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A ttackers are recording, and sometimes forging, vast volumes 
of human communication. Some of this communication is 
protected by cryptographic systems such as the Rivest–Shamir–

Adleman (RSA) system and elliptic-curve cryptography (ECC), but if 
quantum computing scales as expected then it will break both RSA and 
ECC. We are in a race against time to deploy post-quantum cryptography 
before quantum computers arrive.

This Review surveys what cryptography does and the damage done 
by quantum computing. It is important to understand that research 
in cryptography is not monolithic: cryptography makes progress not 
only through designs of new proposals but also through cryptanalysts 
studying the security of proposals and weeding out weak proposals. We 
describe some of the main candidates for post-quantum cryptography 
and conclude with a look to the future.

Introduction to cryptography
When a user visits a website starting with https, the user’s computer 
(laptop, desktop, mobile phone or other device) uses Transport Layer 
Security (TLS) to connect securely to the web server. TLS combines 
a sequence of cryptographic operations to ensure that no third party 
can understand what is being sent (confidentiality); that no third party 
can modify the messages without being detected (integrity); and that 
no third party can impersonate one of the communicating parties 
(authenticity).

Call the web server ‘Alice’ and the user’s computer ‘Bob’. What identifies 
Alice and Bob to each other is that they share a secret value, a ‘key’. They 
use this key to perform ‘symmetric’ cryptographic operations. We will 
return later to the question of how they both know a secret key in the 
first place.

Suppose Alice has a message m to send to Bob: a web page or a file. Alice  
and Bob both know an encryption key kenc. Alice applies a ‘symmetric 
encryption algorithm’ using this key kenc to encrypt the message m, 
producing a ciphertext c, which Alice sends through the internet to Bob. 
Bob applies a matching symmetric decryption algorithm using the same 
key kenc to decrypt the ciphertext c, obtaining the original message m.

Alice and Bob also both know an authentication key kauth. Alice applies 
a ‘message-authentication code’ (MAC) using this key kauth to the cipher-
text c, producing an authentication tag, which Alice also sends through 
the internet to Bob, proving that she has access to the key. Bob verifies the 
computation by applying the same MAC using the same key.

Symmetric encryption ensures the confidentiality of data in https. It 
ensures that a spy cannot see the contents of a message. Authentication 
ensures authenticity and integrity of messages: it prevents a spy from 

modifying the message or substituting a different message, pretending 
to be Alice.

Several choices of symmetric encryption algorithms and MACs are 
offered by https. Some of the MACs are built from ‘hash functions’. A hash 
function maps strings of arbitrary length to strings of some fixed length 
n: for example 256-bit strings. In this article, we consider only hash func-
tions designed to make the following operations computationally hard:  
(1) given a value z in the image of h, find a pre-image, that is, a string m 
with h(m) =​ z; (2) given a string m and h(m), find a second pre-image, that 
is, a string m′​ ≠​ m with h(m) =​ h(m′​); and (3) find a collision, that is, strings 
m ≠​ m′​ with h(m) =​ h(m′​). Hash functions provide compact fingerprints of 
messages; a small change to the message produces a completely different 
fingerprint. This property is used in constructions of MACs.

The description so far has left open how Alice and Bob arrived at 
having a shared symmetric key. This part of the https connection uses 
‘public-key cryptography’.

In public-key cryptography, each party has two keys: a public key and a 
private key. The private key is known only to the party, whereas the public 
key can be made public. Given Alice’s public encryption key, anybody 
can encrypt a message to her, whereas only she is in possession of the 
matching private key that she uses to decrypt.

In the https scenario, Alice is a web server and Bob is a browser. Bob 
contacts Alice first to download the public key, then encrypts a one-time 
symmetric key to it, and finally uses the symmetric key in the rest of the 
communication for encryption and authentication as described above. 
Alice decrypts Bob’s initial message to obtain the shared symmetric key 
and then also uses that for the rest of the communication.

Another option in https is to use another public-key function, ‘key 
exchange’, that is very close to what is described so far but uses different 
mathematical functions. Instead of Bob encrypting a symmetric key 
to Alice’s public key, Bob and Alice both do computations that jointly 
generate a symmetric key.

There is still an important problem: how does Bob know that the public 
key provided by Alice really belongs to her? In the case of https, this is 
handled by browsers downloading and verifying ‘certificates’. The cryp-
tographic function used here is public-key ‘signatures’, which authenticate 
messages with public-key cryptography.

In a signature system, Sam applies a signature algorithm using his 
private signing key to a message m, producing a signature. Everybody 
can verify this signature by applying a verification algorithm to m using 
Sam’s public signing key. Internally, these algorithms typically apply a 
hash function to the message, along with other mathematical operations 
involving the keys.

