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1. Introduction

Water resources planners and managers work in an envi-
ronment of change and uncertainty. Water supplies are
always uncertain, if not in the short term at least in the
long term. Water demands and the multiple purposes
and services water provide are always changing, and
these changes cannot always be predicted. Many of the
values of parameters of models used to predict the multi-
ple hydrological, economic, environmental, ecological
and social impacts are also changing and uncertain.
Indeed models used to predict these impacts are, at least
in part, based on many imprecise assumptions. Planning
and managing, given this uncertainty, cannot be avoided.

To the extent that probabilities can be assigned to var-
ious uncertain inputs or parameter values, some of this
uncertainty can be incorporated into models. These mod-
els are called probabilistic or stochastic models. Most prob-
abilistic models provide a range of possible values for
each output variable along with their probabilities.
Stochastic models attempt to model the random processes
that occur over time, and provide alternative time series
of outputs along with their probabilities. In other cases,
sensitivity analyses (solving models under different
assumptions) can be carried out to estimate the impact of
any uncertainty on the decisions being considered. In
some situations, uncertainty may not significantly affect
the decisions that should be made. In other situations it
will. Sensitivity analyses can help estimate the extent to

231

Modelling Uncertainty

Decision–makers are increasingly willing to consider the uncertainty associated
with model predictions of the impacts of their possible decisions. Information on
uncertainty does not make decision–making easier, but to ignore it is to ignore
reality. Incorporating what is known about the uncertainty into input parameters
and variables used in optimization and simulation models can help in quantifying
the uncertainty in the resulting model predictions – the model output. This chapter
discusses and illustrates some approaches for doing this.

8

which we need to try to reduce that uncertainty. Model
sensitivity and uncertainty analysis is discussed in more
detail in Chapter 9.

This chapter introduces a number of approaches to
probabilistic optimization and simulation modelling.
Probabilistic models will be developed and applied to
some of the same water resources management problems
used to illustrate deterministic modelling in previous
chapters. They can be, and have been, applied to numer-
ous other water resources planning and management
problems as well. The purpose here, however, is simply to
illustrate some of the commonly used approaches to the
probabilistic modelling of water resources system design
and operating problems.

2. Generating Values From Known
Probability Distributions

Variables whose values cannot be predicted with certainty
are called random variables. Often, inputs to hydrological
simulation models are observed or synthetically generated
values of rainfall or streamflow. Other examples of such
random variables could be evaporation losses, point and
non-point source wastewater discharges, demands for
water, spot prices for energy that may impact the amount
of hydropower production, and so on. For random
processes that are stationary – that is, the statistical attrib-
utes of the process are not changing – and if there is 
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lower and upper limits is equally likely. Using Equation 8.2,
together with a series of uniformly distributed (all equally
likely) values of p* over the range from 0 to 1 (that is, along
the vertical axis of Figure 8.2), one can generate a corre-
sponding series of variable values, r*, associated with any
distribution. These random variable values will have a
cumulative distribution as shown in Figure 8.2, and hence
a density distribution as shown in Figure 8.1, regardless of
the types or shapes of those distributions. The mean,
variance and other moments of the distributions will be
maintained.

The mean and variance of continuous distributions are:

∫r fR(r)dr � E[R] (8.3)

∫(r � E[R])2 fR(r)dr � Var[R] (8.4)

The mean and variance of discrete distributions having
possible values denoted by ri with probabilities pi are:

(8.5)

(8.6)

If a time series of T random variable values, rt, from the
same stationary random variable, R, exists, then the serial
or autocorrelations of rt and rt�k in this time series for any
positive integer k can be estimated using:

ρ̂R(k)�

(8.7)
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Figure 8.1. Probability density distribution of a random 
variable R. The probability that R is less than or equal r* is p*.

Figure 8.2. Cumulative distribution function of a random
variable R showing the probability of any observed 
value of R being less than or equal to a given value r. 
The probability of an observed value of R being less than or
equal to r* is p*.

no serial correlation in the spatial or temporal sequence 
of observed values, then such random processes can be
characterized by single probability distributions. These
probability distributions are often based on past observa-
tions of the random variables. These observations or 
measurements are used either to define the probability
distribution itself or to estimate parameter values of an
assumed type of distribution.

Let R be a random variable whose probability density
distribution, fR(r), is as shown in Figure 8.1. This distri-
bution indicates the probability or likelihood of an
observed value of the random variable R being between
any two values of r on the horizontal axis. For example,
the probability of an observed value of R being between 0
and r* is p*, the shaded area to the left of r*. The entire
shaded area of a probability density distribution, such as
shown in Figure 8.1, is 1.

Integrating this function over r converts the density
function to a cumulative distribution function, FR(r*),
ranging from 0 to 1, as illustrated in Figure 8.2.

(8.1)

Given any value of p* from 0 to 1, one can find its corre-
sponding variable value r* from the inverse of the cumu-
lative distribution function.

FR
�1(p*) � r* (8.2)

From the distribution shown in Figure 8.1, it is obvious 
that the likelihood of different values of the random 
variable varies; ones in the vicinity of r* are much 
more likely to occur than are values at the tails of the
distribution. A uniform distribution is one that looks like a
rectangle; any value of the random variable between its

f r r R r F rR R
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The probability density and corresponding cumulative
probability distributions can be of any shape, not just
those named distributions commonly found in proba-
bility and statistics books.

The process of generating a time sequence t � 1, 2, …
of inputs, rt, from the probability distribution of a random
variable R where the lag 1 serial correlation, ρR(1) � ρ, is
to be preserved is a little more complex. The expected
value of the random variable Rt�1 depends on the
observed value, rt, of the random variable Rt, together
with the mean of the distribution, E[R], and the correla-
tion coefficient ρ. If there is no correlation (ρ is 0), then
the expected value of Rt�1 is the mean of the population,
E[R]. If there is perfect correlation (ρ is 1), then the
expected value of Rt�1 is rt. In general, the expected value
of Rt�1 given an observed value rt of Rt is:

(8.8)

The variance of the random variable Rt�1 depends on the
variance of the distribution, Var[R], and the lag 1 correla-
tion coefficient, ρ.

(8.9)

If there is perfect correlation (ρ � 1), then the process is
deterministic, there is no variance, and rt�1 � rt. The
value for rt�1 is rt. If there is no correlation – that is, serial
correlation does not exist (ρ � 0) – then the generated
value for rt�1 is its mean, E[R], plus some randomly gen-
erated deviation from a normal distribution having a mean
of 0 and a standard deviation of 1, denoted as N(0, 1). In
this case the value rt�1 is not dependent on rt.

When the serial correlation is more than 0 but less
than 1, then both the correlation and the standard devia-
tion (the square root of the variance) influence the value
of rt�1. A sequence of random variable values from a 
multivariate normal distribution that preserves the mean,
E[R]; overall variance, Var[R]; standard deviation σ, and
lag 1 correlation ρ; can be obtained from.

