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ABSTRACT. Stand growth is viewed in terms of a simple biological model which will allow 
the forester to relate density and yield at any stage of stand development. Empirically 
determined size-density relationships of forest stands, and theoretical derivations of these 
relationships, have been developed by Japanese scientists and are reviewed here. These 
include the 3/2 power law for self-thinning to identify the maximum average tree size- 
density relationship of a species; the reciprocal yield law for defining yield as a function of 
density at any stage of stand development; and the relationship between stand height and 
the reciprocal yield coefficients. The regions of random and competition related mortality 
are identified and separated. An application of these density dependent yield functions is 
given for Pinus radiata D. Don plantations. FOREST $CI. 23:517--534. 

ADDITIONAL KEY WORDS. Stand density, yield forecasting, competition mortality, Pinus 
radiata. 

STUDIES OF INTRASPECIFIC COMPETITION by Japanese scientists have led to 
several interesting theories from which yield-density relationships of forest stands 
can be modeled concisely. Beyond a cursory perspective of how these models relate 
to some of the more common approaches to yield modeling, this report does not 
discuss the large body of North American literature dealing with competition 
measures, indices, or models. 

Historically, yield table construction has been oriented toward the prediction of 
future stand conditions since these are important to the estimation of crop values. 
In an attempt at simplification, early yield tables employed the concept of normal 
stocking. Normal stocking is the mean stocking level of a large number of undis- 
turbed stands. However, the growth of stands with abnormal stocking could not be 
predicted by these tables without the use of rather tentative adjustment techniques. 

More recently, notably since the advent of the computer, complex regression 
models have been generated to predict growth and yield for many combinations of 
age, site, and stocking. These have bypassed the normality concept, and as a result 
are more complicated than the earlier models. The many variables that affect 
growth interact in ways that are only approximated by the variable transformation 
search that precedes the final model. The resulting prediction models are usually 
acceptable within the range of variables examined. 
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Consideration is also being given to mathematical models founded on logical 
propositions concerning the biology of growth. Mathematical growth models can 
be used in the formation and refinement of causal relationships applicable to any 
generalized growth theory. Pienaar (1965) expected "such theory could form the 
basis for the truly scientific management of forests and plantations, in providing a 
sound and obective basis for decision theory." Forest managers need such a tool to 
choose rationally among the spectra of management regimes or treatment options. 
They must have techniques to extrapolate short-term experimental results through 
rotation age, and this will require the development of models which have more 
general applicability. 

Some well conceived biological models of intraspecific competition are found in 
the Japanese literature. Shinozaki and Kira (1956), Turnbull (1963), Pienaar 
( 1965 ), Willey and Heath ( 1969 ), and White and Harper ( 1970) introduced these 
Japanese concepts into the English language literature; and limited applications to 
managed softwood forests are discussed by Tadaki (1963, 1964), Ando (1968) 
and Aiba (1975a), although no comprehensive explanation or substantive use for 
these models has been found. These models merit further investigation because of 
the biological validity, indicated by their applicability to diverse species, and, from a 
mathematical viewpoint, their extreme simplicity. The value of a parsimonious 
model is expounded on by George Box (1976): "... the scientist... should seek 
an economical description of natural phenomena." This is not meant to discredit 
the large number of approaches to stand modeling that rely upon complex models, 
but rather, it is a recognition of the need for an additional model where the inter- 
relationships between the important stand parameters of density, mortality, and 
yield can be easily displayed. 

Unthinned Monterey pine (Pinus radiata D. Don) plantation data are used to 
demonstrate the utility of this theory as a framework for understanding the basic 
yield-density relationships of a species. Further, these data are used to demonstrate 
the accuracy of these general models. 