Cryptography is essential for the security of online communication, cars and implanted medical devices. However, 
many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum 
cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum 
cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes 
in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building 
cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for 
cryptographic usability and flexibility without sacrificing confidence.
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Like a MAC, a signature system ensures authenticity and integrity of 
the message, but there are two important differences. First, a signature can 
be verified by anybody using the public key, whereas an authentication 
tag is between the parties sharing kauth. Second, only Sam has the private 
key used to produce a valid signature, whereas an authentication tag from 
Alice to Bob could have been computed by Alice or Bob.

In https, Sam is a well-known trusted party such as the Internet Security 
Research Group; everyone knows Sam’s public key. The message signed 
by Sam is a certificate linking Alice’s identity to Alice’s public key. Bob 
verifies the signature from Sam and can then confidently use Alice’s public 
key for encryption.

The devastating impact of Shor’s algorithm
In the popular RSA public-key system1, the public key is a product N =​ pq 
of two secret prime numbers p and q. The security of RSA relies critically 
on the difficulty of finding the factors p, q of N. However, in 1994, Shor2 
introduced a fast quantum algorithm to find the prime factorization of 
any positive integer N.

There has been some research into analysing and optimizing the 
exact costs of Shor’s algorithm: in particular, the number of quantum 
bits (qubits) required and the number of qubit operations required. For 
example, a variant of Shor’s algorithm by Beauregard3 uses O(n3logn) 
operations on 2n +​ 3 qubits if N =​ pq fits into n bits. One can reduce the 
number of operations to n2 + o(1), at some expense in the number of qubits, 
where o(1) means something that converges to 0 as n →​ ∞​. One can also 
run many of those operations in parallel.

Internally, Shor’s algorithm evaluates a periodic function on a super-
position of all inputs within a wide range; applies a quantum Fourier 
transform to obtain an approximate superposition of periods of the 
function; and measures this superposition to find a random period. The 
periodic function is �e a Nmode , where a is a random integer coprime 
to N, the arrow indicates ‘maps to’, and the notation ‘mod N’ means the 
remainder upon division by N. If N is not a power of a prime (an easy case 
to recognize), then a random period reveals a factor of N with probability 
high enough to be a security problem.

Shor introduced a similar algorithm to quickly find periods of the func-
tion �e f g h p, mode f , revealing k such that h =​ gk mod p. Replacing 
multiplication mod p with addition of points on an elliptic curve mod p 
breaks ECC, a popular alternative4,5 to RSA.

These algorithms, when applied to widely deployed public-key sizes 
for RSA and ECC, require billions of operations on thousands of logical 
qubits. Fault-tolerant6 attacks seem likely to require trillions of operations 
on millions of physical qubits. Perhaps quantum computing will encounter  
a fundamental obstacle that prevents it from ever scaling successfully to 
such sizes. However, no such obstacles have been identified. Prudent risk 
management requires defending against the possibility that these attacks 
will be successful.

Grover’s algorithm
Many more cryptographic systems are affected by an algorithm that 
Grover7 introduced in 1996. This algorithm is also the foundation for 
most, although not all, of the positive applications that have been identi-
fied for quantum computing.

Grover originally described his algorithm as searching an unordered 
database of size N using N  quantum queries. This description begs the 
question of why the database creator did not simply put the database into 
order, allowing it to be searched using O(log N) queries. A closer look at 
the details of Grover’s algorithm also raises difficult questions regarding 
the physical cost of quantum database queries.

It is better to describe Grover’s algorithm as searching for roots of a 
function f: that is, searching for solutions x to the equation f(x) =​ 0. If one 
out of every N inputs is a root of f, then Grover’s algorithm finds a root 
using only about N  quantum evaluations of f on superpositions of 
inputs. If f can be evaluated quickly by a small circuit, then quantum 
evaluations of f do not use many qubit operations. This circuit condition 
often holds for the functions f that appear in cryptography.

The ‘Advanced Encryption Standard’ (AES)8 is an example of a symmet-
ric encryption algorithm. Assume that a user is known to have encrypted  
128-bit plaintexts ‘7’ and ‘8’ under a secret 128-bit AES key k, producing 
a 256-bit ciphertext c =​ (AESk(7), AESk(8)) visible to the attacker. Define 
f(x) =​ (AESx(7), AESx(8)) −​ c. This function f can be evaluated quickly 
(about 20,000 bit operations) by a small circuit, and Grover’s algorithm 
finds a root of f using only about 264 quantum evaluations of f (overall9 
about 286 ‘T gates’ and a similar number of ‘Clifford gates’ applied to about 
3,000 qubits). Presumably this root is k: unless AES is deeply flawed, there 
will be at most a few pairs of distinct 128-bit keys x, k with collisions (AE
Sx(7), AESx(8)) =​ (AESk(7), AESk(8)), and the user will not have selected 
one of those keys by chance.