(8.10)

The term Z in Equation 8.10 is a random number gener-
ated from a normal distribution having a mean of 0 and 
a variance of 1. The process involves selecting a 
random number from a uniform distribution ranging
from 0 to 1, and using it in Equation 8.2 for an N(0, 1) 
distribution to obtain a value of random number for 

r E R r E R Zt t� � � � �1
2 1 21[ ] ( [ ]) ( ) /ρ σ ρ−

Var Var[ | ] [ ]( )R R r Rt t t� � � �1
21 ρ

E R R r E R r E Rt t t t[ | ] [ ] ( [ ])� � � �1 ρ −

use in Equation 8.10. This positive or negative number is
substituted for the term Z in Equation 8.10 to obtain a
value rt�1. This is shown on the graph in Figure 8.3.

Simulation models that have random inputs, such as a
series of rt values, will generally produce random outputs.
After many simulations, the probability distributions of
each random output variable value can be defined. These
can be used to estimate reliabilities and other statistical
characteristics of those output distributions. This process
of generating multiple random inputs for multiple simu-
lations to obtain multiple random outputs is called Monte
Carlo simulation.

3. Monte Carlo Simulation

To illustrate Monte Carlo simulation, consider the water
allocation problem involving three firms, each of which
receives a benefit, Bi(xit), from the amount of water, xit,
allocated to it in each period t. This situation is shown in
Figure 8.4. Monte Carlo simulation can be used to find
the probability distribution of the benefits to each firm
associated with the firm’s allocation policy.

Suppose the policy is to keep the first two units of flow
in the stream, to allocate the next three units to Firm 3,
and the next four units to Firms 1 and 2 equally. The
remaining flow is to be allocated to each of the three firms
equally up to the limits desired by each firm, namely 3.0,
2.33, and 8.0 respectively. Any excess flow will remain in
the stream. The plots in Figure 8.5 illustrate this policy.
Each allocation plot reflects the priorities given to the
three firms and the users further downstream.
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r *E[R t=t+1 Rt ]

Figure 8.3. Diagram showing the calculation of a sequence of
values of the random variable R from a multivariate normal
distribution in a way that preserves the mean, variance and
correlation of the random variable.
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A simulation model can be created. In each of a
series of discrete time periods t, the flows Qt are drawn
from a probability distribution, such as from Figure 8.2
using Equation 8.2. Once this flow is determined, each
successive allocation, xit, is computed. Once an allocation
is made it is subtracted from the streamflow and the
next allocation is made on the basis of that reduced
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streamflow, in accordance with the allocation policy
defined in Figures 8.5a – d. After numerous time steps,
the probability distributions of the allocations to each of
the firms can be defined.

Figure 8.6 shows a flow chart for this simulation
model.
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Figure 8.4. Streamflow
allocations in each period t
result in benefits, Bi(xit), to each
firm i. The flows, Qit, at each
diversion site i are the random
flows Qt less the upstream
withdrawals, if any.
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Figure 8.5a. Water allocation policy for Firm 1 based on the
flow at its diversion site. This policy applies for each period t.
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Figure 8.5b. Water allocation policy for Firm 2 based on
the flow at its diversion site for that firm. This policy
applies for each period t.
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Figure 8.5c. Water allocation policy for Firm 3 based on 
the flow at its diversion site. This policy applies for each
period t.
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Figure 8.5d. Streamflow downstream of site 3 given the
streamflow Q3t at site 3 before the diversion. This applies for
each period t.
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x1t
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compute
(fig. 5b)

x2t

Q2t = Q1t - x1t

Q3t = Q2t - x2t

Figure 8.6. Monte Carlo
simulation to determine
probability distributions of
allocations to each of three
water users, as illustrated in
Figure 8.4. The dashed lines
represent information (data)
flows.

Having defined the probability distribution of the 
allocations, based on the allocation policy, one can 
consider each of the allocations as random variables, X1,
X2, and X3 for Firms 1, 2 and 3 respectively.

4. Chance Constrained Models

For models that include random variables, it may be
appropriate in some situations to consider constraints that
do not have to be satisfied all the time. Chance constraints
specify the probability of a constraint being satisfied, or

the fraction of the time a constraint has to apply.
Consider, for example, the allocation problem shown in
Figure 8.4. For planning purposes, the three firms may
want to set allocation targets, not expecting to have those
targets met 100% of the time. To ensure, for example, that
an allocation target, Ti, of firm i will be met at least 90%
of the time, one could write the chance constraint:

Pr{Ti � Xi} � 0.90 i � 1, 2 and 3 (8.11)

In this constraint, the allocation target Ti is an unknown
decision-variable, and Xi is a random variable whose 
distribution has just been computed and is known.

wrm_ch08.qxd  8/31/2005  11:55 AM  Page 235



To include chance constraints in optimization 
models, their deterministic equivalents must be defined.
The deterministic equivalents of the three chance con-
straints in Equation 8.11 are:

Ti � xit
0.10 i � 1, 2 and 3 (8.12)

where xit
0.10 is the particular value of the random variable

Xi that is equalled or exceeded 90% of the time. This
value is shown on the probability distribution for Xi in
Figure 8.7.

To modify the allocation problem somewhat, assume
the benefit obtained by each firm is a function of its tar-
get allocation and that the same allocation target applies
in each time period t. The equipment and labour used in
the firm is presumably based on the target allocations.
Once the target is set, assume there are no benefits gained
by excess water allocations. If the benefits obtained are 
to be based on the target allocations rather than 
the actual allocations, then the optimization problem is
one of finding the values of the three targets that maximize
the total benefits obtained with a reliability of, say, at 
least 90%.

Maximize�6T1 � T1
2� � �7T2 � 1.5T2

2� � �8T3 � 0.5T3
2 �

(8.13)

subject to:

Pr{T1 � T2 � T3 � [Qt � min(Qt, 2)]} � 0.90
for all periods t (8.14)

where Qt is the random streamflow variable upstream of
all diversion sites. If the same unconditional probability

236 Water Resources Systems Planning and Management 

distribution of Qt applies for each period t, then only one
Equation 8.14 is needed.

Assuming the value of the streamflow, qt
0.10, that is

equalled or exceeded 90% of the time, is greater than 2
(the amount that must remain in the stream), the deter-
ministic equivalent of chance constraint Equation 8.14 is:

T1 � T2 � T3 � �qt
0.10 � min�qt

0.10, 2�� (8.15)

The value of the flow that is equal to or exceeds 90%
of the time, qt

0.10, can be obtained from the cumulative
distribution of flows as illustrated in Figure 8.8.

Assume this 90% reliable flow is 8. The deterministic
equivalent of the chance constraint Equation 8.9 for all
periods t is simply T1 � T2 � T3 � 6. The optimal 
solution of the chance-constrained target allocation
model, Equations 8.8 and 8.9, is, as seen before, T1 � 1,
T2 � 1 and T3 � 4. The next step would be to simulate
this problem to see what the actual reliabilities might be
for various sequences of flows qt.

5. Markov Processes and Transition
Probabilities

Time-series correlations can be incorporated into 
models using transition probabilities. To illustrate this
process, consider the observed flow sequence shown in
Table 8.1.

