
Received October 3, 2017, accepted October 31, 2017, date of publication November 15, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2774105

A Lightweight Pseudorandom Number Generator
for Securing the Internet of Things
AMALIA BEATRIZ ORÚE LÓPEZ , (Member, IEEE), LUIS HERNÁNDEZ ENCINAS,
AGUSTÍN MARTÍN MUÑOZ, AND FAUSTO MONTOYA VITINI
Department of Information and Communications Technologies, Institute of Physical and Information Technologies, CSIC, 28006 Madrid, Spain

Corresponding author: Amalia Beatriz Orúe López (amalia.orue@iec.csic.es)

This work was supported in part by the Ministerio de Economía y Competitividad, Spain, under Project TIN2014-55325-C2-1-R
(ProCriCiS), in part by the Comunidad de Madrid, Spain, under Project S2013/ICE-3095-CM (CIBERDINE), and in part
by the European Union FEDER Funds.

ABSTRACT Lightweight cryptography aims to address the security demands in resource-constrained
hardware and software environments, such as the Internet of Things (IoT). These constraints severely limit
solutions offered by conventional cryptographic primitives, which turn too expensive to achieve. In this
paper, a lightweight pseudorandom number generator that fits the IoT demands is presented. It has a good
performance on Atmel 8-bit AVR and Intel Curie 32-bit microcontrollers. The analysis of the hardware
complexity in terms of gate equivalent confirms that it is suitable for the IoT.

INDEX TERMS Security, random number generator, internet of things, lightweight cryptography,
microcontrollers.

I. INTRODUCTION
The Internet of Things (IoT) paradigm is based on the inter-
connections among ubiquitous and highly heterogeneous net-
worked ‘‘things’’ such as sensors, actuators, smartphones,
etc., whose pervasive use can be attributed to the advanced
developments in communications, sensor technologies and
networking capabilities, mobile devices, cloud computing,
etc. Since in many cases the IoT is related to user’s daily life,
security and privacy requirements must be fulfilled [1]. How-
ever, traditional security measures cannot be directly applied
to the IoT due to the different standards and communica-
tion technologies involved. The large number of resource-
constrained nodes typically employed in the IoT requires the
use of lightweight cryptographic primitives.

Lightweight cryptography is composed of a group of
cryptographic primitives customized for constrained environ-
ments [2]. The term resource-constrained environment is used
to describe a development platform that has a reduced design
space. For example, in hardware implementations, chip size,
energy consumption (e.g. battery life), hardware memory,
computation latency, communication bandwidth, etc., should
be considered to evaluate the lightweight properties. All hard-
ware lightweight primitive implementations attempt to ful-
fil their essential functionalities using the minimum size
of hardware dice. The efficiency of the implementation
depends on the design complexity, the technology used, the

throughput, and the energy consumption. The hardware com-
plexity is determined by the number of logic gates required to
implement the pseudorandom number generators (PRNGs).
It is measured by means of the ‘‘gate equivalent’’ (GE).
In CMOS technology, one GE stands for the silicon area
occupied by a NAND2 gate; therefore, it is used intuitively
to express the chip area of a design. GE has the particularity
that different technologies and standard-cell libraries lead to
different results.

In the case of software implementations, it is necessary to
pay attention to the execution time, the RAM consumption
(RAM footprint) and the code size. As a consequence, design-
ers are limited by the available resources and often choose a
minimalist approach, without considering the security risks
this could represent for the potential users.

True Random and Pseudorandom Number Generators
(TRNG and PRNG, respectively) are two of the most impor-
tant building blocks of cryptosystems. They are used to
generate confidential keys, challenges, and nonces. They
are also employed in authentication protocols and even in
countermeasures against hardware attacks [3]. In the con-
strained devices of the IoT applications, cryptographically
secure PRNGs are difficult to attain due to hardware/software
limitations. Only a few descriptions of these PRNGs can
be found in the reviewed literature, and some of them have
security issues [4].

27800 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 5, 2017

https://orcid.org/0000-0002-4422-5004


A. B. Orúe López et al.: Lightweight Pseudorandom Number Generator for Securing the IoT

This work proposes Arrow, a lightweight PRNG that
belongs to the Trifork’s PRNG family [5], whose struc-
ture is suited for resource-constrained devices. The structure
of Arrow consists of two coupled Lagged Fibonacci Gen-
erators (LFG), mutually scrambled, suitable to secure the
great majority of the IoT applications, like those used in
smart cards, Radio Frequency Identification (RFID) tags, and
wireless sensor nodes.