Grover’s speed-up from N to N  is not as devastating as Shor’s 
speed-up. Furthermore, each of Grover’s N  quantum evaluations must 
wait for the previous evaluation to finish. To quantify this issue, define T 
as the number of serial evaluations that can be carried out in the time 
available: for example, if the quantum computer can evaluate f in a nano-
second, and if the attacker is prepared to run a computation lasting for a 
year, then T ≈​ 255. If N  exceeds T, then Grover’s algorithm cannot use 
fewer than N/T evaluations spread across N/T2 parallel quantum 
processors. This is a factor T better than pre-quantum techniques, but it 
is possible that this improvement will be wiped out by the overhead of 
qubit operations being more expensive than bit operations, making 
Grover’s algorithm useless—even if scalable quantum computers are built 
and run Shor’s algorithm successfully.

On the other hand, if qubit operations are small enough and fast 
enough, then Grover’s algorithm will threaten many cryptographic 
systems that aim for 2128 security, such as 128-bit AES keys. We recom-
mend simply switching to 256-bit AES keys: the extra costs are rarely 
noticeable. ‘Information-theoretic’ MACs such as GMAC and Poly1305 
already protect against quantum computers without any modifications: 
their security analysis already assumes an attacker with unlimited com-
puting power.

Post-quantum cryptography
Table 1 summarizes the effects of Shor’s and Grover’s algorithms on 
typical cryptosystems. The table gives the impression that the advent of 
quantum computers destroys public-key cryptography, leaving only sym-
metric cryptography (with larger key sizes). Fortunately, RSA and ECC 
are not the only public-key systems.

In the following five sections, we review details of five proposals that 
have solidly resisted every suggested attack. In particular, nobody has 

Table 1 | Examples of widely deployed cryptographic systems and 
their conjectured security levels

Name Function
Pre-quantum 
security level

Post-quantum 
security level

Symmetric cryptography 
AES-1288 Symmetric  

encryption
128 64 (Grover)

AES-2568 Symmetric  
encryption

256 128 (Grover)

Salsa2058 Symmetric  
encryption

256 128 (Grover)

GMAC59 MAC 128 128 (no impact)
Poly130560 MAC 128 128 (no impact)
SHA-25661 Hash function 256 128 (Grover)
SHA3-25662 Hash function 256 128 (Grover)
Public-key cryptography
RSA-30721 Encryption 128 Broken (Shor)
RSA-30721 Signature 128 Broken (Shor)
DH-307242 Key exchange 128 Broken (Shor)
DSA-307263,64 Signature 128 Broken (Shor)
256-bit ECDH4–6 Key exchange 128 Broken (Shor)
256-bit ECDSA66,67 Signature 128 Broken (Shor)

Security levels shown are against the best pre-quantum and post-quantum attacks known. 
Security level b means that the best attacks use approximately 2b operations. This optimization 
ignores parallelization requirements; see text for discussion of the impact of such requirements. 
For hash functions, ‘security’ in this table refers to pre-image security.
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been able to figure out any useful way to apply Shor’s algorithm and its 
generalizations to these proposals.

Choosing secure key sizes for these proposals does require attention to 
Grover’s algorithm, along with generalizations of Grover’s algorithm such 
as quantum walks. Simply doubling the target security level is adequate 
but generally imposes much more noticeable costs on public-key systems 
than on AES; these costs motivate research aimed at understanding the 
exact impact of Grover’s algorithm, so as to be able to use smaller key 
sizes.

This is not a comprehensive list of proposals and attack ideas. We do 
not describe isogeny-based cryptography10–12, for example, and we do not 
discuss Kuperberg’s algorithm13. Our list is biased towards proposals that 
have survived decades of study.

Code-based encryption
High-reliability computer equipment uses an ‘error-correcting code’ to 
store 64 bits of logical data in 72 bits of physical memory. There is a 
64 ×​ 72 ‘generator matrix’ G with each entry in the field F2 =​ {0, 1} of 
integers modulo 2: in other words, a 64 ×​ 72 matrix of bits. This matrix 
specifies each of the 72 physical bits as a sum, modulo 2, of some of the 
64 logical bits. The code is F G2

64 , a 64-dimensional subspace of the vector 
space F2

72, namely the subspace generated by the rows of G. The code is 
designed so that any single error in the 72 bits (any change of a bit to its 
opposite) can be reliably corrected, and any double error (changing any 
two bits) can be reliably detected.