The estimated mean, variance and correlation coeffi-
cient of the observed flows shown in Table 8.1 can be 
calculated using Equations 8.16, 8.17 and 8.18.
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X it0. 01
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X it

Figure 8.7. Probability density distribution of the random
allocation Xi to firm i. The particular allocation value xit

0.10 has
a 90% chance of being equalled or exceeded, as indicated by
the shaded region.
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Figure 8.8. Example cumulative probability distribution
showing the particular value of the random variable, qt

0.10,
that is equalled or exceeded 90% of the time.
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Table 8.1. Sequence of flows for thirty-one time periods t.
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E[Q] � qt/31 � 3.155 (8.16)

Var[Q] � (qt � 3.155)2/30 � 1.95 (8.17)

Lag-one correlation coefficient � ρ

(8.18)

The probability distribution of the flows in Table 8.1 
can be approximated by a histogram. Histograms can be
created by subdividing the entire range of random vari-
able values, such as flows, into discrete intervals. For
example, let each interval be two units of flow. Counting
the number of flows in each interval and then dividing
those interval counts by the total number of counts results
in the histogram shown in Figure 8.9. In this case, just to
compare this with what will be calculated later, the first
flow, q1, is ignored.

Figure 8.9 shows a uniform unconditional probability
distribution of the flow being in any of the possible dis-
crete flow intervals. It does not show the possible
dependency of the probabilities of the random variable
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∑

value, qt�1, in period t � 1 on the observed random vari-
able value, qt, in period t. It is possible that the probabil-
ity of being in a flow interval j in period t � 1 depends on
the actual observed flow interval i in period t.

To see if the probability of being in any given interval
of flows is dependent on the past flow interval, one can
create a matrix. The rows of the matrix are the flow inter-
vals i in period t. The columns are the flow intervals j in
the following period t � 1. Such a matrix is shown in
Table 8.2. The numbers in the matrix are based on the
flows in Table 8.1 and indicate the number of times a flow
in interval j followed a flow in interval i.

Given an observed flow in an interval i in period t, the
probabilities of being in one of the possible intervals j in
the next period t � 1 must sum to 1. Thus, each number
in each row of the matrix in Table 8.2 can be divided by
the total number of flow transitions in that row (the sum
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Figure 8.9. Histogram showing an equal 1/3 probability that
the values of the random variable Qt will be in any one of the
three two-flow unit intervals.
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Table 8.2. Matrix showing the number of times a flow in
interval i in period t was followed by a flow in interval j in
period t � 1.
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of the number of flows in the row) to obtain the proba-
bilities of being in each interval j in t � 1 given a flow 
in interval i in period t. In this case there are ten flows 
that followed each flow interval i, hence by dividing 
each number in each row of the matrix by 10 defines the
transition probabilities Pij.

Pij � Pr{Qt�1 in interval j | Qt in interval i} (8.19)

These conditional or transition probabilities, shown in
Table 8.3, correspond to the number of transitions shown
in Table 8.2.

Table 8.3 is a matrix of transition probabilities. The
sum of the probabilities in each row equals 1. Matrices
of transition probabilities whose rows sum to 1 are also
called stochastic matrices or first-order Markov chains.

If each row’s probabilities were the same, this would
indicate that the probability of observing any flow inter-
val in the future is independent of the value of previous
flows. Each row would have the same probabilities as the
unconditional distribution shown in Figure 8.9. In this
example the probabilities in each row differ, showing that
low flows are more likely to follow low flows, and high
flows are more likely to follow high flows. Thus the flows
in Table 8.1 are positively correlated, as indeed has
already determined from Equation 8.18.

Using the information in Table 8.3, one can compute
the probability of observing a flow in any interval at any
period on into the future given the present flow interval.
This can be done one period at a time. For example assume
the flow in the current time period t � 1 is in interval 
i � 3. The probabilities, PQj,2, of being in any of the three
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intervals in the following time period t � 2 are the proba-
bilities shown in the third row of the matrix in Table 8.3.

The probabilities of being in an interval j in the follow-
ing time period t � 3 is the sum over all intervals i of the
joint probabilities of being in interval i in period t � 2 and
making a transition to interval j in period t � 3.

Pr{Q3 in interval j} � PQj,3

� Pr{Q2 in interval i} 

Pr{Q3 in interval j | Q2 in interval i} (8.20)

The last term in Equation 8.20 is the transition probabil-
ity, from Table 8.3, that in this example remains the same
for all time periods t. These transition probabilities,
Pr{Qt�1 in interval j | Qt in interval i} can be denoted as Pij.

Referring to Equation 8.19, Equation 8.20 can be
written in a general form as:

PQj,t�1 � PQitPij for all intervals j and periods t

(8.21)

This operation can be continued to any future time period.
Table 8.4 illustrates the results of such calculations for 
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Table 8.3. Matrix showing the probabilities Pij of having a flow
in interval j in period t � 1 given an observed flow in interval i
in period t.
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Table 8.4. Probabilities of observing a flow in any flow interval i
in a future time period t given a current flow in interval i � 3.
These probabilities are derived using the transition probabilities
Pij in Table 8.3 in Equation 8.21 and assuming the flow interval
observed in Period 1 is in Interval 3.
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up to six future periods, given a present period (t � 1)
flow in interval i � 3.

Note that as the future time period t increases, the
flow interval probabilities are converging to the uncondi-
tional probabilities – in this example 1/3, 1/3, 1/3 – as
shown in Figure 8.9. The predicted probability of
observing a future flow in any particular interval at some
time in the future becomes less and less dependent on
the current flow interval as the number of time periods
increases between the current period and that future time
period.

When these unconditional probabilities are reached,
PQit will equal PQi,t�1 for each flow interval i. To find
these unconditional probabilities directly, Equation 8.21
can be written as:

PQj � PQiPij for all intervals j (8.22)

Equation 8.22 (less one) along with Equation 8.23 can be
used to calculate all the unconditional probabilities PQi

directly.

PQi � 1 (8.23)

Conditional or transition probabilities can be incorpo-
rated into stochastic optimization models of water
resources systems.

6. Stochastic Optimization

To illustrate the development and use of stochastic opti-
mization models, consider first the allocation of water to a
single user. Assume the flow in the stream where the diver-
sion takes place is not regulated and can be described by a
known probability distribution based on historical records.
Clearly, the user cannot divert more water than is available
in the stream. A deterministic model would include the con-
straint that the diversion x cannot exceed the available water
Q. But Q is a random variable. Some target value, q, of the
random variable Q will have to be selected, knowing that
there is some probability that in reality, or in a simulation
model, the actual flow may be less than the selected value q.
Hence, if the constraint x � q is binding, the actual alloca-
tion may be less than the value of the allocation or diversion
variable x produced by the optimization model.

i
∑

i
∑

If the value of x affects one of the system’s performance
indicators, such as the net benefits, B(x), to the user, a
more accurate estimate of the user’s net benefits will be
obtained from considering a range of possible allocations
x, depending on the range of possible values of the ran-
dom flow Q. One way to do this is to divide the known
probability distribution of flows q into discrete ranges, i –
each range having a known probability PQi. Designate a
discrete flow qi for each range. Associated with each spec-
ified flow qi is an unknown allocation xi. Now the single
deterministic constraint x � q can be replaced with the
set of deterministic constraints xi � qi, and the term B(x)
in the original objective function can be replaced by its
expected value, ∑iPQi � B(xi).