The rest of this paper is organized as follows. In section II
the most important published works about the use of PRNGs
in constrained devices are reviewed. Our proposed PRNG,
Arrow, is presented in depth in section III. The characteris-
tics of its implementation in different platforms, and some
results are discussed in section IV. Conclusions are presented
in section V.

II. RELATED WORK
In the reviewed literature, several lightweight crypto-
graphic primitives have been proposed to provide secu-
rity to resource-constrained devices. We especially focus
on cryptographically-secure PRNG designs for resource-
constrained devices.

Francillon and Castelluccia [6] designed and implemented
TinyRNG, a cryptographic pseudorandom number generator
which uses the received bit errors as a source of randomness
in wireless sensor nodes. The authors based their imple-
mentation on MICA2 motes. Lo Re et al. [7] presented an
improved version of the TRNG proposed in [8] that uses
measurements obtained from the wireless sensor nodes as
the sources of physical randomness. Their method uses a
distributed leader election algorithm for selecting the random
source of data. Lo Re et al. implemented the proof of concept
using 60 TelosB nodes deployedwithin an area of 25×15 m2.
Additionally, the robustness of the TRNG algorithm against
several attacks was evaluated.

TheWarbler PRNG family for low-cost smart devices such
as sensor nodes was presented in [9]. It is based on the combi-
nation of modified de Bruijn blocks and aWelch-Gong (WG)
nonlinear feedback shift register. Two instances of Warbler
with different security levels, implemented using a 65 nm
CMOS process, were presented. The two proposed instances
are suitable for securing low-cost smart devices. In [10],
an important distinguishing attack against the whole WG
family of stream ciphers shows that almost every member of
this family is vulnerable to linear attacks; this could represent
a threat to the security of Warbler PRNGs.

A PRNG named LAMED was presented in [11] for RFID
tags applications. Its design is based on a Genetic Program-
ming algorithm and has an internal state of 64 bits, with a
32-bit key and a 32-bit initial vector.Modular algebra, bitwise
XOR operations and bit rotations are the basic operations
used for updating the internal state of the PRNG. Two ver-
sions of the generator were proposed. The first one is a 32-bit
PRNG, and the second one is a 16-bit PRNG for EPC Gen2
compatibility. The NIST, ENT and Diehard statistical test
suites were used to validate the randomness of the generators.

The hardware complexity analysis of both versions of the
generator confirms that it meets the requirements imposed by
low-cost technology, i.e., GE ≤ 4000 gates, [12], [13].

In [14], the J3Gen PRNG was proposed, based on the
previous work in [15]. The J3Gen combines a thermal-
noise TRNG and a Dynamic Linear Feedback Shift Reg-
ister (DLFSR) of n cells, and has four main blocks: an
oscillator-based TRNG, a DLFSR architecture, a Decoding
Logic, and a Polynomial Selector. The approximate hard-
ware complexity of this PRNG, in terms of GE, is suitable
for constrained devices. The security equivalent key size
is 372 bits. The J3Gen PRNGwas successfully cryptanalyzed
by Peinado et al. [4] who showed the vulnerabilities of the
algorithm by means of a probabilistic attack and a determin-
istic attack. The former allows to recover the set of feedback
polynomials, which constitute the secret information of the
PRNG. The latter allows the attacker to reconstruct the entire
output sequence of the PRNG by the knowledge of only a few
bits of the sequence.

III. ARROW: A COMBINATION OF TWO
MUTUALLY-SCRAMBLED LAGGED
FIBONACCI GENERATORS
The lagged Fibonacci pseudorandom number generator has
become increasingly popular due to its relative low cost, and
the fact that it is simple to implement. Its general form is:

LF[r, s,m; {x0, . . . , xr−1}],

where r > s > 0 are the lags of the past samples, m is
the base, and {x0, . . . , xr−1} is a sequence of r initial values
(seeds). For n ≥ r the sequence is characterized by amapping
of the type xn = xn−r + xn−s, where {xn} denotes the output
sequence and n denotes the time.
When m = 2N , N being the word length, and the trinomial

xr + xs+1 is irreducible and primitive over GF(2), the maxi-
mum period p is reached (on condition that at least one of the
seed values must be odd), and its value is p = 2N−1(2r − 1).

However, LFGs have some limitations referred to ran-
domness and security. On one hand, they fail to pass cer-
tain randomness tests. For instance, the LFGs ran3, Ranlux,
ranlxs0, and zuf, of the GSL-GNU RNGs library [16], fail
to pass the Birthday Spacing test of the Marsaglia’s Diehard
test suite [17]. On the other hand, LFGs suffer from a lack
of security, because a simple mathematical analysis of the
sequence of past generated numbers allows to predict the
subsequent numbers [18]. Furthermore, in order to have a per-
fect random behavior and sufficiently large periods, the LFGs
must have large lags but, due to its state being proportional to
the lag, this will in turn imply the need of a large amount of
memory [19], making them unsuitable for applications with
limited resources such as those used in the IoT.