Error-correcting codes can be scaled up to correct more errors in longer 
blocks of data. They are used in a wide range of applications, including hard 
drives, satellite communication, and fault-tolerant quantum computation.

In 1978, early in the history of public-key cryptography, McEliece14 
proposed using a generator matrix as a public key, and encrypting a code-
word (an element of the code) by adding a specified number of errors to 
it. In formulas: the plaintext is a k-bit string m, the public key is a k ×​ n 
matrix G, and the ciphertext is mG +​ e where e is an n-bit string with 
w bits equal to 1. Examples of high-security parameters are n =​ 6,960, 
k =​ 5,413, and w =​ 119. The receiver can find e and m given mG +​ e 
because the receiver secretly generates the code as a random ‘Goppa code’ 
that can efficiently correct w errors. This structure is not obvious from 
the generator matrix.

A simple but slow attack strategy against McEliece’s system is 
‘information-set decoding’ (ISD). An information set is a collection 
of codeword positions that determines the rest of the codeword. ISD 
guesses an information set, hoping that the ciphertext is error-free in 
those positions; uses linear algebra to (attempt to) determine the entire 
codeword; and checks that the ciphertext has the specified number of 
errors, in which case the codeword must be correct.

What makes ISD slow is that, for large matrices, the ciphertext is 
extremely unlikely to be error-free on any particular information set. 

More precisely, the number of guesses is (c +​ o(1))w, where w is the 
number of errors added and c >​ 1 is a constant that depends on the 
selected ratio between the number of matrix rows and columns.

Dozens of attack papers against McEliece’s system have found many 
improvements to ISD, but all of the pre-quantum attacks still take  
time (c +​ o(1))w for the same c, a remarkably stable track record. There 
have been some improvements within the o(1) but these have not had 
much impact on security levels. McEliece’s original key sizes (with 
n =​ 1,024, k =​ 524 and w =​ 50) were designed for 264 security, and our 
successful attack against those key sizes 30 years later15 took more than 
260 CPU cycles. All known algorithms to find the secret Goppa-code 
structure take even more time. The only post-quantum change in c has 
been a straightforward application16 of Grover’s algorithm, replacing  
c with c .

Some modifications to McEliece’s original system are important for 
improving security and performance. Rather than sending a message as 
a codeword, one should encrypt a random codeword, using a hash of 
the codeword as a secret key to authenticate and encrypt a message (see 
the description of https above); this protects McEliece’s system against 
‘chosen-ciphertext attacks’ in which an active attacker sees the results of 
decrypting modified ciphertexts. Another improvement to McEliece’s  
system, due to Niederreiter17, is to compress public keys to ‘systematic 
form’. When k bits are encoded as n bits, ‘systematic form’ means that 
the first k physical bits are exactly the k logical bits, so the first k ×​ k sub-
matrix of the generator matrix is the identity matrix, which need not be 
transmitted. Yet another improvement, also due to Niederreiter, is to send 
‘syndromes’ rather than erroneous codewords; this reduces the ciphertext 
size to about 200 bytes at a high security level.

The main practical problem with these systems is the key size, roughly 
a megabyte (in systematic form) at a high security level. Many newer 
code-based systems put more structure into public keys to allow more 
compression, but some of those proposals have been broken. The only 
post-quantum public-key-encryption systems that have received enough 
study for us to recommend are the original McEliece/Niederreiter 
systems.

Lattice-based encryption
In the 1990s, Hoffstein, Pipher and Silverman18 introduced an encryption 
system, ‘NTRU’, that has much smaller keys than McEliece’s system and 
that remains unbroken today. This system works as follows.

The public key is a p-coefficient polynomial = + + +�h h h x0 1  
−

−h xp
p

1
1, with each coefficient in the set {0, 1, …, q −​ 1}. A typical  

choice is p =​ 743 and q =​ 2,048 =​ 211; then the public key has 
743 ×​ 11 =​ 8,173 bits.

A ciphertext is another polynomial c in the same range. The sender 
chooses two secret polynomials d, e with small (say −​1, 0, 1) coefficients, 
and computes c =​ ((hd +​ e) mod xp −​ 1) mod q. The notation ‘mod xp −​ 1’ 
means that xp is replaced by 1, xp+1 is replaced by x, and so on.