Note, when dividing a continuous known probability
distribution into discrete ranges, the discrete flows qi,
selected to represent each range i having a given proba-
bility PQi, should be selected so as to maintain at least the
mean and variance of that known distribution as defined
by Equations 8.5 and 8.6.

To illustrate this, consider a slightly more complex
example involving the allocation of water to consumers
upstream and downstream of a reservoir. Both the poli-
cies for allocating water to each user and the reservoir
release policy are to be determined. This example prob-
lem is shown in Figure 8.10.

If the allocation of water to each user is to be based
on a common objective, such as the minimization of 
the total sum, over time, of squared deviations from 
pre-specified target allocations, each allocation in each
time period will depend in part on the reservoir storage
volume.

allocation dt

user D

allocation ut

user U

flow Qt

initial
storage St

reservoir
capacity K

release R t

E0
20

11
0o

Figure 8.10. Example water resources system involving water
diversions from a river both upstream and downstream of a
reservoir of known capacity.
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Consider first a deterministic model of the above prob-
lem, assuming known river flows Qt and upstream and
downstream user allocation targets UTt and DTt in each of
T within-year periods t in a year. Assume the objective is
to minimize the sum of squared deviations from actual
allocations, ut and dt, and their respective target alloca-
tions, UTt and DTt in each within-year period t.

Minimize {(UTt � ut)
2 � (DTt � dt)

2} (8.24)

The constraints include:
a) Continuity of storage involving initial storage volumes
St, net inflows Qt � ut, and releases Rt. Assuming no losses:

St � Qt � ut � Rt � St�1 for each period t, 

T � 1 � 1 (8.25)

b) Reservoir capacity limitations. Assuming a known
active storage capacity K:

St � K for each period t (8.26)

c) Allocation restrictions. For each period t:

ut � Qt (8.27)

dt � Rt (8.28)

Equations 8.25 and 8.28 could be combined to eliminate
the release variable Rt, since in this problem knowledge of
the total release in each period t is not required. In this
case, Equation 8.25 would become an inequality.

The solution of this model, Equations 8.24 – 8.28,
would depend on the known variables (the targets UTt

and DTt, flows Qt and reservoir capacity K). It would
identify the particular upstream and downstream alloca-
tions and reservoir releases in each period t. It would not
provide a policy that defines what allocations and releases
to make for a range of different inflows and initial storage
volumes in each period t. A backward-moving dynamic
programming model can provide such a policy. This
policy will identify the allocations and releases to make
based on various initial storage volumes, St, and flows, Qt,
as discussed in Chapter 4.

This deterministic discrete dynamic programming
allocation and reservoir operation model can be written for
different discrete values of St from 0 � St � capacity K as:

Ft
n(St, Qt) � min�(UTt � ut)

2 � (DTt � dt)
2

� Ft�1
n�1(St�1, Qt�1)�

t

T

∑
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The minimization is over all feasible ut, Rt, dt:

ut � Qt

Rt � St � Qt � ut

Rt � St � Qt � ut � K

dt � Rt

St�1 � St � Qt � ut � Rt (8.29)

There are three variables to be determined at each stage or
time period t in the above dynamic programming model.
These three variables are the allocations ut and dt and the
reservoir release Rt. Each decision involves three discrete
decision-variable values. The functions Ft

n(St, Qt) define
the minimum sum of squared deviations given an initial
storage volume St and streamflow Qt in time period or 
season t with n time periods remaining until the end of
reservoir operation.

One can reduce this three decision-variable model 
to a single variable model by realizing that, for any fixed
discrete pair of initial and final storage volume states,
there can be a direct tradeoff between the upstream and
downstream allocations, given the particular streamflow
in each period t. Increasing the upstream allocation will
decrease the resulting reservoir inflow, and this in turn
will reduce the release by the same amount. This reduces
the amount of water available to allocate to the down-
stream use.

Hence, for this example problem involving these
upstream and downstream allocations, a local optimiza-
tion can be performed at each time step t for each combi-
nation of storage states St and St�1. This optimization
finds the allocation decision-variables ut and dt that

minimize(UTt � ut)
2 � (DTt � dt)

2 (8.30)

where

ut � Qt (8.31)

dt � St � Qt � ut � St�1 (8.32)

This local optimization can be solved to identify the ut

and dt allocations for each feasible combination of St and
St�1 in each period t.

Given these optimal allocations, the dynamic pro-
gramming model can be simplified to include only one
discrete decision-variable, either Rt or St�1. If the decision
variable St�1 is used in each period t, the releases Rt in

wrm_ch08.qxd  8/31/2005  11:55 AM  Page 240



Modelling Uncertainty 241

those periods t do not need to be considered. Thus the
dynamic programming model expressed by Equations
8.29 can be written for all discrete storage volumes St

from 0 to K and for all discrete flows Qt as:

Ft
n(St, Qt) � min�(UTt � ut(St, St�1))

2 

� (DTt � dt(St, St�1))
2 � Ft�1

n�1(St�1, Qt�1)�

The minimization is over all feasible discrete values of
St�1,

St�1 � K (8.33)

where the functions ut(St, St�1) and dt(St, St�1) have been
determined using Equations 8.30 – 8.32.

As the total number of periods remaining, n, increases,
the solution of this dynamic programming model will
converge to a steady or stationary state. The best final
storage volume St�1 given an initial storage volume St will
probably differ for each within-year period or season t,
but for a given season t it will be the same in successive
years. In addition, for each storage volume St, streamflow,
Qt, and within-year period t, the difference between
Ft

n�T(St, Qt) and Ft
n(St, Qt) will be the same constant

regardless of the storage volume St and period t. This 
constant is the optimal, in this case minimum, annual
value of the objective function, Equation 8.24.

There could be additional limits imposed on storage
variables and release variables, such as for flood control
storage or minimum downstream flows, as might be
appropriate in specific situations.

The above deterministic dynamic programming model
(Equation. 8.33) can be converted to a stochastic model.
Stochastic models consider multiple discrete flows as well
as multiple discrete storage volumes, and their probabili-
ties, in each period t. A common way to do this is to
assume that the sequence of flows follow a first-order
Markov process. Such a process involves the use of tran-
sition or conditional probabilities of flows as defined by
Equation 8.20.

To develop these stochastic optimization models, it is
convenient to introduce some additional indices or sub-
scripts. Let the index k denote different initial storage 
volume intervals. These discrete intervals divide the con-
tinuous range of storage volume values from 0 to the
active reservoir capacity K. Each Skt is a discrete storage
volume that represents the range of storage volumes in
interval k at the beginning of each period t.

Let the following letter l be the index denoting differ-
ent final storage volume intervals. Each Sl,t�1 is a discrete
volume that represents the storage volume interval l at the
end of each period t or equivalently at the beginning 
of period t � 1. As previously defined, let the indices i
and j denote the different flow intervals, and each discrete 
flow qit and qj,t�1 represent those flow intervals i and j in
periods t and t � 1 respectively.

These subscripts and the volume or flow intervals they
represent are illustrated in Figure 8.11.

With this notation, it is now possible to develop 
a stochastic dynamic programming model that will
identify the allocations and releases that are to be made
given both the initial storage volume, Skt, and the 
flow, qit. It follows the same structure as the determin-
istic models defined by Equations 8.30 through 8.32,
and 8.33.