A. ARROW: A SECURE PRNG FOR THE IoT
To avoid the above mentioned problems a more elaborated
architecture, named Arrow, is proposed. Arrow PRNG struc-
ture is depicted in Fig. 1. It is based on the combination,

VOLUME 5, 2017 27801



A. B. Orúe López et al.: Lightweight Pseudorandom Number Generator for Securing the IoT

FIGURE 1. Block diagram of Arrow, composed of a combination of two
mutually perturbed lagged Fibonacci generators.

by means of the bitwise XOR, of the outputs of two simple
lagged Fibonacci generators.

Both LFGs are scrambled through the mutual perturbation
of the most and least significant bits of the lagged samples,
before the sum of their outputs mod m:

xn =
(
xn−r1 ⊕ (yn−s2 � d1)+ xn−s1 ⊕ (yn−r2 � d3)

)
mod m,

yn =
(
yn−r2 ⊕ (xn−s1 � d2)+ yn−s2 ⊕ (xn−r1 � d4)

)
mod m,

where d1, d2, d3, d4 are four constants, 0 < di < N ; ⊕ is the
bitwise exclusive-or; � and � are the right-shift and left-
shift operators in the C/C++ language. Note that � di is
equivalent to a multiplication by 2−di followed by a floor
operation, while � di is equivalent to a multiplication by
2di followed by a mod m operation. The output sequence of
Arrow {wn} is:

wn = xn ⊕ yn, (1)

were wn is the output sample of the Arrow generator at
the moment n and xn, yn are the output samples of the two
generators, respectively.

The lags r1, r2 of both generators should be chosen of
different values to ensure that the sequences from each gen-
erator have different lengths, in order to magnify the length
of the final sequence. Moreover, the lags r1, r2, s1, s2 must
be selected to satisfy that both trinomials xr1 + xs1 + 1 and
yr2 + ys2 + 1 are irreducible and primitive over GF(2).
This structure improves the generator’s security by increas-

ing the number of states of the system, with the consequent
increase of the period, the entropy, and the key space. It uses a
mixing of arithmetical operations and bit-oriented operations
to avoid purely algebraic and purely bit-oriented attacks.
Additionally, when mixing multiple streams so that the size
of the output word is smaller than the sum of the sizes of
each input word, it is extremely hard to make an individu-
alized analysis of the sequences generated by each generator;
hence, it is more difficult to implement a cryptanalytic attack.
Furthermore, only very efficient operations of easy imple-
mentation in hardware or software are used in the proposed
structure: addition module the word size of the microcon-
troller, bitwise Boolean operations, and displacements of bits.

It was found that the mutual cross perturbation of the least
significant bits of samples xn−r1 and yn−r2 , and the most
significant bits of the samples xn−s1 and yn−s2 , before their
addition, allows the generator to successfully pass previously-
failed randomness tests. Specifically, the best solution was
the cross perturbation achieved with only half the bit size of
the samples, di = N/2. The sample xn−r1 is right-shifted d4
bits and then it is combined with yn−s2 by means of a bitwise
exclusive-or, while the sample xn−s1 is left-shifted d3 bits and
then it is combined with yn−r2 , also using a bitwise exclusive-
or. The samples yn−r2 and yn−s2 are perturbed similarly. The
opposite may also be used.

The seed of the generator is a sequence of r1+r2 initial val-
ues {x0, . . . , xr1−1} and {y0, . . . , yr2−1}. These values may be
composed by the key values and the initialization vector (IV).
The only forbidden seed is the null seed, which produces a
null sequence.

An exhaustive search of the generator periods for several
trinomials was carried out, and it was found that the mutual
cross perturbation drastically increases the period of the gen-
erator. Indeed, the periods of Arrow are much larger than the
periods of an equivalent generator built by the combination
of two conventional LFGs using the bitwise XOR addition,
without scrambling. In this last case the resulting period is
the least common multiple of the periods of both generators.
The maximum possible period of the Arrow generator corre-
sponds to the amount of all possible states of the generator
except the all-zeros state: p = mr1+r2 − 1.

By increasing the word length, the periods of Arrow
grow much faster than the periods of the two conven-
tional LFGs combined by the bitwise XOR addition. The
longer periods happened for primitive trinomials. From
the experimental data it can be concluded that the period
lengths of any Arrow are greater than the square of the
period length of the corresponding combined conventional
LFG. The period of Arrow depends on the parameters
r1, s1, r2, s2,N , d1, d2, d3, d4, and also on the initial values
{x0, . . . , xr1−1} and {y0, . . . , yr2−1}.