MAXIMUM SIZE-DENsITY RELATIONSHIPS 

An analysis of competition-induced mortality by Yoda and others (1963) led to a 
development known as the 3/2 power law of self-thinning, which describes a maxi- 
mum size-density relationship applicable to stands of any age or site. Yoda and 
others used radishes (Raphanus sativus L.), soybeans (Glycine max (L.) Merr.), 
sesame (Sesamum inducum) and buckwheat (Fagopyrum sagittatum), sudan grass 
(Sorghum sudanense), and maize (Zea mays L.) at various densities (stems per 
unit area) to observe self-thinning. He and his co-workers observed that for low 
initial planting densities there was no mortality, but as initial density increased the 
density of surviving plants at a fixed time after sowing approached a fixed maxi- 
mum. They suggested that in pure even-aged stands there is a maximum population 
density dependent on the plants' stage of development. Furthermore, as time 
increases, these upper limits tend to converge on a fixed density level. Since average 
plant size was greater for buckwheat than sesame at the same density in self-thinning 
situations, tolerance to overcrowding must vary by species. Fertilizer application 
increased growth rates but did not change maximum density for a given average 
plant weight. 

In a series of experiments to identify mean plant weight-density relationships at 
maximum stocking, Yoda and others (1963) also established plots in pure stands 
of Plantago asiatica, Erigeron canadensis, Ambrosia artemisiifolia elatior, Amaran- 
thus retroflexus, Chenopodium album centrorubrum, and other weed species. They 
found that "in spite of differences in age, stage of growth, locality and micro-habitat 
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FIGURE 2. The relationship between the log- 
arithms of mean stem volume and density 
in pure natural stands of Pinus densiflora 
in Honsyfi, Japan (Yoda and others 1963). 
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FIOURE l. The relationship between the logarithms of density and mean plant weight in 
overcrowded plots of Plantago asiatica and Erigeron canadensis (Yoda and others 1963). 

conditions, a single line represents the plant size-density relation throughout the 
stands (for each species in self-thinning situations)." 

In every instance the slope of the line was close to -1.5 (Fig. 1 ) when the loga- 
rithms of mean plant weight were plotted against logarithms of density. This obser- 
vation has become the basis for the 3/2 power law of self-thinning. 

This relationship between the maximum plant size and density was derived by 
Yoda and others. The term maximum plant size refers to the maximum attainable 
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value of the average plant size for a given stand condition and not to the maximum 
size of the individual trees within the stand. Two simple assumptions about a plant's 
space requirements were made. First, plants of the same species have a particular 
shape independent of their size or stage of development. This is the expected out- 
come of identical growth rates for differing plant parts. Constant differential growth 
rates for different plant parts have been shown for many species and the resulting 
relationship identified as the allometric principle (Huxley 1932). Second, self- 
thinning must occur when the site is fully occupied by the species. 

For fully occupied sites at any stage of development Yoda and others (1963) 
stated the relationship between average ground area occupied by a plant (S) and 
the current density in terms of plants per unit area (p), 

S • (1/0) (1) 

The relationship between ground area (S) and mean plant weight (w) was 
achieved by the use of a dimensional analysis. The basic dimension (L) refers to 
the linear measurement of some unspecified plant part. 

S ec L 2 (area is a quadratic function of a linear dimension) (2) 
and 

w eel a 

therefore: 

S ec L 2 ec (La)•/a ec (w)•/a 

Substituting equation (1) for S 

1/p o: (w)•/a 
then 

(weight is a cubic function of a linear dimension) (3) 

(4) 

(5) 

w • (p)-a/: (6) 
or 

w = C (p)-a/2 (7) 

In (w) = In (C)-3/2 ln(p) (8) 

The power constant in the maximum size-density relationship (equation 6) would 
be an indeterminant constant if the allometric principle had been used instead of 
the restrictive assumption of constant tree shape. The -3/2 coefficient is, however, 
verified empirically for tree species. Yoda and others graphed the average above- 
ground dry weight per tree against density for overcrowded stands of Abies sachal- 
inensis and Betula spp. and found a straight line relationship with a slope of 
approximately-3/2. This line is subsequently referred to as the maximum size- 
density relationship. 