To identify the optimal allocations in each period t for
each pair of feasible initial and final storage volumes Skt

and Sl,t�1, and inflows qit, one can solve Equations 8.34
through 8.36.

minimize (UTt � ukit)
2 � (DTt � dkilt)

2 (8.34)

where

ukit � qit ∀ k, i, t. (8.35)

dkilt � Skt � qit � ukit � Sl,t�1 ∀ feasible k, i, l, t.
(8.36)

The solution to these equations for each feasible combi-
nation of intervals k, i, l, and period t defines the optimal
allocations that can be expressed as ut(k, i) and dt(k, i, l).

The stochastic version of Model 8.33, again expressed
in a form suitable for backward-moving discrete dynamic
programming, can be written for different discrete values
of Skt from 0 to K and for all qit as:

The minimization is over all feasible discrete values of
Sl,t�1

Sl,t�1 � K

Sl,t�1 � Skt � qit (8.37)
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Each Pij
t in the above recursive equation is the known

conditional or transition probability of a flow qj,t�1 within
interval j in period t � 1 given a flow of qit within interval
i in period t.

Pij
t � Pr{flow qj,t�1 within interval j in t � 1 | flow of qit

within interval i in t}

The sum over all flow intervals j of these conditional prob-
abilities times the Ft�1

n�1(Sl,t�1, qj,t�1) values is the expected
minimum sum of future squared deviations from alloca-
tion targets with n � 1 periods remaining given an initial
storage volume of Skt and flow of qit and final storage 
volume of Sl,t�1. The value Ft

n(Skt, qit) is the expected 
minimum sum of squared deviations from the allocation
targets with n periods remaining given an initial storage
volume of Skt and flow of qit. Stochastic models such as
these provide expected values of objective functions.

Another way to write the recursion equations of this
model, Equation 8.37, is by using just the indices k and
l to denote the discrete storage volume variables Skt

and Sl,t�1 and indices i and j to denote the discrete flow
variables qit and qj,t�1:
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such that Sl,t�1 � K

Sl,t�1 � Skt � qit (8.38)

The steady-state solution of this dynamic programming
model will identify the preferred final storage volume 
Sl,t�1 in period t given the particular discrete initial stor-
age volume Skt and flow qit. This optimal policy can be
expressed as a function � that identifies the best interval l
given intervals k, i and period t.

l � �(k, i, t) (8.39)

All values of l given k, i and t, defined by Equation 8.39,
can be expressed in a matrix, one for each period t.

Knowing the best final storage volume interval l given
an initial storage volume interval k and flow interval i, the

F k i UT u k t DT d k i l

P F

t
n

l
t t t t

ij
t

t
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Figure 8.11. Discretization of
streamflows and reservoir
storage volumes. The area
within each flow interval i below
the probability density
distribution curve is the
unconditional probability, PQit,
associated with the discrete 
flow qit.
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optimal downstream allocation, dt(k, i), can, like the
upstream allocation, be expressed in terms of only k and
i in each period t. Thus, knowing the initial storage 
volume Skt and flow qit is sufficient to define the optimal
allocations ut(k, i) and dt(k, i), final storage volume Sl,t�1,
and hence the release Rt(k, i).

Skt � qit � ut(k, i) � Rt(k, i) � Sl,t�1 ∀ k, i, t

where l � �(k, i, t) (8.40)

6.1. Probabilities of Decisions

Knowing the function l � �(k, i, t) permits a calculation
of the probabilities of the different discrete storage 
volumes, allocations, and flows. Let

PSkt � the unknown probability of an initial storage 
volume Skt being within some interval k in period t;

PQit � the steady-state unconditional probability of flow
qit within interval i in period t; and

Pkit � the unknown probability of the upstream and
downstream allocations ut(k, i) and dt(k, i) and reservoir
release Rt(k, i) in period t.

As previously defined,
Pij

t � the known conditional or transition probability of a
flow within interval j in period t � 1 given a flow within
interval i in period t.

These transition probabilities Pij
t can be displayed in

matrices, similar to Table 8.3, but as a separate matrix
(Markov chain) for each period t.

The joint probabilities of an initial storage interval k,
an inflow in the interval i, Pkit in each period t must sat-
isfy two conditions. Just as the initial storage volume in
period t � 1 is the same as the final storage volume in
period t, the probabilities of these same respective 
discrete storage volumes must also be equal. Thus,

(8.41)

where the sums in the right hand side of Equation 8.41
are over only those combinations of k and i that result in
a final volume interval l. This relationship is defined by
Equation 8.39 (l � �(k, i, t)).

While Equation 8.41 must apply, it is not sufficient.
The joint probability of a final storage volume in interval

P P l tj t
j

kit
ik

1 1, , ,� �∑ ∑∑ ∀

l in period t and an inflow j in period t � 1 must equal the
joint probability of an initial storage volume in the same
interval l and an inflow in the same interval j in period 
t � 1. Multiplying the joint probability Pkit times the con-
ditional probability Pij

t and then summing over all k and i
that results in a final storage interval l defines the former,
and the joint probability Pl,j,t�1 defines the latter.

Pl,j,t�1 � PkitPij
t ∀l, j, t l � �(k, i, t) (8.42)

Once again the sums in Equation 8.42 are over all combi-
nations of k and i that result in the designated storage 
volume interval l as defined by the policy �(k, i, t).

Finally, the sum of all joint probabilities Pkit in each
period t must equal 1.

Pkit � 1 ∀t (8.43)

Note the similarity of Equations 8.42 and 8.43 to the
Markov steady-state flow Equations 8.22 and 8.23. Instead
of only one flow interval index considered in Equations
8.22 and 8.23, Equations 8.42 and 8.43 include two
indices, one for storage volume intervals and the other for
flow intervals. In both cases, one of Equations 8.22 and
8.42 can be omitted in each period t since it is redundant
with that period’s Equations 8.23 and 8.43 respectively.

The unconditional probabilities PSkt and PQit can be
derived from the joint probabilities Pkit.

PSkt � Pkit ∀k, t (8.44)

PQit � Pkit ∀i, t (8.45)

Each of these unconditional joint or marginal probabili-
ties, when summed over all their volume and flow
indices, will equal 1. For example,

PSkt � PQit � 1 (8.46)

Note that these probabilities are determined only on the
basis of the relationships among flow and storage intervals
as defined by Equation 8.39, l � �(k, i, t) in each period
t, and the Markov chains defining the flow interval tran-
sition or conditional probabilities, Pij

t . It is not necessary to
know the actual discrete storage values representing those
intervals. Thus assuming any relationship among the stor-
age volume and flow interval indices, l � �(k, i, t) and a

i
∑

k
∑

k
∑

i
∑

k i
∑ ∑

k i
∑ ∑
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knowledge of the flow interval transition probabilities Pij
t ,

one can determine the joint probabilities Pkit and their
marginal or unconditional probabilities PSkt. One does
not need to know what those storage intervals are to cal-
culate their probabilities.

Given the values of these joint probabilities Pkit, the
deterministic model defined by Equations 8.24 to 8.28
can be converted to a stochastic model to identify the best
storage and allocation decision-variable values associated
with each storage interval k and flow interval i in each
period t.