B. LINEAR COMPLEXITY OF ARROW
The linear complexity of a sequence is defined as the length
of the shortest linear feedback shift register that generates it.
It is a measure of the unpredictability of a random or pseudo-
random sequence, being maximal when it is very close to half
of its length [21]. This is determined through the Berlekamp-
Massey LFSR synthesis algorithm [22].
The linear complexity of the least significant bits of the

words of a conventional LFG is equal to the value of the
lag r ; the linear complexity of the successive significant bits
increases progressively, reaching a value close to 2N−1(2r−1)
for the most significant bits. If two conventional LFGs, with
lags r1 and r2, are combined by a bitwise XOR addition,
the linear complexity of the bits of the resulting sequence
is nearly equal to the sum of the respective complexities of
the bits of both LFGs. This fact allows the easy determina-
tion of several of the least significant bits of the seed, thus

27802 VOLUME 5, 2017



A. B. Orúe López et al.: Lightweight Pseudorandom Number Generator for Securing the IoT

simplifying a brute-force attack for the complete determina-
tion of the seed.

In the case of Arrow, the linear complexity of any level of
significance is equal to half of the period of the sequence.
Hence, the analysis of the linear complexity of any bit of the
sequence is useless for guessing the seed.

One important property of a random sequence is the dis-
tance of occurrence between samples of equal value. The
most probable distance between two identical samples of an
ideal sequence is zero; when the distance between identical
samples increases, the probability of coincidence between the
two samples diminishes following the Poisson distribution.

Fig. 2 illustrates the number of identical samples in a LFG
sequence with a given distance between them. It corresponds
to a LFG sequence of 220 samples, with N = 8, r = 7, s = 3.
As a reference, the case of a perfect random sequence is also
illustrated (in green). It can be seen that the set of samples of
the LFG presents an irregular distribution, very far from the
ideal one.

FIGURE 2. Distribution of samples with equal value as a function of their
distance: LFG (red) and a perfect random sequence (green).

Fig. 3 corresponds to an Arrow sequence of 220 samples,
with N = 8, r1 = 7, s1 = 3, r2 = 3, s2 = 1. The distribution
of samples is close to the ideal one.

FIGURE 3. Distribution of samples with equal value as a function of their
distance: Arrow (red) and a perfect random sequence (green).

The sequences generated by Arrow pass successfully all
the Marsaglia’s Diehard randomness test suite, as opposed to

the conventional LFG that fails to pass some of them. Further-
more, Arrow also passes the randomness tests of NIST [20].

IV. IMPLEMENTATION AND RESULTS
The architecture of Arrow can be built with simple hardware
or software. Additionally, it is flexible enough to allow an
assortment of implementations with different word length on
different platforms. The Arrow algorithm was implemented
using C++ to first verify its correct operation. It is worth
mentioning the good performance of Arrow on 64-bit pro-
cessors, reaching 0.87 cycles/bit when programmed in C over
a 2.93 GHz Intel Core i7 CPU 870.

The chosen design is based on microcontrollers due to
the evident advantages for IoT applications such as reduced
cost and size, high flexibility and, what is most important,
that this design does not constrain the system to an specific
board in the future. The Arduino platforms have been cho-
sen over similar alternatives due to their lower price, strong
support network, and extensive use in IoT designs [23]–[30].
Additionally, they have the advantages of being easy to build,
and easy to update. In particular they have the potential
benefit of uploading a new PRNG algorithm to upgrade the
device, or even porting the software to another device with a
different architecture.

The Arrow pseudorandom generator has been imple-
mented on two different platforms: an Arduino UNO and an
Arduino 101. The former is based on the ATmega328Pmicro-
controller, a low-power 8-bit microcontroller, with 32 kB
flash memory, a RAM of 2 kB, and 16 MHz clock frequency.
The latter is based on a 32-bit Intel QuarkTM microcon-
troller, an Intel CurieTM module with 384 kB flash memory
(196 kB handy to Arduino sketch), and 24 kB SRAM avail-
able to Arduino sketch. Both boards were powered through a
USB connection.