American forestry literature contains mention of similar relationships between 
mean tree diameter at breast height (DBH) and density. The effective similarity 
between the competition density law of the maximum size-density relationship and 
Reineke's maximum stand density curves can be demonstrated through the weight- 
DBH relationship given by Ogawa and others (1961): 

w ec DBH•.5 (9) 

Thus the 3/2 power law can be rewritten in terms of DBH as: 

In (p) = In (C) - 1.67 In (DBH) (10) 
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The 2.5 exponent in the weight-DBH relationship was derived from trees within a 
stand, but we expect the exponent relating mean weight to DBH between stands to 
be slightly less. Reineke (1933) estimated the slope of the logarithmic relationship 
for maximum numbers of trees per unit area and average DBH as -1.605 for 12 of 
14 tree species evaluated. MacKinney and Chaiken (1935) estimated the slope for 
loblolly pine as-1.707. McArdle and others (1961) tabulated normal densities as 
functions of mean DBH for Douglas-fir, and their values closely approximated a 
log-log relationship with a slope of-1.54. Bailey (1972) estimated the constant 
in Reineke's stand density index model as -1.58 for Pinus radiata in New Zealand. 
Satoo (1962) and Curtis (1971) showed these power relationships are interpretable 
as an expression of the allometric relationship between crown area and DBH. As 
such, the slope of the maximum size-density relationship might be expected to vary 
between species. 

Since volume and weight are approximately proportional, the 3/2 power law 
(equation 8) should apply to volume as well as weight and this has been shown for 
Pinus densiflora (Fig. 2). 

Beyond the simple geometric relationships used to explain this law, the real 
causes lie in physiological processes which are genetically controlled. The environ- 
ment can and does affect growth rate, but apparently does not alter maximum plant 
weight for a given plant density--a phenomenon independent of age. Westoby's 
(1977) reformulation of the 3/2 power law has leaf area proportional to density to 
the -3/2 power. By using leaf area instead of ground area, the resulting formulation 
is not subject to variance of leaf area for a given mean plant weight. Westoby shows 
that his reformulated power law eliminates much of the variance in White and 
Harper's (1970) data for Helianthus annus. This formulation of the power law 
will not be discussed further since leaf area is difficult to measure in forest stands, 
and since the small improvement in fit with Helianthus annus data was due to the 
wide variation in leaf area over a range of light regimes, which is unlikely to be 
imposed upon forest stands. 

YIELD-DENSITY RELATIONSHIPS 

The basic relationships between yield and density for any stage of stand develop- 
ment have been mathematically described with varying degrees of complexity and 
success. Holliday (1960) described them in terms relating to two morphological 
groups: vegetative and reproductive. Since the reproductive component of forests 
is a small part of the total yield, it will not be considered further. Vegetative yield, 
however, refers to total dry matter production on an area basis, and is most success- 
fully described by the asymptotic relationship between final yield and density. 

Willey and Heath (1969) reviewed five types of yield-density equations--poly- 
nomial, exponential, Mitscherlich, geometric, and reciprocal---which relate mean 
yield per plant and density for a particular stage of stand development. They con- 
cluded that reciprocal equations "... offer the best possibilities of being able to 
describe yield-density relationships accurately and meaningfully." The family of 
equations they discussed included: 

(i) Shinozaki and Kira (1956): 1/w -- a + bp 

(ii) de Wit (1960): 1/w = (1/PQ) + (i/P) .p 

(iii) Bleasdale and Nelder (1960): 1/w ø --a + bp ø 

(iv) Bleasdale and Nelder (1960): 1/w ø: a + bp½ 

(v) Bleasdale and Thompson (1966): 1/w ø --= a + bp 

(11) 

(12) 

(13) 

(14) 

(15) 
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(vi) Farazdaghi and Harris (1968): 1/w = a + bp• (16) 
where 

w -- mean plant weight 

p = density in plants per unit area. 

The coefficients for these equations (a, b, P, Q, qb, 0, y) are dependent upon the 
stage of stand development; for particular values of the coefficients, the equations 
all reduce to the simple form of equation 11. 

Derivation of these equations from biological principles differs between equations. 
Several, including the equation by Shinozaki and Kira (1956), start with a logistic 
growth equation which defines plant weight as a function of age. This logistic 
growth equation does not refer to population trends as the original usage of the 
term "logistic growth" implied. 

