



#### **Binary Collision Integrals**:

| Interaction                      | Uncertainty |
|----------------------------------|-------------|
| CO <sub>2</sub> -CO <sub>2</sub> | 20%         |
| CO <sub>2</sub> -CO              | 20%         |
| CO <sub>2</sub> -O               | 30%         |
| CO-O                             | 30%         |
| CO-CO                            | 20%         |
| 0-0                              | 5 %         |

Gaussian distribution

The uncertainty estimates are augmented by an additional 10% to account for non-ideal effects

#### Wall Catalycity:

| Parameter                             | Uncertainty           |  |
|---------------------------------------|-----------------------|--|
| $\gamma_{cat}$ (Highly catalytic)     | $10^{-1}$ - $10^{0}$  |  |
| $\gamma_{cat}$ (Moderately catalytic) | $10^{-3}$ - $10^{-1}$ |  |
| $\gamma_{cat}$ (Weakly catalytic)     | 10-4-10-3             |  |
| <b>p</b> <sub>2</sub>                 | $10^{-4} - 10^{0}$    |  |

Uniform distribution

#### **Chemical Reactions**:

| Reaction                           | Uncertainty |
|------------------------------------|-------------|
| $O_2 + O \Leftrightarrow 2O + O$   | ½ order     |
| $O_2 + CO \Leftrightarrow 2O + CO$ | ½ order     |

Gaussian distribution





# Uncertainty Quantification Gone Awry



Congressional Budget Office (CBO) budget projections

CBO Budget Uncertainty Fan in 2000:



CBO Budget Uncertainty Fan in 2004:





### **Error Estimation Lectures**



- (Prof. Peraire) 2-sided error bounds and accuracy certificates
  - Certifiably accurate computations
  - Error control via adaptivity
- (Prof. Houston) FEM error estimation for functionals via duality
  - Error representation for functionals J(u) via duality
  - Weighted and unweighted error estimates
  - Error control via adaptivity
- (Barth) Error estimation for finite volume methods
  - Godunov finite volume methods rewritten as a Petrov-Galerkin FE method.
  - Applying standard error estimation techniques in the finite volume setting





### Error Estimates for Functionals

Space-time hyperbolic PDE  $(p^- = 1 \text{ at inflow and } p^+ = 0 \text{ at outflow})$ :

$$\mathcal{L}u - f = 0$$
, (interior)  
 $p^{-}(u - g) = 0$ , (initial/boundary data)

Weighted error estimates for functionals:

$$|J(u) - J(u_h)| \le \sum_{K} |(r_h, \phi - \pi_h \phi)_K| + \sum_{\partial K} \langle j_h, \phi - \pi_h \phi \rangle_{\partial K}|$$

where

$$r_h \equiv \mathcal{L} u_h - f \quad \text{(Element Residual)}$$

$$j_h \equiv \begin{cases} p^- [u_h]_-^+ & \text{(Interior Jump Residual)} \\ p^- (g - u_h) & \text{(Boundary Jump Residual)} \end{cases}$$

Unweighted error estimates for functionals:

$$|J(u) - J(u_h)| \le C_{\text{int}} C_{\text{stab}} ||h^s r_h||, s > 0$$



# Error Estimates via Duality



 $\phi$  is solution of the infinite-dimensional dual problem. Suppose  $\mathcal{V}$  is the space of  $H^s$  functions and  $\mathcal{V}_h \subset \mathcal{V}$  a suitable finite-dimensional approximation space.

Abstract FEM method with weakly imposed BCs:

(Finite-Dimensional Primal Problem) Find  $u_h \in \mathcal{V}^h$  such that

$$B(u_h, v) = (f, v) , \quad \forall v \in \mathcal{V}_h$$

(Infinite-Dimensional Dual Problem) Find  $\phi \in \mathcal{V}$  such that

$$B(v,\phi) = (\psi,v) = J(v) , \quad \forall v \in \mathcal{V}$$



# **Assessing Computability**



The dual solution and functional error estimates contain a wealth of information concerning *computability* of outputs.

$$|J(u) - J(u_h)| \le \sum_{K} |(r_h, \phi - \pi_h \phi)_K| + \sum_{\partial K} \langle j_h, \phi - \pi_h \phi \rangle_{\partial K}|$$

Clearly, the computability of outputs deteriorates as gradients of the dual solution grow in space and/or time.

An extreme example is fluid turbulence where the prospect of controlling pointwise errors deteriorates rapidly with increasing Reynolds number.



## Computability of Outputs



Example: Backward facing step (Re=2000)



Suppose J(u) is the streamwise velocity component averaged in cube in space and over a unit time interval, i.e.

$$J(u) = \int_9^{10} \int_{d \times d \times d} u_1 dx^3 dt$$



# Computability Outputs



Hoffman and Johnson (2002) have computed solutions of the backward facing step problem using a FEM method with linear elements for incompressible flow.

In velocity and pressure variables, (V, p), the following error estimate for functionals is readily obtained in terms of the dual solution  $(\psi, \phi)$ 

$$|J(V,p) - J(V_h, p_h)| \leq C||\dot{\psi}||\Delta t \, r_0(V, p)|| + C||D^2 \phi|| ||h^2 \, r_0(V, p)|| + C||\dot{\phi}|| ||\Delta t \, r_1(V, p)|| + C||D \phi|| ||h \, r_1(V, p)||$$

where  $r_i$  are element residuals.



# **Computability Outputs**



The following stability factors have been computed by Hoffman and Johnson (2002) for the backward facing step problem:

| d   | $\ \dot{\psi}\ $ | $\ \nabla\psi\ $ | $\  abla\phi\ $ | $\ \dot{\phi}\ $ |
|-----|------------------|------------------|-----------------|------------------|
| 1/8 | 124.0            | 836.0            | 138.4           | 278.4            |
| 1/4 | 39.0             | 533.4            | 48.9            | 46.0             |
| 1/2 | 10.5             | 220.3            | 16.1            | 25.2             |

These results clearly show the deterioration in computability as the box width is decreased.



# **Concluding Remarks**



- Due to the vast increases in computing power, it's an exciting time in scientific computation.
- The time is right to advance the state-of-the-art in scientific computing to a new level.
- The ability to quantify uncertainty and numerical errors in large scale computations is *the* missing piece of the puzzle.