We used a C++ implementation of the generator on both
platforms and it was compiled using Arduino IDE 1.6.13.
The compiled programs were then directly flashed into each
device. Cycle counts, code sizes and RAM usage were
obtained using the Arduino IDE. Due to the small RAM size
of the boards, the two irreducible primitive trinomials of the
Arrow were selected as x17 + x3 + 1 and y31 + y3 + 1, since
they have relatively low lag values of r1 = 17 and r2 = 31,
respectively. Both implementations generated a sufficiently-
long random sequence with N = 8 and N = 32 bits for
Arduino UNO and Arduino 101, respectively. Consequently,
the values of the shifts d1, d2, d3, d4 must satisfy 0 < di < 8,
or 0 < di < 32, according to the used platforms.
For Arduino UNO, the seeding of the Arrow generator was

performed in the same way as that of the simple LFGs, by
filling in the trinomial registers with the key and the IV. The
length of the key is 256 bits (32 bytes), and the length of the
IV is 128 bits (16 bytes). The 32 bytes of the key are shared
among both trinomials, in such a way that half of them are
used to fill in register {x0, . . . , x15} and the other half to fill
in register {y0, . . . , y15}. The IV values fill in the remaining
places: x16 is filled with 1 byte of the IV and {y16, . . . , y30}

VOLUME 5, 2017 27803



A. B. Orúe López et al.: Lightweight Pseudorandom Number Generator for Securing the IoT

are filled with the remaining 15 bytes of the IV. For Arduino
101 the resulting key and IV lengths are 1024 and 512 bits,
respectively.

Each microcontroller outputs a pseudorandom bit
sequence. Each output was saved in a text file using a simple
serial port terminal application.

A large number of sequences were generated with Arrow
in the aforementioned platforms with a word size of 8 bits on
Arduino UNO and 32 bits on Arduino 101, using different tri-
nomials, as mentioned above. All of the generated sequences
passed the randomness tests of NIST [20] and Diehard from
Marsaglia [17].

The repetition periods of each non perturbed LFG ofArrow
are pLFG,1 ' 16.78 × 106 bytes and pLFG,2 ' 2.75 × 1011

bytes, respectively.When combined by a simple bitwise XOR
addition, the resulting repetition period will be the least
common multiple of both periods, approximately pLFG,1+2 '
3.57 × 1016 bytes. However, it is impossible to calculate
the resulting repetition period of the two mutually perturbed
combined LFGs but indeed it will be much greater. The
estimated period is comprised between p = 1.2 × 1033 and
p = 4×10115. The length of this sequence is widely sufficient
for any cryptographical task; consider, for instance, that the
maximum allowable length of the pseudorandom sequence
generated with an AES, in counter mode, is 6.87×1010 bytes.
No attack faster than a brute force key search has been

identified. Since the smallest key used is 256 bits long, such
attack is unfeasible. Moreover, the structure of Arrow reason-
ably prevents an algebraic attack due to the impossibility of
learning the internal state of the generator.

As a proof of concept we have implemented Arrow in
software to provide the 16-bit random number required in
the EPC C1G2 standard for RFID [31], using the Arduino
platforms. Key length, throughput (assuming that clock fre-
quency is 100 KHz), and footprint of Arrow are presented
in Table 1. The throughput range achieved is acceptable, since
RFID provides slow data rates as compared to other digital
communication systems.

TABLE 1. Arrow performance in the used microcontroller platforms.

Arrow has 256-bit and 1024-bit security levels, respec-
tively. Lightweight Cryptography (LWC) Standard developed
in ISO/IEC 29192 Part 1 establishes that 80-bit security is
the minimum security strength needed for LWC (2016 LWC
workshop by NIST), hence Arrow fulfils the general security
requirements of the IoT.

A. HARDWARE COMPLEXITY ESTIMATION
The estimated hardware complexity of Arrow using a word
size of 8 bits and 16 bits, for UMC 90 nm and ON Semi-
conductor (formerly AMIS) 0, 35 µm CMOS technologies,

has been computed following [13]; results are presented
in Table 2 and Table 3, respectively.

TABLE 2. GE estimation for 8-bit Arrow.

TABLE 3. GE estimation for 16-bit Arrow.

An implementation specially suited for RFID 16-bit ran-
dom number generation using the trinomials of Table 2,
will consist of two Scrambled Lagged Fibonacci Generators
(SLFG) with lengths of 9 and 7 words, respectively, and word
length N = 8 bits. The value of the perturbation is d = 4.
The length of the key is 96 bits with a 32-bit IV. If the IV
is considered a secret parameter, the resulting key length is
128 bits and the state space is 2128 − 1. Both key lengths,
96 and 128 bits, meet the security requirements of the LWC
standard.

Similarly, using the trinomials of Table 3, an implementa-
tion for RFID 16-bit random number generation will consist
of two SLFG with lengths of 5 and 3 words, respectively,
being N = 16 bits. The value of the perturbation is d = 4.
The resulting key length is 128 bits and the state space
is 2128 − 1.
Table 2 and Table 3 show that the required amount of GE is

considerably smaller than the maximum commonly assumed
in the literature.