A derivation of this logistic growth equation for an individual plant develops from 
the assumption that the rate of change of mean weight (w) with respect to time (t) 
is proportional to that fraction of final weight (W) not yet achieved: 

dw/dt o: [1 - (w/W)] (17) 

For different individuals, each at the same relative stage of development: 

dw/dt o: w (18) 

Combining equations (17) and ( 18 ): 

dw/dt o: w [1 - (w/W)] (19) 

or 

(l/w) (dw/dt) = X [1 - (w/W)] (20) 

Integrated over time: 

w = W/(1 +Ke -x•) (21) 

This is a common form of the logistic growth equation. 
This form of logistic equation models growth independently of density, and is 

applicable in the period following germination when no inhibitory effects of density 
exist. When growth equations other than logistic are adopted, "this assumption 
(of non-competition) is to be replaced by some other complicated conditions in 
which the growth coefficient correspondent to X usually depends on p" (Shinozaki 
and Kira 1956). 

Shinozaki and Kira went on to develop their reciprocal yield equation which 
included the law of constant final yield formulated by Hozumi and others (1956). 
The law of constant final yield states that final (as time approaches infinity) yield 
per unit area (Y) is constant and independent of density. Thus: 

W = Y/p (22) 

Initial or precompetition plant size (w0) is independent of density, and the logistic 
growth equation estimates initial plant weight as: 

Wo = W/(1 + K) (23) 

Equations (22) and (23) were combined: 

wo = (Y/p)/(1 +K) (24) 
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K = [Y/(Wop)]- 1 

With K defined, the logistic growth equation becomes: 

1/w: (l/W).(1 +Ke -xt) 

Defining A and B at a particular age: 

A = (1 -e-Xt)/Y 

B = e-XVWo 

and rewriting equation 26, with W replaced 

(25) 

(26) 

through equation 

(27) 

(28) 

22, K replaced 
through equation 25, and incorporating the definitions of A and B, the reciprocal 
yield law of the competition-density effect was defined: 

1/w = Ap + B (29) 

Equation 29 can be stated on a unit area basis by defining the current yield (y) as 
the product of mean weight and density: 

y = p/(Ap + B) (30) 

Equation 29 is referenced in Japanese literature as the reciprocal law of the compe- 
tition-density effect and the yield form (equation 30) is referenced as the reciprocal 
equation of the yield-density effect. Either equation enables yields being achieved 
by different planting densities to be compared at any point in time. These relation- 
ships have been demonstrated by Shinozaki and Kira (1961) with data for soybean 
(Fig. 3). 

For a given age, equation 29 defines a line that relates mean weight to density 
(Fig. 3); subsequently as age increases, yield becomes density independent (Fig. 3). 
A similar relationship (Fig. 4) showing volume per hectare as a function of density 
was developed by Ando (1968) from data for Pinus densiflora. Although the two 
heaviest densities show substantial mortality, the basic reciprocal relationship is 
easily discernible. 

The A and B coefficients of the reciprocal yield law are constant for any stage of 
stand development, which was originally described by stand age. Ando (1962) 
utilized the established concept of mean stand height as a scale of biological time 
and, for groups of stands with a common mean height, related the A and B coeffi- 
cients to that height. Using Cryptomeria japonica (planted in Japan and Formosa), 
Pinus densiflora, and Larix leptotepis, he plotted the A and B coefficients against 
mean stand height on log-log paper to produce a straight line represented by the 
relationships: 

A =aH -• (31) 

B = a'H -•' (32) 

The coefficients (a, b, a', b') vary with the species. 
Further, Hatiya and Ando (1962) offered a derivation of these equation forms 

to predict the A and B coefficients as functions of mean stand height. 

THE MAXIMUM SIZE-DENSITY RELATIONSHIP AND THE RECIPROCAL EQUATION 

The density-effect relationship given by the reciprocal yield equation describes mean 
plant weight as a function of density before substantial mortality occurs. The 3/2 
power law estimates maximum mean plant weight as a function of density in stands 
where substantial mortality is occurring maintaining this maximum condition. This 
relationship is independent of initial stocking and the stage of stand development. 
A transitional period exists between the stand being described by the reciprocal 
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FIGURE 4. The relationship between the log- 
arithms of mean stem volume, stem vol- 
ume per hectare and density for Pinus 
densi/Iora var. lime (Ando 1968). 

FIGURE 3. The relationship between the logarithms of mean plant weight, dry matter yield and 
density for periods of growth following sowing of soybean (Glycine max (L.) Merr) 
(Shinozaki and Kira 1961). 

yield law and when it follows the 3/2 power law. This transitional period requires 
additional equations to resolve the apparent conflict of two different estimates for 
mean plant weight at the onset of self-thinning. 

