ELECTROLYSIS OF WATER

Water molecules are attracted to

- anode (positive electrode) to undergo oxidations or
- cathode (negative electrode) to undergo reduction.

Anode (ox): $2 H_2O(1) \rightarrow O_2(g) + 4 H^*(aq) + 4 e^*$

Volume of H₂ gas is twice the volume of O₂ gas

Overall (cell) reaction

$$2H_2O(l)$$
 \longrightarrow $2H_2(g) + O_2(g)$

ELECTROLYSIS OF AQUEOUS SOLUTION

Factors affecting the selective discharge of ions at electrodes

Value of Standard Electrode Potential, E°

- **Species with more** positive value E° will have a greater tendency to be reduced.
- **Species with more** negative value of E° will have a greater tendency to be oxidised.

Concentration of ions in electrolyte

Ions with higher concentration will be discharged first. Types of electrode used

- Inert electrodes such as carbon or platinum do not take part in the reactions.
- Active anode such as copper or zinc ionises during electrolysis.
- Active electrodes are used in **Industrial Application Of Electrolysis** involving
 - **Electroplating and**
 - **Purification of a metal**

ELECTROLYSIS OF AQUEOUS SODIUM CHLORIDE, NaCl

★ Species in the solution: Na⁺, Cl⁻, H₂O

★ We must consider whether water molecules or ions of the salt are discharged at electrodes.

★ Species attracted to cathode are Na⁺ and H₂O.

★ Species attracted to anode are Cl⁻ and H₂O.

Dilute NaCl

Since E°_{red}(H₂O) is more positive (less negative) than E°_{red}(Na⁺), H₂O has a greater tendency to be reduced than Na⁺.

Cathode (red):
$$2H_2O(l) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$$

- Hydrogen gas is liberated at cathode.
- E°_{red}(H₂O) is more negative than E°_{red}(Cl⁻), H₂O will be oxidised in preference to Cl⁻.

Anode (ox):
$$2H_2O(l) \longrightarrow O_2(g) + 4H^+(aq) + 4e^-$$

Oxygen gas is liberated at anode.

Concentrated NaCl

E°_{red}(H₂O) is more positive (less negative) than E°_{red}(Na⁺), the reduction of H₂O is far more favourable than the reduction of Na⁺.

Cathode (red):
$$2H_2O(l) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$$

- Hydrogen gas is liberated at cathode.
- Since concentration of Cl⁻ is greater than that of H₂O, Cl⁻ will be oxidised rather than H₂O.

 NOTE: E° values of two competing species are very small. Concentration factor is SIGNIFICANT.

Anode (ox):
$$2CI^{-}(aq) \longrightarrow CI_{2}(g) + 2e^{-}$$

- Chlorine gas is liberated at anode.
- The solution becomes basic as OH⁻ ions are formed at cathode.

Standard Electrode Potential or Standard Reduction Potential for the species involved

Na⁺ (aq) + e⁻
$$\rightarrow$$
 Na (s) $E^{\circ} = -2.71$

$$2H_{2}O(I) + 2e^{-} \rightarrow H_{2} (g) + 2OH^{-} (aq) \qquad E^{\circ} = -0.83$$

$$CI_{2} (g) + 2e^{-} \rightarrow 2CI^{-} (aq) \qquad E^{\circ} = +1.36$$

$$O_{2} (g) + 4e^{-} + 4H^{+}(aq) \rightarrow 2H_{2}O(I) \qquad E^{\circ} = +1.23$$

ELECTROLYSIS OF AQUEOUS SODIUM SULPHATE, Na₂SO₄

- **★** Species in the solution : Na⁺, SO₄²⁻, H₂O
- ★ Species attracted to cathode: Na+, H₂O
- Since E°_{red}(H₂O) is more positive than E°_{red}(Na+), H₂O has a greater tendency to be reduced than Na+.
- ★ Species attracted to anode: SO₄²⁻, H₂O
- E°_{red}(H₂O) is more negative than E°_{red}(SO₄²⁻). So, H₂O has a greater tendency to be oxidised than SO₄²⁻. S in SO₄²⁻ is hardly to be oxidised due to its high oxidation number.
- The net result is the electrolysis of water.

Cathode(red):
$$2H_2O(l) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$$
 2

Anode (ox): $2H_2O(l) \longrightarrow O_2(g) + 4H^+(aq) + 4e^-$

Overall reaction: $6H_2O(l) \longrightarrow 2H_2(g) + 4OH^-(aq) + 4H^+(aq) + O_2(g)$
 $2H_2O(l) \longrightarrow 2H_2(g) + O_2(g)$

ELECTROCHEMICAL SERIES

Ease of discharge/being reduced

Cations

K+ Na+ Ca²⁺

Mg²⁺

 H_2O

Zn²⁺

Fe²⁺

Sn²⁺

Pb²⁺

H+

Cu²⁺

Ag+

Anions

F-

SO₄²⁻

NO₃-

CI-

 H_2O

Br-

ŀ

OH-

Ease of discharge/being oxidised