Table 4 presents a comparison of Arrow with other pro-
posed PRNGs in terms of the key/IV size and the hard-
ware complexity (GE). Note that Arrow is the only PRNG
with a key size that meets the security requirements of the
LWC standard.

TABLE 4. Comparison of Arrow with other PRNG.

27804 VOLUME 5, 2017



A. B. Orúe López et al.: Lightweight Pseudorandom Number Generator for Securing the IoT

V. CONCLUSION
A lightweight, fast, and cryptographically secure pseudo-
random number generator useful for resource-constrained
devices like those used in the IoT has been described. It is
based on the combination of two mutually scrambled lagged
Fibonacci generators. Some criteria for choosing parameters
of the generator are proposed to offer a high level of security.
The generated sequence passes successfully the most strin-
gent randomness test suites. The algorithm was programmed
in C++ with word sizes of 8 bits and 32 bits, using only
fast operations: addition, bitwise XOR and right and left shift.
The estimated hardware complexity using CMOS technology
meets the established requirement to be≤4000 GE. The good
performance reached on low-cost microcontroller platforms
makes the proposed PRNG suitable for the IoT applications,
which use resource-constrained devices such as RFID tags
and wireless sensor nodes.

REFERENCES
[1] D. Airehrour, J. Gutierrez, and S. K. Ray, ‘‘Secure routing for Internet

of Things: A survey,’’ J. Netw. Comput. Appl., vol. 66, pp. 198–213,
May 2016.

[2] N. Mouha. (2015). The Design Space of Lightweight Cryptogra-
phy. NIST Lightweight Cryptography Workshop. [Online]. Available:
https://hal.inria.fr/hal-01241013

[3] V. Fischer, ‘‘A closer look at security in random number generators
design,’’ in Constructive Side-Channel Analysis and Secure Design (Lec-
ture Notes in Computer Science), vol. 7275. Berlin, Germany: Springer,
2012, pp. 167–182.

[4] A. Peinado, J. Munilla, and A. Fúster-Sabater, ‘‘EPCGen2 pseudoran-
dom number generators: Analysis of J3Gen,’’ Sensors, vol. 14, no. 4,
pp. 6500–6515, 2014.

[5] A. B. Orúe, L. Hernández, and F. Montoya, ‘‘Trifork, a new pseudorandom
number generator based on lagged Fibonacci maps,’’ J. Comput. Sci. Eng.,
vol. 2, no. 2, pp. 46–51, 2010.

[6] A. Francillon and C. Castelluccia, ‘‘TinyRNG: A cryptographic random
number generator for wireless sensors network nodes,’’ in Proc. IEEE 5th
Int. Symp. Modeling Optim. Mobile, Ad Hoc Wireless Netw., Apr. 2007,
pp. 1–7.

[7] G. LoRe, E.Milazzo, andM.Ortolani, ‘‘Secure randomnumber generation
in wireless sensor networks,’’ in Proc. ACM 4th Int. Conf. Secur. Inf.
Netw. (SIN), 2011, pp. 175–182.

[8] V. Gaglio, A. De Paola, M. Ortolani, and G. Lo Re, ‘‘A TRNG exploiting
multi-source physical data,’’ in Proc. ACM 6th Workshop QoS Secur.
Wireless Mobile Netw. (Q2SWinet), 2010, pp. 82–89.

[9] K. Mandal, X. Fan, and G. Gong, ‘‘Design and implementation of
Warbler family of lightweight pseudorandom number generators for smart
devices,’’ ACM Trans. Embedded Comput. Syst., vol. 15, no. 1, pp. 1–28,
2016.

[10] J. Mabin, G. Sekar, and R. Balasubramanian, ‘‘Distinguishing attacks
on (ultra-) lightweight WG ciphers,’’ in Lightweight Cryptography for
Security and Privacy (Lecture Notes in Computer Science), vol. 10098.
Cham, Switzerland: Springer, 2017, pp. 45–59.

[11] P. Peris-López, J. C. Hernández-Castro, J. M. Estévez-Tapiador, and
A. Ribagorda, ‘‘LAMED—A PRNG for EPC class-1 generation-2 RFID
specification,’’ Comput. Standards Interfaces, vol. 31, no. 1, pp. 88–97,
2009.