The conflict between the two laws is presented for buckwheat (Fagopyrum sagit- 
tatum) in Figure 5. Here the reciprocal law is represented by a family of solid lines, 
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turn) as they develop in time (Yoda and 
others 1963). 

and the 3/2 power law by a broken line. Each of six density regimes is represented 
by five points. The less dense plots do not decrease in density over time, as do 
the plots with high initial densities. Sufficient mortality occurs so that the points fall 
either close to or below the broken line which represents the 3/2 power law. Thus, 
the reciprocal yield law is applied to all stands, even though competition-induced 
mortality is occurring. 

Initially, a plantation develops virtually free of intraspecific competition during 
which time mortality percent is independent of density. The occurrence of competi- 
tion-related mortality is limited to stands meeting certain size-density criteria which 
are defined for Pinus radiata later in the discussion. 

FOREST MANAGEMENT APPLICATIONS 

Yield tables developed by Tadaki (1963, 1964) for Cryptomeria japonica allow 
future yields to be estimated for managed stands under various thinning regimes. 
Included are the full stocking line of the 3/2 power law, reciprocal curves relating 
mean volume to density for selected mean heights, and natural thinning curves 
relating density to mean volume. These latter curves are of the form: 

1/p = Av + B (33) 

Coefficients are chosen to cause the p - v trend to become tangent to the full stock- 
ing line, but the mortality data used to justify these trends are very limited. Sample 
thinning regimes were constructed on the assumption that thinnings from below do 
not alter the relationships expressed by the reciprocal equation. Thinnings were 
simulated when stand densities reached 30, 50, and 70 percent of the full density for 
their mean volumes. Mortality after thinning was assumed to correspond with the 
natural thinning curves for stands with the same mean volume and density. The 
results were not, however, subjected to validation with real data, and Tadaki (1963) 
concluded that "this method must be further discussed and improved in the future." 

Ando (1968) constructed yield tables and density control diagrams, which re- 
lated height, diameter, volume and density to each other, for Cryptomeria japonica, 
Chamaecyparis obtusa, Pinus densiflora, and Larix leptolepis. These included thin- 
ning regimes based on maintaining a fixed percentage of the full stocking yield for 
a given height. The A and B coefficients of the reciprocal equation (equation 29) 
were expressed as functions of height. Separate control diagrams were recom- 
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mended for different districts, but average diagrams were presented for each species. 
No solid statistical justification is given for using the individual district diagrams 
rather than the average diagram. 

Aiba (1975b) devised a similar density control diagram for Cryptorneria japonica 
plantations which can be used to construct thinning regimes and also to estimate the 
future yields of stands for density-volume combinations outside the scope of the 
reciprocal yield law. While stands with lower densities due to either heavy thinning 
or high natural mortality were not used by Aiba in the construction of the recip- 
rocal curves, the resulting equations can project the growth of these stands. 

AN APPLICATION OF JAPANESE THEORIES TO Pinus radiata PLANTATIONS 

The Japanese theories concerning yield-density relationships, which were discussed 
earlier, are applied to permanent sample plot data from unthinned New Zealand 
plantations of Pinus radiata • in order to give a comprehensive example of their use 
and to test the adequacy of the equations. The same data had previously been 
analyzed and reported by Bailey (1972) and used by Clutter and Allison (1974). 
Measurement of most of the 54 plots used was begun in 1925 at age 6 and repeated 
at ages 7, 16, 19, and 23 with annual measurement from age 23 to 39 or 40. A 
major infestation by the wood wasp $irex noctilio Fabr. began in 1946. At each 
measurement, diameters at breast height (DBH) were tallied and sufficient heights 
taken to calculate mean stand height (H) and predominant mean height (HD). The 
latter is the mean of the heights of 40 trees, each the tallest on its 1/40th of an acre 
(0.010 ha). 