(8.47)

The constraints include:
a) Continuity of storage involving initial storage volumes
Skt, net inflows qit � ukit, and at least partial releases dkit.
Again assuming no losses:

Skt � qit � ukit � dkit � Sl,t�1 ∀k, i, t

l � �(k, i, t) (8.48)

b) Reservoir capacity limitations.

Skit � K ∀k, i, t (8.49)

c) Allocation restrictions.

ukit � qit ∀k, i, t (8.50)

More detail on these and other stochastic modelling
approaches can be found in Faber and Stedinger (2001);
Gablinger and Loucks (1970); Huang et al. (1991); Kim
and Palmer (1997); Loucks and Falkson (1970);
Stedinger et al. (1984); Su and Deininger (1974); Tejada-
Guibert et al. (1993 1995); and Yakowitz (1982).

6.2. A Numerical Example

A simple numerical example may help to illustrate how
these stochastic models can be developed without getting
buried in detail. Consider two within-year periods each
year. The random flows Qt in each period t are divided
into two intervals. These flow intervals are represented by
discrete flows of 1 and 3 volume units per second in the
first period, and 3 and 6 volume units per second in the
second period. Their transition probabilities are shown in
Table 8.5.

Minimize P UT u DT dkit

T

t kit
ik

t kit
τ
∑∑∑ {( ) ( ) }� � �2 2
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Assuming equal within-year period durations, these
three discrete flow rates are equivalent to about 16, 47
and 95 million volume units per period.

Assume the active storage volume capacity K in the
reservoir equals 50 million volume units. This capacity can
be divided into different intervals of storage. For this sim-
ple example, assume three storage volume intervals repre-
sented by 10, 25 and 40 million volume units. Assume the
allocation targets remain the same in each period at both
the upstream and downstream sites. The upstream alloca-
tion target is approximately 2 volume units per second or
30 million volume units in each period. The downstream
allocation target is approximately 5 volume units per 
second or 80 million volume units in each period.

With these data we can use Equations 8.34 – 8.36 to
determine the allocations that minimize the sum of
squared deviations from targets and what that sum is, for
all feasible combinations of initial and final storage vol-
umes and flows. Table 8.6 shows the results of these opti-
mizations. These results will be used in the dynamic
programming model to determine the best final storage
volumes given initial volumes and flows.

With the information in Tables 8.5 and 8.6, the
dynamic programming model, Equation 8.38 or as
expressed in Equation 8.51, can be solved to find the
optimal final storage volumes, given an initial storage 
volume and flow. The iterations of the recursive equation,
sufficient to reach a steady state, are shown in Table 8.7.

such that Sl,t�1 � K

Sl,t�1 � Skt � Qit (8.51)
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Table 8.5. Transition probabilities for two ranges of flows in
two within-year periods.
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initial
storage

flow final
storage

interval
indices

upstream
allocation

down-
stream
allocation

sum
squared
deviation
SDd kilkiluS ki1 k  i  l, ,Q iSk

10
10
10
10
10
10
10
10

25
25
25
25
25
25
25
25
25

4996.0
7141.0
1989.0
3204.0
4869.0

112.5
450.0

1012.5

3301.0
4996.0
7141.0
1152.0
1989.0
3204.0

0.0
112.5
450.0

16.0
1.0

47.0
32.0
17.0
72.5
65.0
75.5

31.0
16.0

1.0
56.0
47.0
32.0
80.0
72.5
65.0

0.0
0.0
0.0
0.0
0.0

22.5
15.0

7.5

0.0
0.0
0.0
6.0
0.0
0.0

30.0
22.5
15.0

1, 1, 1
1, 1, 2
1, 2, 1
1, 2, 2
1, 2, 3
1, 3, 1
1, 3, 2
1, 3, 3

2, 1, 1
2, 1, 2
2, 1, 3
2, 2, 1
2, 2, 2
2, 2, 3
2, 3, 1
2, 3, 2
2, 3, 3

10
25
10
25
40
10
25
40

10
25
40
10
25
40
10
25
40

16
16
47
47
47
95
95
95

16
16
16
47
47
47
95
95
95

40
40
40
40
40
40
40
40
40

2056.0
3301.0
4996.0

544.5
1152.0
1989.0

0.0
0.0

112.5

46.0
31.0
16.0
63.5
56.0
47.0
80.0
80.0
72.5

0.0
0.0
0.0

13.5
6.0
0.0

30.0
30.0
22.5

3, 1, 1
3, 1, 2
3, 1, 3
3, 2, 1
3, 2, 2
3, 2, 3
3, 3, 1
3, 3, 2
3, 3, 3

10
25
40
10
25
40
10
25
40

16
16
16
47
47
47
95
95
95

E0
20

82
9b

Table 8.6. Optimal allocations
associated with given initial storage,
Sk, flow, Qi, and final storage, Sl,
volumes. These allocations uki and
dkil minimize the sum of squared
deviations, DSkil � (30 � uki)

2

� (80 � dkil)
2, from upstream and

downstream targets, 30 and 80
respectively, subject to uki � flow Qi,
and dkil � release (Sk � Qi � uki � Sl).

the data in Tables 8.5 and 8.8. It is obvious that if the
policy from Table 8.9 is followed, the steady-state proba-
bilities of being in storage Interval 1 in Period 1 and in
Interval 3 in Period 2 are 0.

Multiplying these joint probabilities by the correspon-
ding SDkit values in the last column of Table 8.6 provides
the annual expected squared deviations, associated with
the selected discrete storage volumes and flows. This is
done in Table 8.11 for those combinations of k, i, and l
that are contained in the optimal solution as listed in
Table 8.9.

The sum of products of the last two columns in 
Table 8.11 for each period t equals the expected squared
deviations in the period. For period t � 1, the expected

This process can continue until a steady-state policy 
is defined. Table 8.8 summarizes the next five iterations.
At this stage, the annual differences in the objective 
values associated with a particular state and season 
have come close to a common constant value.

While the differences between corresponding Ft
n�T and

Ft
n have not yet reached a common constant value to the

nearest unit deviation (they range from, 3475.5 to 3497.1
for an average of 3485.7), the policy has converged to that
shown in Tables 8.8 and 8.9.