[12] O. Markku-Juhani and D. E. Saarinen, ‘‘A do-it-all-cipher for
RFID: Design requirements (extended abstract),’’ Cryptology
ePrint Archive, Tech. Rep., 2012/317, 2012. [Online]. Available:
https://eprint.iacr.org/2012/317

[13] H. Martín, P. Peris-Lopez, J. E. Tapiador, and E. S. Millan, ‘‘An estimator
for theASIC footprint area of lightweight cryptographic algorithms,’’ IEEE
Trans. Ind. Informat., vol. 10, no. 2, pp. 1216–1225, May 2014.

[14] J. Melià-Seguí, J. Garcia-Alfaro, J. Herrera-Joancomartí, ‘‘J3Gen:
A PRNG for low-cost passive RFID,’’ Sensors, vol. 13, no. 3,
pp. 3816–3830, 2013.

[15] J. Melià-Seguí, J. Garcia-Alfaro, and J. Herrera-Joancomartí, ‘‘Multiple-
polynomial LFSR based pseudorandom number generator for EPC Gen2
RFID tags,’’ in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc. (IECON),
Nov. 2011, pp. 3820–3825.

[16] GNU Scientific Library (GSL). Random Number Generation. Accessed:
Oct. 2, 2017. [Online]. Available: https://www.gnu.org/software/
gsl/doc/html/rng.html

[17] G. Marsaglia, ‘‘The Marsaglia random number CDROM including
the Diehard battery of tests of randomness,’’ Dept. Statist., Florida
State University, Tallahassee, FL, USA., 1995. [Online]. Available:
https://web.archive.org/web/20160125103112/ and http://stat.fsu.edu/pub/
diehard/

[18] R. Anderson,‘‘On Fibonacci keystream generators,’’ in Proc. 2nd Int.
Workshop Fast Softw. Encryption, 1995, pp. 14–16.

[19] P. Grassberger, ‘‘On correlations in ‘good’ random number generators,’’
Phys. Lett. A, vol. 181, no. 1, pp. 43–46, 1993.

[20] L. E. Bassham, ‘‘A statistical test suite for random and pseudorandom
number generators for cryptographic applications,’’ Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Tech. Rep. 800-22 Rev 1a, 2010.

[21] R. A. Rueppel, ‘‘Linear complexity and random sequences,’’ in Advances
in Cryptology—EUROCRYPT (Lecture Notes in Computer Science),
vol. 219. Berlin, Germany: Springer, 1986, pp. 167–188.

[22] J. L. Massey, ‘‘Shift-register synthesis and BCH decoding,’’ IEEE Trans.
Inf. Theory, vol. IT-15, no. 1, pp. 122–127, Jan. 1969.

[23] M. S. Perez and E. Carrera, ‘‘Time synchronization in Arduino-based
wireless sensor networks,’’ IEEE Latin Amer. Trans., vol. 13, no. 2,
pp. 455–461, Feb. 2015.

[24] A. Solano, R. Dormido, N. Duro, and J. M. Sánchez, ‘‘A self-provisioning
mechanism in OpenStack for IoT devices,’’ Sensors, vol. 16, no. 8, p. 1306,
2016.

[25] F. Salamone, L. Belussi, L. Danza, M. Ghellere, and I. Meroni, ‘‘An open
source ‘smart lamp’ for the optimization of plant systems and thermal
comfort of offices,’’ Sensors, vol. 16, no. 3, p. 338, 2016.

[26] A. Di Nisio, T. Di Noia, C. G. C. Carducci, and M. Spadavecchia, ‘‘High
dynamic range power consumption measurement in microcontroller-based
applications,’’ IEEE Trans. Instrum. Meas., vol. 65, no. 9, pp. 1968–1976,
Sep. 2016.

[27] P. Kosobutskyy and R. Ferens, ‘‘Statistical analysis of noise measurement
system based on accelerometer-gyroscope GY-521 andArduino platform,’’
in Proc. 14th Int. Conf. Exper. Designing Appl. CAD Syst. Microelectron-
ics (CADSM), Feb. 2017, pp. 405–407.

[28] M. Kim, K. Kim, K. Seo, J. Lee, K. Park, and K. Kim, ‘‘Modeling
process-aware Internet of Things services over an ARDUINO commu-
nity computing environment,’’ in Proc. 19th Int. Conf. Adv. Commun.
Technol. (ICACT), Feb. 2017, pp. 163–166.

[29] J. Avery, T. Dowrick, M. Faulkner, N. Goren, and D. Holder, ‘‘A versatile
and reproducible multi-frequency electrical impedance tomography sys-
tem,’’ Sensors, vol. 17, no. 2, p. 280, 2017.

[30] A. M. Reyes, S. Herrera, M. A. Márquez, A. J. Calderón, I. González,
and J. M. Andújar, ‘‘Easy handling of sensors and actuators over TCP/IP
networks by open source hardware/software,’’ Sensors, vol. 17, no. 1,
p. 946, 2017.