Define L as the set of pairs (u, v) of p-coefficient polynomials with 
integer coefficients such that 0 =​ ((hu −​ v) mod xp −​ 1) mod q. Then L is 
a lattice in 2p-dimensional space, and it contains a point close to (0, c), 
namely (d, c −​ e). The attacker’s problem of finding the secrets d, e given 
the ciphertext c and public key h is thus an example of finding a lattice 
point close to a given point. This problem is analogous to the decoding 
problem for codes (see Fig. 1), except that here ‘close’ is interpreted as 
every coefficient being small, whereas codes simply count the number 
of non-zero coefficients.

NTRU, like McEliece’s system, secretly generates the public key  
in a way that makes decoding efficient. Specifically, the receiver  
starts with a short vector of the form (g, 3f  ), and uses a Euclidean 
algorithm to find h such that the lattice contains this vector, that is, such 
that 0 =​ ((hg −​ 3f  ) mod xp − 1) mod q. Then (cg mod xp − 1) mod q is 
the same as ((3df +​ eg) mod xp − 1) mod q. An analysis of coefficient 
sizes shows that (3df +​ eg) mod xp − 1 almost certainly has all coefficients 
strictly between −​q/2 and q/2, and then it is an easy exercise to find (d, e) 
given f and g.

Figure 1 | Perspective view of a 9 × 9 × 9 subset of a non-orthogonal 
three-dimensional lattice. Lattice-based cryptography hides a point 
in a high-dimensional lattice mod q by making small changes to all 
coordinates. Code-based cryptography hides a point in a very-high-
dimensional lattice mod 2 by changing some coordinates.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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There are many potential attack avenues against NTRU and other 
lattice-based cryptosystems (such as cryptosystems based on ‘ring 
learning with errors’19). For example, very recently the ‘cyclotomic’ 
structure of xp − 1 has been used to break20–22 some lattice-based cryp-
tosystems by an extension of Shor’s algorithm. NTRU is not known to 
be affected, but this attack avenue is new and has not been adequately 
explored. We recommend23,24 replacing xp − 1 with xp −​ x − 1, avoiding 
this structure. As another example, recent attacks25–27 that work for 
arbitrary lattices, without exploiting any polynomial structure, have 
smaller exponents than the best such attacks known just a few years ago; 
such lattices are used in cryptosystems based on ‘learning with errors’28. 
Much more research is required to gain confidence in the security of 
lattice-based cryptography.

Lattice-based signatures
The first attempts29–31 to turn hard lattice problems into signature systems 
were marred by attacks32,33, and surviving systems suffered from large 
signature sizes. The most promising signature systems are based on 
Lyubashevsky’s signature system34 from 2012. Despite its evident youth, 
we decided to include it because the resulting signatures are relatively 
short and fast to compute.

The system is most easily presented using integer matrices. 
Implementations typically use polynomial rings and fast Fourier 
transforms for compact representations and efficiency. Lyubashevsky’s 
system uses several system parameters, namely integers k, m, n 
determining the sizes of matrices, κ limiting the Hamming weight of 
certain vectors, and q a modulus. Let A be an n ×​ m integer matrix 
modulo q, that is, ∈ ×ZA q

n m; this matrix may be shared by all users of the 
system but can also be chosen individually. The private key is a matrix 
S ∈​ Z​m×k with small entries, where ‘small’ means much smaller than q 
and is often restricted to {−​1, 0, 1}. The public key is the n ×​ k matrix 
T =​ AS, where the entries are computed modulo q. If A is not shared then 
it is also part of the public key.

The system uses a hash function × − →∗ZH : { 1,0,1} {0,1}q
n k, where the 

output vectors additionally satisfy that no more than κ entries are non-
zero. It is easy to build H from a traditional hash function h by encoding 
inputs and outputs appropriately.

The signer starts by picking y from an m-dimensional distribution, 
typically a discrete Gaussian distribution. (A discrete Gaussian distri-
bution is a distribution obtained by considering only integer values of 
the regular Gaussian distribution and normalizing appropriately.) The 
signer then computes c =​ H(Ay mod q, μ), where μ is the message, and 
z =​ Sc +​ y. The signature is the pair (c, z). To avoid leaking information 
about the private key S through the distribution of (c, z), Lyubashevsky 
uses ‘rejection sampling’ to force an S-independent distribution. This 
means that the process is restarted with probability depending on (c, z).

The signature is accepted as valid if c and z are sufficiently small and 
if H(Az −​ Tc mod q, μ) =​ c. The latter holds for valid signatures because 
Az −​ Tc ≡​ A(Sc +​ y) −​ ASc ≡​ Ay mod q.

Later proposals such as BLISS35 improve the running time by reducing 
the frequency of rejection in the last step. A ring version with k =​ n and 
m =​ 2n signs in under half a millisecond and verifies about 10 times faster. 
Public keys and signatures each are between 5 and 7 kilobits, not much 
larger than RSA signatures.