Calculation of plot volumes was based on the work of Lewis (1954) and Beek- 
huis (1966). Lewis developed a stand volume/basal area ratio as a function of 
height which was mathematically described by Beekhuis as a stand volume equation 
estimating volume (V) to basal area (BA) as a function of top height (or site 
height). That this relationship might prove to be largely unaffected by density was 
suggested by Beekhuis and verified by Fenton and others (1968). Top height 
closely approximates predominant mean height and "for most purposes (they) may 
be considered synonymous" (Beekhuis 1966). Beekhuis' volume equation can be 
expressed in metric units with a substitution of HD for H as: 

V/BA = 0.9144 + 0.3 Hv (34) 

Figure 6 shows all of the data in terms of mean tree volume and density expressed 
as trees per hectare, with lines representing the history of selected single plots and 
the shaded area representing the general range and trends for all data. The maxi- 
mum size-density relationship for this data is shown by the heavy line with a slope 
of -3/2 positioned immediately above the scatter of plot data (Fig. 6) and is 
described by: 

In (v) = 10.08- 3/2 In (p) (35) 

There is an obvious indication that the plots were developing rapidly toward some 
upper limit but fell away from it soon after the onset of the Sirex attack. High 
mortality continued for approximately 16 years and then subsided, allowing the 
plots to once again approach this maximum size-density relationship. An inde- 
pendent approximation of the maximum size-density relationship is provided by 
data from P. radiata plantation spacing trials of the New Zealand Forest Service at 
Tarawera '2 (Fig. 7). In the average size-density trends for four spacings ranging 

• Data provided by A. W. Grayburn, New Zealand Forest Products Limited. 
• Data was provided by Ryde James, of the Forest Research Institute, New Zealand Forest 

Service. 
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from 1328 to 5312 stems per hectare, the upper line is not meaningfully different 
from that constructed from the plots in our original data which were generally at 
lower densities. The Tarawera plots with high initial densities are reaching the full 
stocking condition, whereas plots with lower initial densities are experiencing a 
small amount of competition-induced mortality but have yet to reach a maximum 
size-density condition. 

We define a zone of imminent competition-mortality as the region above the 
lower line in Figure 6 where density can substantially affect mortality. The lower 
limit is described by: 

In (v) = 9.16 -3/2 In (p) (36) 
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FIOURE 7. The maximum size-density relationship for Pinus radiata established from N. Z. 
Forest Products Ltd. data and stand development patterns at Tarawera at four spacings. 

The lower bound of the zone of imminent competition-mortality was drawn parallel 
to the upper stocking line and immediately below the onset of significant mortality 
for most of the plots. Within this zone mortality may be related to competition, 
whereas below it mortality is independent of density. Competition-related mortality 
may be due to any causal agent (Spurr 1962). The position of the lower boundary 
is not exactly known. Three of the plots in Figure 6 had yearly mortality exceeding 
5 percent before reaching the defined lower bound of the zone of imminent compe- 
tition-mortality. Whether this is related to density cannot be determined. 

Next, the competition-density relationship expressed by the reciprocal yield equa- 
tion (29) was fitted to the data and the coefficients related to mean height (equa~ 

TABLE 1. A and B coefficients of the reciprocal yield equation for selected 
heights. 

Number of 

Ho (m) data points R • A X 1000 B 

15 15 0.31 2.90 3.86 
20 11 

25 47 .78 1.63 .51 
30 47 .81 1.24 .41 
35 54 .64 1.03 .33 
40 54 .45 .85 .22 
45 48 .56 .77 .12 
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FIGURE 10. A graphical representation of the 
Pinus radiata growth model with mean 
tree volume expressed as a function of the 
logarithms of density and predominant 
mean height. 

tions 31 and 32). Since estimates of mean tree volume and density at particular 
ages or heights were needed, the data sets for each plot had to be interpolated. Sec- 
ond degree polynomial splines were fitted to height, density, and volume data for 
each plot. Their intercepts with the desired age or height line were then calculated. 
By restricting interpolation to periods of not over 4 years, the number of data 
points was reduced and errors minimized. For each set of points obtained by this 
method the reciprocal of mean volume (l/v) was regressed against density (p). 
An example is shown in Figure 8 where each point represents a stand with a mean 
height of 25 meters. Similar regressions were performed for several heights and 
ages, and the constant height relationships were found to be consistently better than 
the constant age relationships, as suggested by Ando (1962). Reciprocal equation 
regressions were developed for heights from 15 m through 45 m (Table 1). Below 
15 m, slopes of the regressions were not significantly different from zero at the 95 
percent confidence level; the 20 m height class was omitted due to insufficient sam- 
ple points; and, for the 25 m height class, longer interpolation periods were allowed 
in order to increase the number of data points. Figure 9 shows the log-log relation- 
ships of ,4 and B against predominant mean height. These relationships are equiva- 
lent to: 