[31] EPC Global. (2015). UHF Air Interface Protocol Standard
Generation2/V2.0.1. Accessed: Sep. 27, 2017. [Online]. Available:
http://www.gs1.org/epcrfid/epc-rfid-uhf-air-interface-protocol/latest

AMALIA BEATRIZ ORÚE LÓPEZ received the
B.E. and M.S. degrees in telecommunications sys-
tems from the University of Oriente, Cuba, in 1984
and 1998, respectively, and the Ph.D. degree from
the Polytechnic University of Madrid, Spain, in
2013. She is a Researcher with the Department of
Information and Communications Technologies,
Institute of Physical and Information Technolo-
gies, Spanish National Research Council, Madrid.
She has authored several research papers in inter-

national scientific journals, peer-reviewed workshops, and conferences. She
has served as a Referee for different SCI journals and international confer-
ences. Her research interests comprise cryptography, Internet of Things secu-
rity, information security, teaching methods of cryptography and educational
innovation. She is a member of the IEEE Education Society and the IEEE
Council on RFID.

VOLUME 5, 2017 27805



A. B. Orúe López et al.: Lightweight Pseudorandom Number Generator for Securing the IoT

LUIS HERNÁNDEZ ENCINAS received the
Degree and the Ph.D. degree in mathematics from
the University of Salamanca, Spain, in 1980 and
1992, respectively. He is currently a Researcher
with the Department of Information and Com-
munications Technologies, Institute of Physical
and Information Technologies, Spanish National
Research Council, Madrid, Spain. He has partici-
pated over 30 research projects. He has authored
nine books, nine patents, over 150 papers, over

100 contributions to workshops, and conferences. He has supervised three
doctoral thesis and has served as a referee for different SCI journals and
for many international conferences. His current research interests include
cryptography and cryptanalysis of public key cryptosystems (RSA, ElGamal,
and Chor-Rivest), cryptosystems based on elliptic and hyperelliptic curves,
graphic cryptography, pseudorandom number generators, digital signature
schemes, authentication and identification protocols, crypto-biometry, secret
sharing protocols, side channel attacks, and number theory problems.

AGUSTÍN MARTÍN MUÑOZ received theDegree
and the Ph.D. degree in physics from the Com-
plutense University of Madrid, Spain, in 1988 and
1995, respectively. He is currently a Researcher
with the Department of Information and Com-
munications Technologies, Institute of Physical
and Information Technologies, Spanish National
Research Council, Madrid. He has authored
20 research papers in international scientific jour-
nals and co-authored a book and over 60 contribu-

tions to peer-reviewed workshops, and conferences. He has participated

in 20 research projects and contracts, has taught several courses and semi-
nars, and has co-authored three patents. He started his research career dealing
with the development of numerical methods in electromagnetics to study
the interaction of electromagnetic radiation, especially in the radiofrequency
range, with different objects as satellites or biological tissues. His latest
research interests are focused on the analysis of possible vulnerabilities
of radiofrequency identification systems and the study of techniques of
physical attacks to cryptographic devices. He is member of the International
Association for Cryptologic Research.

FAUSTO MONTOYA VITINI received the Ph.D.
degree in telecommunication engineering from
the Polytechnic University of Madrid, in 1971.
He is currently a Professor Ad Honorem with
the Department of Information and Communica-
tions Technologies, Institute of Physical and Infor-
mation Technologies, Spanish National Research
Council, Madrid, Spain. He has authored several
research papers in international scientific jour-
nals, peer-reviewed workshops, and conferences.

He has participated as a project leader of several international projects,
Spanish Government projects and industry projects. He has authored nine
international patents and 14 Spanish patents. He has supervised four doc-
toral thesis. His current research interests include cryptography, information
security, watermarks, number theory, pseudorandom generators, non-linear
dynamical systems and power ultrasonics.

27806 VOLUME 5, 2017


	INTRODUCTION
	RELATED WORK
	ARROW: A COMBINATION OF TWO MUTUALLY-SCRAMBLED LAGGED FIBONACCI GENERATORS
	ARROW: A SECURE PRNG FOR THE IoT
	LINEAR COMPLEXITY OF ARROW

	IMPLEMENTATION AND RESULTS
	HARDWARE COMPLEXITY ESTIMATION

	CONCLUSION
	REFERENCES
	Biographies
	AMALIA BEATRIZ ORÚE LÓPEZ
	LUIS HERNÁNDEZ ENCINAS
	AGUSTÍN MARTÍN MUÑOZ
	in
	FAUSTO MONTOYA VITINI