Given this operating policy, the probabilities of being
in any of these volume and flow intervals can be 
determined by solving Equations 8.42 through 8.45.
Table 8.10 shows the results of these equations applied to
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E0
20

82
9d

storage
& flow optimal

1,1 6234.44996.0 + 0.6 (1989.0) +0.4 (112.5)
7141.0 + 0.6 (1152.0) +0.4 (    0.0)
infeasible  ----

l
l
l

= 1
= 2
= 3

SDkil + Σj Pij
t Ft+1

n-1(l, j) Ft
n (k, i)

k, i

=
=  7832.2
=  ---

6234.4

l

1

1,2

2,1

2,2

3,1

3,2

2664.5

4539.4

1827.5

3294.4

1220.0

1989.0 + 0.3 (1989.0) +0.7 (112.5)
3204.0 + 0.3 (1152.0) +0.7 (    0.0)
4869.0 + 0.3 (  544.5) +0.7 (    0.0)

3301.0 + 0.6 (1989.0) +0.4 (112.5)
4996.0 + 0.6 (1152.0) +0.4 (    0.0)
7141.0 + 0.6 (  544.5) +0.4 (    0.0)

1152.0 + 0.3 (1989.0) +0.7 (112.5)
1989.0 + 0.3 (1152.0) +0.7 (    0.0)
3204.0 + 0.3 (  544.5) +0.7 (    0.0)

2056.0 + 0.6 (1989.0) +0.4 (112.5)
3301.0 + 0.6 (1152.0) +0.4 (    0.0)
4996.0 + 0.6 (  544.5) +0.4 (    0.0)

544.5 + 0.3 (1989.0) +0.7 (112.5)
1152.0 + 0.3 (1152.0) +0.7 (    0.0)
1989.0 + 0.3 (  544.5) +0.7 (    0.0)

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

=
=  3549.6
=  5032.35

2664.45

=
=  5687.2
=  7467.7

4539.4

=
=  2334.6
=  3367.35

1827.45

=
=  3992.2
=  5322.7

3294.4

=
=  1497.6
=  2152.35

1219.95

1

1

1

1

1

period = 1, = 2t n

E0
20

82
9c

storage
& flow

period = 2, = 1t n

optimal

1,2 1989.01989.0 + 0
3204.0 + 0
4869.0 + 0

l
l
l

= 1
= 2
= 3

SDkil + Σj Pij
t Ft+1

n-1(l, j) Ft
n (k, i)

k, i l

1

1,3

2,2

2,3

3,2

3,3

112.5

1152.0

0.0

544.5

0.0

112.5 + 0
450.0 + 0

1012.0 + 0

1152.0 + 0
1989.0 + 0
3204.0 + 0

0.0 + 0
112.5 + 0
450.0 + 0

544.5 + 0
1152.0 + 0
1989.0 + 0

0.0 + 0
0.0 + 0

112.5 + 0

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

1

1

1

1

1,2

Table 8.7. First four iterations of dynamic
programming model, Equations 8.51, moving
backward in successive periods n, beginning in
season t � 2 with n � 1. The iterations stop when
the final storage policy given any initial storage
volume and flow repeats itself in two successive
years. Initially, with no more periods remaining,
F1

0(k, i) � 0 for all k and i.

(contd.)
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Table 8.7. Concluded.

E0
20

82
9e

storage
& flow optimal

1,2
6929.8

1989.0 + 0.7 (6234.4) +0.3 (2664.5)
3204.0 + 0.7 (4539.4) +0.3 (1827.5)
4869.0 + 0.7 (3294.4) +0.3 (1219.9)

l
l
l

= 1
= 2
= 3

SDkil + Σj Pij
t Ft+1

n-1(l, j) Ft
n (k, i)

k, i

=  7152.4
=
=  7541.1

6929.8

l

2

1,3

2,2

2,3

3,2

3,3

112.5 + 0.2 (6234.4) +0.8 (2664.5)
450.0 + 0.2 (4539.4) +0.8 (1827.5)

1012.5 + 0.2 (3294.4) +0.8 (1219.9)

1152.0 + 0.7 (6234.4) +0.3 (2664.5)
1989.0 + 0.7 (4539.4) +0.3 (1827.5)
3204.0 + 0.7 (3294.4) +0.3 (1219.9)

0.0 + 0.2 (6234.4) +0.8 (2664.5)
112.5 + 0.2 (4539.4) +0.8 (1827.5)
450.0 + 0.2 (3294.4) +0.8 (1219.9)

544.5 + 0.7 (6234.4) +0.3 (2664.5)
1152.0 + 0.7 (4539.4) +0.3 (1827.5)
1989.0 + 0.7 (3294.4) +0.3 (1219.9)

0.0 + 0.2 (6234.4) +0.8 (2664.5)
0.0 + 0.2 (4539.4) +0.8 (1827.5)

112.5 + 0.2 (3294.4) +0.8 (1219.9)

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

=  3490.0
=  2819.8
= 2647.3

=  6315.4
=
=  5876.1

5714.8

=  3378.4
=  2482.3
= 2084.8

=  5707.9
=  4877.8
= 4661.1

=  3378.4
=  2369.8
= 1747.3

3

2

3

3

3

period = 2, = 3t n

2647.3

5714.8

2084.8

4661.1

1747.3

E0
20

82
9f

storage
& flow optimal

1,1 10212.84996.0 + 0.6 (6929.8) +0.4 (2647.3)
7141.0 + 0.6 (5714.8) +0.4 (2084.8)
infeasible  ---

l
l
l

= 1
= 2
= 3

SDkil + Σj Pij
t Ft+1

n-1(l, j) Ft
n (k, i)

k, i

=
=

l

1

1,2

2,1

2,2

3,1

2,2

1989.0 + 0.3 (6929.8) +0.7 (2647.3)
3204.0 + 0.3 (5714.8) +0.7 (2084.8)
4869.0 + 0.3 (4661.1) +0.7 (1747.3)

3301.0 + 0.6 (6929.8) +0.4 (2647.3)
4996.0 + 0.6 (5714.8) +0.4 (2084.8)
7141.0 + 0.6 (4661.1) +0.4 (1747.3)

1152.0 + 0.3 (6929.8) +0.7 (2647.3)
1989.0 + 0.3 (5714.8) +0.7 (2084.8)
3204.0 + 0.3 (4661.1) +0.7 (1747.3)

2056.0 + 0.6 (6929.8) +0.4 (2647.3)
3301.0 + 0.6 (5714.8) +0.4 (2084.8)
4996.0 + 0.6 (4661.1) +0.4 (1747.3)

544.5 + 0.3 (6929.8) +0.7 (2647.3)
1152.0 + 0.3 (5714.8) +0.7 (2084.8)
1989.0 + 0.3 (4661.1) +0.7 (1747.3)

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

l
l
l

= 1
= 2
= 3

=
=
=

=
=
=

=
=
=

=
=
=

=
=
=

1

1

1

1

2

period = 1, = 4t n

5921.1

8517.8

5084.1

7272.8

4325.8

10212.8
11403.8

5921.1
6377.8
7490.5

8517.8
9258.8

10636.6

5084.1
5162.8
5825.5

7272.8
7563.8
8491.6

4476.6

4610.5
4325.8
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sum of squared deviations are 1893.3 and for t � 2 they
are 1591.0. The total annual expected squared deviations
are 3484.3. This compares with the expected squared
deviations derived from the dynamic programming
model, after 9 iterations, ranging from 3475.5 to 3497.1
(as calculated from data in Table 8.8).

These upstream allocation policies can be displayed in
plots, as shown in Figure 8.12.