Ongoing challenges include (1) generating the distribution in a way that 
does not leak36 information on S through ‘side channels’ (see below) and  
(2) analysing the security of the underlying algorithmic problem, namely the 
problem of finding short integer solutions to a system of equations modulo q.

Multivariate-quadratic-equation signatures
Matsumoto and Imai37 introduced a new signature system, ‘C*​’, in 1988. 
Patarin38 broke the C*​ system in 1995 but the next year39 introduced a 
stronger system, ‘HFEv−​’, that remains unbroken today.

The HFEv− public key is a sequence of polynomials p1, …, pm in the 
n-variable polynomial ring F2[x1, …, xn] over the field F2, with m ≤​ n. 
The polynomials are limited to quadratics and have no squared terms: 

each polynomial pi has the form +∑ +∑ <a b x c x xi j i j j j k i j k j k, , ,  with 
∈Fa b c, ,i i j i j k, , , 2. The coefficients have no obvious public structure.

A signature of a message is an n-bit string … ∈Fs s( , , )n
n

1 2 such that the 
m-bit string … … … ∈Fp s s p s s( ( , , ), , ( , , ))n m n

m
1 1 1 2  equals a standard m-bit 

hash (h1, …, hm) of the message. An example of a reasonable parameter 
choice (including the internal parameters v, q described below) is (m, n, 
v, q) =​ (240, 272, 16, 2256); then a signature is just 34 bytes. These very 
short signatures are an attractive feature of this signature system.

The signer chooses the polynomials with a secret structure that allows 
the signer to solve the simultaneous quadratic equations p1(s1, …, sn) =​ 
h1, …, pm(s1, …, sn) =​ hm. Specifically, HFEv− exploits the fact that there 
are general methods to solve polynomial equations of degree d over finite 
fields Fq in time (dlogq)O(1) if the equations are in just one variable. We 
now explain how the multivariate polynomials p1, …, pm are secretly 
related to a univariate polynomial.

The signer views an n-bit signature (s1, …, sn) as a randomly chosen v-bit 
string … ∈Fr r( , , )v

v
1 2 , where v ≤​ n −​ m, together with an (n −​ v)-bit 

element S ∈​ Fq, where q =​ 2n−v. This view is secret: v and q can be stand-
ardized, but before the signature is partitioned into (r, S) it is passed through 
a secret invertible n ×​ n matrix chosen by the signer. This means that S is 
some linear function of s1, …, sn, but not a public linear function.

The signer similarly views an m-bit hash value, together with a 
randomly chosen (n −​ v −​ m)-bit string, as an element H ∈​ Fq. This view 
is also not standardized: it is obscured by another secret matrix. Here 
is the overall signing process, starting from the hash value: choose the 
v +​ (n −​ v −​ m) =​ n −​ m random bits mentioned above; construct H; try 
to solve for S as explained below (or, if no solution S exists, start over with 
another choice of random bits); and construct the resulting n-bit signature.

There is one more secret: a degree-d polynomial ∈ …FP x y y[ , , , ]q v1   
of the form +∑ +∑ +∑ +∑ +>

+A B x C x D y E y xj j j k j k j j j j k j k j
2

,
2 2

, ,
2j j k k  

∑ > F y yj k j k j k, . This polynomial specifies a secret equation connecting  
S and H, namely P(S, r1, …, rv) =​ H. To convert this equation into the 
public quadratic polynomials, the signer writes each bit of S2 j

 as a linear 
combination of s1, …, sn. To solve the equation for any particular 
signature, the signer simply observes that this is a univariate equation in 
S for any particular choice of random bits r1, …, rv.

For comparison, C*​ takes q =​ 2m =​ 2n; takes the polynomial P as a 
monomial +x2 1j  with exponent coprime to 2q −​ 1; and solves the equation 

=+S H2 1j  by computing S =​ He, where e is the reciprocal of 
2j +​ 1 mod 2q −​ 1. The core idea of Patarin’s attack is that the bilinear 
equation =S H H S2 2j j2

 is equivalent to a secret bilinear equation E on  
the bits of hashes and signatures. Each hash–signature pair produces  
a linear equation for the secret coefficients of E, and after enough signa-
tures the attacker simply solves for those coefficients, at which point sig-
nature forgery is easy. HFEv− blocks this attack by including more 
monomials in P.

