



## **Design Margin Analysis & Prediction**

Richard W. Johnson DFSS Deployment Lead Raytheon Company

January 11, 2005









## Raytheon Design for Six Sigma A Common Dilemma





Placement of the estimated response mean with respect to the specified limit is a "guessing game" if the expected response variation is not known Raytheon

Raytheon Design for Six Sigma



# **Design Margin Analysis Example** Military Radio Production

- Experiencing poor first pass yields at several ambient gain tests
- Design margin analysis recommended
  - Mean value of many test measurements are close to limit
- Poor design margin suspected to be the problem

Raytheon Design for Six Sigma Program Example – Military Radio Production Design Margin Analysis

#### Approach

- Select tests to be analyzed
- Download historical test data to statistical data analysis tool
  - Agilent ADS (Advanced Design System)
- Analyze the Data
- Calculate Design Margin
- Verify correlation of DM analysis with probabilistic predictions

# Raytheon Design for Six Sigma Program Example – Military Radio Production



#### **Design Margin Analysis**



# Raytheon Design for Six Sigma Program Example – Military Radio Production



#### **Design Margin Analysis**





### **Program Example – Military Radio Production** Design Margin Analysis

#### Results

- 19 of 37 analog circuits were identified with low design margin (Cpk<.72)</li>
- Probabilistic modeling using design specifications verified that the low design margins could have been predicted
- Design margin analysis on production test data coupled with probabilistic modeling & simulation of the circuit designs provided clear visibility to which design variables could be adjusted to achieve desired margins





#### **Design Margin Prediction Example**

### Lightweight Video Sight (LVS)

- LVS mounted on grenade machine gun
- Developed for military combat applications
- Implemented design improvements to include optical path





### **Design Margin Prediction Example**

## **Objectives**

- Determine the Line of Sight (LOS) variation for the LVS sensors
  - Image-Intensified Night Vision Camera (I<sup>2</sup>TV)
  - Day Television Camera (DTV)
  - Laser Rangefinder (LRF)





### **Design Margin Prediction Example**

### Approach

- Identify error sources
- Create model (transfer function)
  - Establish relationships
  - Develop equations
- Run simulation
  - Monte Carlo
- Analyze results



- Error sources identified which affect line of sight
  - Optics and housings
  - Detectors
- Fabrication and Assembly
- Tilts and De-centering
- Az and EL separated

| Examples of LVS Boresight Error Sources |             |                   |                       |                       |      |           |
|-----------------------------------------|-------------|-------------------|-----------------------|-----------------------|------|-----------|
| Error #                                 | Assy        | Part              | Feature #1            | Feature #2            | Туре | Direction |
| 1                                       | I/F         | SEL/Sight Mount   | SEL mtg holes         |                       | assy | az        |
| 2                                       | Sight mount | Plate             | SEL mtg hole          | Plate edges           | fab  | az        |
| 3                                       | Sight mount | Plate             | SEL mtg surf          | Housing mtg surf flat | fab  | el        |
| 4                                       | Sight mount | Plate             | SEL mtg surf          | Housing mtg surf ang. | fab  | az        |
| 5                                       | Sight mount | Plate             | Housing mtg surf ang. | Plate edge            | fab  | az        |
| 6                                       | I/F         | Sight mount/Sight | Sight mount (?)       | Sight (?)             | assy |           |
| 7                                       | Housing     | Housing           | Sight mount- angular  | Plate mtg flange      | fab  | az        |
| 8                                       | Housing     | Housing           | Sight mount- flat     | Plate mtg flange      | fab  | el        |
| 9                                       | Housing     | Housing           | Sight mount- flat     | Plate mtg pins        | fab  |           |
| 10                                      | Housing     | Housing           | Sight mount- angular  | Plate mtg pins        | fab  |           |



Raytheon Design for Six Sigma Design Margin Prediction Example Create Response Model

#### R60 Raytheon Six Sigma

#### **Input Variables**



# Six Sigma Tolerances for Some of the Machined Features Involved

•FAB TOLERANCES, LENS ASSY

- TILT, LENS SEATS ⊕ .00076 (N/C Lathe)
  DE-CENTER, LENS BORES ⊕ .00076 (N/C Lathe)
  FAB TOLERANCES, OPTICAL BENCH ASSY
  TILT, LENS SEATS // .003, ⊥ .0036 (N/C Mill)
  DE-CENTER, LENS BORES ⊕ .00174 (N/C Mill)
  TILT, MIRRORS ∩ .006 (N/C Mill)
  - LOCATION, MIRRORS <u>∩</u> .006 (N/C Mill)

- Six Sigma tolerances used for all fabrication errors
- Obtained tolerances from Raytheon Internal Process Capability Database
  - 6σ tolerances derived from actual measured part data
  - Methods and Tooling group consulted for distribution fit





### Raytheon Design for Six Sigma Design Margin Prediction Example Run the Simulation and Analyze the Results





Raytheon Design for Six Sigma
Design Margin Prediction Example



#### **Results**

- System level mechanical boresight alignment not required (~\$300K Avoidance).
- Optical alignment of the I<sup>2</sup> and DTV camera components will be required.
- Software alignment of the aiming reticle to the LRF transmitter beam at the system level will be required.





#### **Analysis Tools**

#### **Data Analysis**

- Statistical Analysis and Acceptance Test Software (STAATS)
- Advanced Design System Agilent Technologies
- Minitab
- Microsoft Excel

#### **Probabilistic Performance Modeling**

- Raytheon Analysis of Variability Engine (RAVE)
- Crystal Ball Decisioneering
- Advanced Design System (ADS) Agilent Technologies
- Statistical Design Institute Tools



# Raytheon Design for Six Sigma Conclusions



- Design Margin is a familiar concept in engineering and manufacturing environments, but has been under-utilized because classical methods of quantifying design margin in product performance do not comprehend unit-to-unit variability
  - Classical design methods recognized the existence of unitto-unit variability, but in the absence of available/efficient methods and tools to model variability, adopted the use of safety factors and worst-case design (infinite margin)
    - More design iterations
    - Higher-cost materials/components
    - Tighter tolerances
- Using Cpk as a design margin model provides way to:
  - Communicate how much variability is occurring or tolerable
  - Communicate how much risk is present or tolerable