The policy for reservoir releases is a function not only of
the initial storage volumes, but also of the current inflow, in
other words, the total water available in the period.
Reservoir release rule curves such as shown in Figures 4.16
or 4.18 now must become two-dimensional. However, the
inflow for each period usually cannot be predicted with
certainty at the beginning of each period. In situations
where the release cannot be adjusted during the period as
the inflow becomes more predictable, the reservoir release
policy has to be expressed in a way that can be followed
without knowledge of the current inflow. One way to do
this is to compute the expected value of the release for each
discrete storage volume, and show it in a release rule. This
is done in Figure 8.13. The probability of each discrete
release associated with each discrete river flow is the proba-
bility of the flow itself. Thus, in Period 1 when the storage
volume is 40, the expected release is 46(0.41) � 56(0.59)
� 52. These discrete expected releases can be used to define
a continuous range of releases for the continuous range of
storage volumes from 0 to full capacity, 50. Figure 8.13 also

248 Water Resources Systems Planning and Management 

shows the hedging that might take place as the reservoir
storage volume decreases.

Another approach to defining the releases in each
period in a manner that is not dependent on knowledge
of the current inflow, even though the model used
assumes this, is to attempt to define either release targets
with constraints on final storage volumes, or final storage
targets with constraints on total releases. Obviously, such
policies will not guarantee constant releases throughout
each period. For example, consider the optimal policy
shown in Table 8.9. The releases (or final storage vol-
umes) in each period are dependent on the initial storage
and current inflow. However, this operating policy can be
expressed as:

• If in period 1, the final storage target should be in
interval 1. Yet the total release cannot exceed the flow
in interval 2.

• If in period 2 and the initial storage is in interval 1, the
release should be in interval 1.

• If in period 2 and the initial storage is in interval 2, the
release should be in interval 2.

• If in period 2 and the initial storage is in interval 3, the
release should equal the inflow.

This policy can be followed without any forecast of cur-
rent inflow. It will provide the releases and final storage
volumes that would be obtained with a perfect inflow
forecast at the beginning of each period.

E0
20

82
9g

storage
& flow Ft

n (k, i)
k, i

1,1
1,2 10691.7 2
1,3 5927.7 3

= 2, = 5t n

l*

13782.1 17279.2

Ft
n (k, i) Ft

n (k, i) Ft
n (k, i) Ft

n (k, i)
= 1, = 6t n = 2, = 7t n = 1, = 8t n = 2, = 9t n

l* l* l*l*

1 1
9345.9 14217.7 12821.4 17708.3

9381.5 12861.3
1 12 2

3 3

2,1

3,1

2,2

3,2

9476.7

8377.7

2

3

2,3

3,3

5365.2

5027.7

3

3

12087.1

10842.1

15584.2

14339.2

1 1

1 1

8508.9

7750.7

13002.7

11903.7

11984.4

11226.1

16493.2

15394.3

8819.0

8481.5

12298.7

11961.2

1 1

2 2

2 2

3 3

3

3

3

3

Table 8.8. Summary of objective
function values Ft

n(k, i) and
optimal decisions for stages 
n � 5 to 9 periods remaining.
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period initial storage volume
and flow interval

final storage
volume interval

kt i l

1 1 1 1
1
1
1
1
1

1
2
2
3
3

2
1
2
1
2

1
1
1
1
2

2 1 2 2
2
2
2
2
2

1
2
2
3
3

3
2
3
2
3

3
2
3
3
3

E0
20

82
9h

Table 8.9. Optimal reservoir policy l � �(k, i, t) for the
example problem.

PQ (1, 1) = 0.4117647 PQ (2, 2) = 0.4235294
PQ (2, 1) = 0.5882353 PQ (3, 2) = 0.5764706

PS (1, 1) = 0.0000000 PS (1, 2) = 0.5388235
PS (2, 1) = 0.4235294 PS (2, 2) = 0.4611765
PS (3, 1) = 0.5764706 PS (3, 2) = 0.0000000

P (1, 1, 1) = 0.0000000 P (1, 2, 2) = 0.2851765
P (1, 2, 1) = 0.0000000 P (1, 3, 2) = 0.2536471
P (2, 1, 1) = 0.2964706 P (2, 2, 2) = 0.1383529
P (2, 2, 1) = 0.1270588 P (2, 3, 2) = 0.3228235
P (3, 1, 1) = 0.1152941 P (3, 2, 2) = 0.0000000
P (3, 2, 1) = 0.4611765 P (3, 3, 2) = 0.0000000

unconditional probabilities
of flow intervals in the 2 time periodsi t

PQ it

unconditional probabilities
of storage intervals in the 2 time periodsk t

PS kt

joint probabilities P

intervals k and flow intervals in the 2 time periods ti
kit of storage volume

E0
20

82
9j

Table 8.10. Probabilities of flow and storage volume
intervals associated with the policy as defined in 
Table 8.9 for the example problem.
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Table 8.11. The optimal
operating policy and the
probability of each state and
decision.
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Figure 8.12. Upstream user allocation policies. In Period 1
they are independent of the downstream initial storage
volumes. In Period 2 the operator would interpolate between
the three allocation functions given for the three discrete
initial reservoir storage volumes.
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Figure 8.13. Reservoir release rule showing an interpolated
release, increasing as storage volumes increase.
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Alternatively, in each period t one can solve the
model defined by Equation 8.37 to obtain the best deci-
sion for the current and a sequence of future periods,
taking into account all current information regarding
the objectives and possible inflow scenarios and their
probabilities. The actual release decision in the current
period can be the expected value of all these releases in
this current period. At the beginning of the next period,
the model is updated with respect to current initial
storage and inflow scenarios (as well as any changes in
objectives or other constraints) and solved again. This
process continues in real time. This approach is dis-
cussed in Tejada-Guibert et al. (1993) and is the cur-
rent approach for providing release advice to the Board
of Control that oversees the releases from Lake Ontario
that govern the water levels of the lake and the 
St. Lawrence River.

These policies, and modifications of them, can be 
simulated to determine improved release rules.

7. Conclusions

This chapter has introduced some approaches for includ-
ing risk in optimization and simulation models. The dis-
cussion began with ways to obtain values of random
variables whose probability distributions are known.
These values, for example streamflows or parameter val-
ues, can be inputs to simulation models. Monte Carlo
simulation involves the use of multiple simulations using
these random variable values to obtain the probability
distributions of outputs, including various system per-
formance indicators.

Two methods were reviewed for introducing 
random variables along with their probabilities into opti-
mization models. One involves the use of chance con-
straints. These are constraints that must be met, as all
constraints must, but now with a certain probability. As in
any method there are limits to the use of chance con-
straints. These limitations were not discussed, but in cases
where chance constraints are applicable, and if their deter-
ministic equivalents can be defined, they are probably the
only method of introducing risk into otherwise determin-
istic models that do not add to the model size.

Alternatively, the range of random variable values 
can be divided into discrete ranges. Each range can be

represented by a specific or discrete value of the 
random variable. These discrete values and their proba-
bilities can become part of an optimization model. This
was demonstrated by means of transition probabilities
incorporated into both linear and dynamic programming
models.

The examples used in this chapter to illustrate the
development and application of stochastic optimization
and simulation models are relatively simple. These and
similar probabilistic and stochastic models have been
applied to numerous water resources planning and man-
agement problems. They can be a much more effective
screening tool than deterministic models based on the
mean or other selected values of random variables. But
sometimes they are not. Clearly if the system being
analysed is very complex, or just very big in terms of the
number of variables and constraints, the use of determin-
istic models for a preliminary screening of alternatives
prior to a more precise probabilistic screening is often
warranted.
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