A = 0.08383 HD -l'2ae8 (37) 

B = 8849 HD -2'0186 (38) 

The coefficients of these equations are of the same order of magnitude as reported 
by Ando (1962) for other conifer species. The resulting competition-density rela- 
tionships are presented in Figure 10. 
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mean height and current density for four combinations of initial density and site index. Site 
indices are based on age 25. 

There has been concern that the upper stocking line can vary with initial planting 
density, and it has been suggested that low initial densities may lead to high upper 
stocking lines. a To examine this concern, we regressed density at the check line 
shown in Figure 6 against plot variables that included initial density, aspect, eleva- 
tion, and several soil characteristics. The check line had been drawn perpendicular 
(ln v = 33.136 + 5.9296 In p) to the volume/density trends in a region where these 
trends were essentially parallel to one another on the assumption that differences in 
maximum stocking would be evident there. 

No regression line could be generated at the 95 percent confidence level, even 
though there was a positive correlation between density at the check line and initial 
density; the correlation could explain only 5 percent of the variation in the former 
value. This demonstrated weakness of the correlation is more important than 
whether high initial density causes a slightly higher or lower upper stocking line. 

Residuals from estimated mean tree volumes--predicted from predominant mean 
height and current density-•for 53 plots were portioned into 4 subsets according 
to site and initial density (Fig. 11 ). Then for each plot percent error in the estima- 
tion of mean tree volume was computed for different points in time. Positive 
residuals correspond to overestimates. Though the estimation errors appear to be 
large, it should be recognized that: 

(i) at young ages there is almost no correlation between mean volume and 
density, so the scatter at age 6 is purely random variation and is to be 
expected. 

(ii) although only four coefficients (equations 37, 38) were used, the magnitude 
of the volume estimates is approximately correct over a range of mean tree 
volumes from 0.005 to 5.0 m a. 

• Mitchell, Kenneth J., in Forest Ecology Workshop presentation, Durham, N. C., December 
1975. 
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TABLE 2. Predicted yields for initial densities of 800 and 1500 trees per hectare 
at site indices 34.1 and 39.7 meters. 

SITE INDEX 34.1 rn at base age 25 
(80 feet at age 20) 

Initial density 800 Initial density 1500 

DBH H•> V p DBH H•> V p 
Age (crn) (m) (mS/ha) (trees/ha) Age (cm) (rn) (myha) (trees/ha) 

6 9.9 6.4 17 800 6 9.3 6.4 29 1500 
12 22.2 16.8 180 780 12 18.8 16.8 241 1463 
18 28.4 25.7 415 761 18 25.5 25.7 464 1056 
24 34.2 33.0 608 614 24 34.2 33.0 608 614 
30 41.6 39.1 730 426 30 41.6 39.1 730 426 
36 48.0 44.3 833 325 36 48.0 44.3 833 325 
42 53.5 48.7 924 264 42 53.5 48.7 924 264 

SITE INDEX 39.7 rn at base age 25 
(95 feet at age 20) 

6 13.4 8.8 40 800 6 12.2 8.8 63 1500 
12 25.4 21.0 286 780 12 20.9 21.0 361 1463 
18 31.5 30.8 564 712 18 31.5 30.8 564 712 
24 40.9 38.5 719 438 24 40.9 38.5 719 438 
30 48.7 44.9 846 316 30 48.7 44.9 846 316 
36 55.3 50.2 954 249 36 55.3 50.2 954 249 
42 61.0 54.7 1•47 207 42 61.0 54.7 1047 207 

Two obvious biases are an underestimate of growth beyond age 30 for most of 
the plots and underestimates of final yield on the plots with low initial densities. 
The difference in residuals between plots with high and low initial densities shows 
a bias which is to be expected in the reciprocal yield law (equation 29), because its 
derivation assumes density is constant over time. 