There is a vast literature on other multivariate-quadratic signature 
systems and on algorithms to attack these systems. For HFEv− in 

X1 X2 X3 X4 X5 X6 X7 X8

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y9 = h(Y1, Y2) Y10 = h(Y3, Y4) Y11 = h(Y5, Y6) Y12 = h(Y7, Y8)

Y13 = h(Y9, Y10) Y14 = h(Y11, Y12)

Y15 = h(Y13, Y14)

Figure 2 | Merkle tree with public key Y15 to sign eight messages. The 
boxes highlight the values constituting the sixth signature. This signature 
reveals parts of X6, the secret key of Lamport’s one-time signature. It also 
includes the matching Lamport public key Y6, along with Y5, Y12 and Y13. 
The verifier computes Y15 and checks it against the Merkle public key.
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particular, all known attacks take time exponential in approximately 
− +  n m d n( log )log2 2  , where the ceiling function  x  denotes the smallest 

integer greater than or equal to the real number x. The same type of 
analysis used for recent pre-quantum parameter choices40 indicates that 
m =​ 240, n −​ v =​ 256 and n =​ 272 provide high post-quantum security 
against known attacks even if d is quite small.

Hash-based signatures
One of the design goals mentioned earlier for hash functions is that 
finding a pre-image for a given output string is computationally hard. 
In 1975, Lamport realized that this could be used to build a one-time 
signature system41,42.

Lamport’s one-time signatures work as follows. To generate his key pair, 
Sam chooses two random strings x0 and x1; these constitute his secret key. 
His public key is (h(x0), h(x1)), where h is a hash function which is known 
to everybody. If he wants to sign 0 he reveals x0; the verifier recomputes 
h(x0) and checks the result against the first half of the public key. To sign 1,  
Sam reveals x1. More generally, to sign an m-bit message, Sam takes 2m 
strings as the secret key X =​ (x10, x11, x20, x21, …, xm0, xm1) and their hash 
values as public key Y =​ (h(x10), h(x11), h(x20), h(x21), …, h(xm0), h(xm1)).  
The signature of, for example, 10110… is (x11, x20, x31, x41, x50, …). 
Security rapidly degrades if Sam signs more than one message under 
the same key.

To overcome the problems of large public keys that could be used only 
once, Merkle proposed43,44 to combine 2k public keys into one which can 
then be used to verify all 2k signatures. For that, create 2k key pairs for 
Lamport’s one-time signature and arrange the public keys …Y Y Y, , ,1 2 2k as 
the leaves of a binary tree with k +​ 1 levels. A binary tree is one in which 
each node has exactly three edges, two going to a level closer to the leaves 
and one going closer to the root, except for the leaf nodes having only one 
and the root node having only two edges. Figure 2 shows an example of 
a Merkle tree with 23 =​ 8 leaves. To compute the public key combining 
these 2k keys, start from the leaves and compute the hash of each pair of 
public keys connected by edges in the tree, starting with =+Y h Y Y( , )2 1 1 2k ;  
continue iteratively through the levels, ending by computing the root 

=− − −+ + +Y h Y Y( , )2 1 2 3 2 2k k k1 1 1 . The value −+Y2 1k 1  at the root node is the 
public key of the system.

The public key is now a single hash value, but the signatures need to 
include more information to make it possible to check them. As before, 
a signature using secret key Xi reveals the xij matching the bit pattern 
of the message to be signed; in addition, the matching public key Yi is 
included so that the Lamport signature can be verified. The signature 
also includes all siblings to the nodes encountered on the path from Yi 
to the root; signature verification links Yi to the public key by computing 
all hash values towards the root and comparing the value at the root with 
the public key.

Hash functions appear in all signature systems. Standard hash func-
tions are affected only by Grover’s attack, not by Shor’s attack. This makes 
Merkle’s very simple signatures excellent candidates for post-quantum 
signatures: they have a clear security track record, and computing hash 
functions is very fast.

Various improvements exist: using better one-time signatures45,46 
to decrease the signature size, for example, or building trees of trees to 
reduce key-generation time. A system based on XMSS47,48 is currently 
in the final steps of adoption for internet protocols by the Internet 

Research Task Force (IRTF). The US National Institute for Standards and 
Technology (NIST) has indicated that they will fast-track a hash-based 
signature system.

It is important to never reuse a secret key Xi: each Xi is usable only 
one time. This means that the system described so far is ‘stateful’: the 
signer needs to remember which keys have been used. This might sound 
easy but has been described as a “huge foot-cannon”49: it poses prob-
lems for environments that use, for example, virtual machines or shared 
signing keys. For such applications, ‘stateless’ systems exist50, but this  
feature comes at the expense of longer signatures and longer signature-
generation time.

Integration into the real world
Deploying a cryptographic system incurs physical costs: the time and 
energy consumed by cryptographic computations and by communication 
of keys, signatures, and so forth. Today’s deployment of cryptography 
for billions of users relies on the fact that cryptography fits the users’ 
budget. For comparison, some of the simplest goals of cryptography might 
also be achieved by couriers transporting locked briefcases, but this is so 
expensive that very few users can afford it.

