# **DRUG CALCULATIONS**

## 2% Xylazine

• Dose: 0.025 mg/Kg

• Concentration: 20 mg/mL

• Weight of Calf #223: 130 Kg

 $Volume = \frac{Weight \times Dose}{Concentration}$ 

 $Volume = \frac{130 \ Kg \times 0.025 \ mg/Kg}{20 \ mg/mL}$ 

 $Volume = 0.16 \, mL$ 

#### 10% Ketamine

• Dose: 0.5 mg/Kg

• Concentration: 100 mg/mL

• Weight of Calf #223: 130 Kg

 $Volume = \frac{Weight \times Dose}{Concentration}$ 

 $Volume = \frac{130 \; Kg \; \times 0.5 \; mg/Kg}{100 \; ma/mL}$ 

 $Volume = 0.65 \, mL$ 

#### Combikel

• Dose: 10,000 IU/Kg

• Concentration: 200,000 IU/mL

• Weight of Calf #223: 130 Kg

 $Volume = \frac{Weight \times Dose}{Concentration}$ 

 $Volume = \frac{130 \; Kg \; \times 10,000 \; IU/Kg}{200,000 \; IU/mL}$ 

 $Volume = 6.5 \, mL$ 

#### 5% Flunixin

• Dose: 1.1 mg/Kg

• Concentration: 50 mg/mL

• Weight of Calf #223: 130 Kg

 $Volume = \frac{Weight \times Dose}{Concentration}$ 

 $Volume = \frac{130 \; Kg \; \times 1.1 \; mg/Kg}{50 \; mg/mL}$ 

 $Volume = 2.86 \, mL$ 

### 2% Lidocaine

• Dose: 2 mg/Kg

• Concentration: 20 mg/mL

• Weight of Calf #223: 130 Kg

 $Volume = \frac{Weight \times Dose}{Concentration}$ 

 $Volume = \frac{130 \ Kg \times 2 \ mg/Kg}{20 \ mg/mL}$ 

Volume = 13 mL

**NB**: For simplicity, **14 mL** of Lidocaine was used. This was divide into 2 giving 7 mLs of Lidocaine per site

# Toxic Dose of 2% Lidocaine

• Dose: 10 mg/Kg

• Concentration: 20 mg/mL

• Weight of Calf #223: 130 Kg

NB: 1/2 Toxic Dose was used

 $Volume = \frac{Weight \times Dose}{Concentration}$ 

 $Volume = \frac{130 \ Kg \times 5 \ mg/Kg}{20 \ mg/mL}$ 

 $Volume = 32.5 \, mL$ 

∴ Do **NOT** exceed 32.5 mLs of Lidocaine

# **DRUG CALCULATIONS**

# **EMERGENCY DRUGS**

Tolazonine (2-4 x Xylazine Conc. Rate)

- Dose:  $(0.025 \times 2) = 0.05 \text{ mg/Kg}$
- Concentration: 100 mg/mL
- Weight of Calf #223: 130 Kg

$$Volume = \frac{Weight \times Dose}{Concentration}$$

$$Volume = \frac{130 \ Kg \times 0.05 \ mg/Kg}{100 \ mg/mL}$$

$$Volume = 0.065 \, mL$$

## Atropine

- Dose: 0.04 mg/Kg
- Concentration: 0.54 mg/mL
- Weight of Calf #223: 130 Kg

$$Volume = \frac{Weight \times Dose}{Concentration}$$

$$Volume = \frac{130 \ Kg \times 0.04 \ mg/Kg}{0.54 \ mg/mL}$$

$$Volume = 9.6 \, mL$$

## **Epinephrine**

- Dose: 0.02 mg/Kg
- Concentration: 1 mg/mL
- Weight of Calf #223: 130 Kg

$$Volume = \frac{Weight \times Dose}{Concentration}$$

$$Volume = \frac{130 \ Kg \times 0.02 \ mg/Kg}{1 \ mg/mL}$$

$$Volume = 2.6 \, mL$$

<u>NB</u>: The 3 emergency drugs listed were not used during this procedure.