However, substantial changes in density occur in the zone of imminent competi- 
tion-mortality. For two stands at similar stages of development (same dominant 
height), with one subject to competition mortality, but the other at a lower density 
and therefore not manifesting such mortality, certain differences can be expected. 
The trees of the denser stand will be growing at slower rates, as described by the 
reciprocal equation of the competition density effect, and if mortality occurs so that 
the stands arrive at the same density level, the remaining trees will have smaller 
mean volumes than the trees in the originally less dense stand. The reciprocal yield 
law, which does not take mortality into account, would not recognize this and would 
estimate equal mean tree volumes for the two stands. Ando (1968) assumed that 
any thinning from below, either natural or artificial, would change density and mean 
tree size in such a way as not to invalidate the reciprocal equation. However, Aiba 
(1975a) in examining data from plantations immediately after thinning concluded 
that the reciprocal equation could not adequately account for the effects of thinning. 
The same conclusion can be drawn for naturally thinned stands after examining the 
biases in Figure 11. The reciprocal equation should be modified to incorporate the 
effect of different past densities on current mean tree volume. 

Sample yield tables are presented in Table 2; they incorporate the maximum 
size-density relationship (equation 35), the reciprocal yield coefficient relationships 
(equations 37 and 38), and site curves from Bailey and Clutter (1974). No density 
dependent errors were discernible in the site curves. Mortality was assumed to be 
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FIGURE 12. A comparison of estimated den- 
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0.42 percent per year until the plots reached the middle of the zone of imminent 
competition-mortality. Stand parameter estimates in this multiple-density yield 
table are of the same order of magnitude as the mean results presented by Lewis 
(1954) and Spurt (1962). 

THE MODEL'S UTILITY 

The early yield table for unthinned Pinus radiata by Lewis (1954) relied on a 
graphical description of the gross trends in permanent plots; whereas Spurr (1962) 
went one step further and characterized the relationship between growth rate and 
mortality. Spurt observed "that trees destined to die in a given year invariably 
declined in annual basal area increment over at least the 12 years prior to their 
death .... When their annual basal area increment dropped below 0.02 sq. ft. 
(18.6 cm•), trees on the average had eight years to live regardless of the actual 
cause of death." This recognition that competition eventually leads to certain mor- 
tality is also found in the maximum size-density relationship. A further advantage 
of the maximum size-density relationship is that it reflects the species potential, 
whereas with Spurr's (1962) empirical approach, the temporary reduction in den- 
sity due to Sirex has become embodied in a yield table which continues to under- 
estimate net yields even though Sirex is under control. 

Beekhuis (1966) recognized that mortality due to Sirex was abnormal and should 
not be incorporated in future yield projections. However, his relative spacing 
method of estimating maximum density for a given mean stand height could not be 
verified since "... none of the plots... have yet reached the stage at which they 
maintain a constant maximum density..." (Beekhuis 1966). Bailey (1972) and 
Clutter and Allison (1974) developed relationships for survival percent as functions 
of age. Other flexible mathematical models were used to describe many stand 
parameters, but little attempt was made to describe stand condition that might ex{'st 
if planting densities had been greatly different or if the Sirex outbreak had not 
occurred. Our zone of imminent competition-mortality is compared with a similar 
zone defined by Beekhuis (1966), and local yield tables by Lewis (1954) and Spurt 
(1962) in Figure 12. 
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The model which we have presented is not the best possible characterization of 
the test data set, but it is a biologically derived model which can aid in the under- 
standing of the interaction between the stand parameters of age, height, density, and 
mean volume. 

RECOMMENDATIONS 

Plantation development can be viewed in terms of the fundamental concepts of 
competition and self-thinning presented here. The reciprocal equation, the full 
stocking line and the zone of imminent competition-mortality, or refinements of 
these relationships, can be used in identifying the density-related growth and mor- 
tality characteristics of a species. Experimentation can be directed towards the 
early determination of the coefficients for these models; for example, high density 
stands can be planted to quickly determine the full stocking line. The use of these 
simple models will aid in the prediction of yield for situations that are rapidly 
changing through the application of genetics and refined silvicultural practice. 
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