Deploying a cryptographic system also raises questions of whether the 
real world matches the system’s mathematical models of user capabilities 
and attacker capabilities. The most important examples are ‘side-channel 
attacks’, in which the attacker learns extra information by observing 
physical effects such as timing51 or power consumption52. Another 
example is the problem of statefulness mentioned above.

A large part of cryptographic research is aimed at finding the maximum 
real-world security achievable under various constraints on real-world 
costs. For example, side-channel attacks against cryptography are the 
largest topic at the immensely popular ‘Cryptographic Hardware and 
Embedded Systems’ conference series, whereas there seems to have 
been far less public analysis of, for example, the power of side-channel 
attacks against locked briefcases. As a final example, a state-of-the-
art implementation53 of McEliece’s code-based system takes even less 
processing time than ECC; the only serious obstacle to wide deployment 
of this system is its key size.

Standardization
Several standardization bodies have recognized the urgency of switching 
to cryptosystems that remain secure against attacks by quantum 
computers. This is an important development because many applica-
tions of cryptography require all parties to use the same cryptographic 
system: standardization is thus a prerequisite for widespread deployment. 
Sometimes de facto standards are set without standardization bodies, 
but formal standardization processes are widely viewed as reducing 
cryptographic risks.

The Internet Engineering Task Force (IETF) and its research  
branch IRTF are leading with having almost finalized standardization  
of a hash-based signature system. NIST has opened a call for sub-
missions of candidates for standardization; the submission deadline  
is November 2017, and evaluation is expected to run for 3–5 years. 
This call should result in the recommendation of a small portfolio  
of systems for encryption, signatures and possibly other key- 
exchange mechanisms. Other standardization bodies with post- 
quantum cryptography on the agenda are ETSI, with their ‘quantum-safe’ 

Table 2 | Qualitative overview of the described post-quantum systems

Approach Advantages Disadvantages

Code-based encryption (using Goppa codes) High confidence in security; very fast encryption; short 
ciphertexts

Large public keys

Lattice-based encryption (using NTRU or related) Short ciphertexts and keys; very fast encryption Require more security analysis
Lattice-based signatures Short keys and signatures; fast Require more security analysis; side-channel 

attacks on discrete Gaussians
Multivariate-quadratic-equation signatures Very short signatures Require more security analysis
Hash-based signatures (stateful version) High confidence; simple description Management of state
Hash-based signatures (stateless version) High confidence; simple description Large signatures
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working group; ISO, with SC27 WG2; and OASIS, with the KMIP  
standard.

One of the big European players in post-quantum cryptography is 
the EU Horizon 2020 PQCRYPTO project. The logo of the project is a 
Galapagos tortoise, illustrating the state of post-quantum cryptography 
at the start of that project: confidence-inspiring proposals of long-lived 
systems are too big or too slow for casual deployment. This project has 
already released recommendations54 of such confidence-inspiring systems 
for users who can afford them, such as AES-256, McEliece’s code-based 
cryptosystem and hash-based signatures.

Even without standardization, there are already experiments with wide-
scale deployment of post-quantum cryptography. A notable example is 
Google’s recent experiment55 with the recent ‘New Hope’56 lattice-based 
cryptosystem: an update to the Google Chrome browser automati-
cally encrypted data with New Hope (and with ECC) for a fraction of 
all Chrome users connecting to Google websites. This experiment 
concluded57 that there were “no reported problems” and that quick 
deployment of this cryptosystem is practical. Whether the cryptosystem 
is secure is a different question.

Ongoing and future work
These are exciting times for post-quantum cryptography. Researchers 
have identified many different ways to provide critical functions such 
as public-key encryption and public-key signatures: see Table 2 for 
illustrative examples. Some of these proposals have survived many years 
of scrutiny, but these proposals incur serious costs, especially in network 
traffic. Other proposals are more attractive for deployment, but their 
security is less clear, and it is likely that some of those proposals will be 
broken.

We expect that most of the systems sketched in this review will stand 
the test of time but probably with different parameters. We expect an 
increased uptake in research in post-quantum cryptography motivated 
by NIST’s competition—more designs, more optimizations and imple-
mentations, and also more attacks. An important part of progress in 
cryptography is to understand what not to do—that is, what systems are 
vulnerable to attacks. Only once systems are sufficiently well studied to be 
considered secure does it make sense to establish practicality. Much more 
work is needed to build post-quantum systems that are widely deployable 
while at the same time inspiring confidence.
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