
1 8 8 | N A T U R E | V O L 5 4 9 | 1 4 s e p te m b er 2 0 1 7

Review
doi:10.1038/nature23461

Post-quantum cryptography
Daniel J. Bernstein1 & Tanja Lange2

A ttackers are recording, and sometimes forging, vast volumes
of human communication. Some of this communication is
protected by cryptographic systems such as the Rivest–Shamir–

Adleman (RSA) system and elliptic-curve cryptography (ECC), but if
quantum computing scales as expected then it will break both RSA and
ECC. We are in a race against time to deploy post-quantum cryptography
before quantum computers arrive.

This Review surveys what cryptography does and the damage done
by quantum computing. It is important to understand that research
in cryptography is not monolithic: cryptography makes progress not
only through designs of new proposals but also through cryptanalysts
studying the security of proposals and weeding out weak proposals. We
describe some of the main candidates for post-quantum cryptography
and conclude with a look to the future.

Introduction to cryptography
When a user visits a website starting with https, the user’s computer
(laptop, desktop, mobile phone or other device) uses Transport Layer
Security (TLS) to connect securely to the web server. TLS combines
a sequence of cryptographic operations to ensure that no third party
can understand what is being sent (confidentiality); that no third party
can modify the messages without being detected (integrity); and that
no third party can impersonate one of the communicating parties
(authenticity).

Call the web server ‘Alice’ and the user’s computer ‘Bob’. What identifies
Alice and Bob to each other is that they share a secret value, a ‘key’. They
use this key to perform ‘symmetric’ cryptographic operations. We will
return later to the question of how they both know a secret key in the
first place.

Suppose Alice has a message m to send to Bob: a web page or a file. Alice
and Bob both know an encryption key kenc. Alice applies a ‘symmetric
encryption algorithm’ using this key kenc to encrypt the message m,
producing a ciphertext c, which Alice sends through the internet to Bob.
Bob applies a matching symmetric decryption algorithm using the same
key kenc to decrypt the ciphertext c, obtaining the original message m.

Alice and Bob also both know an authentication key kauth. Alice applies
a ‘message-authentication code’ (MAC) using this key kauth to the cipher-
text c, producing an authentication tag, which Alice also sends through
the internet to Bob, proving that she has access to the key. Bob verifies the
computation by applying the same MAC using the same key.

Symmetric encryption ensures the confidentiality of data in https. It
ensures that a spy cannot see the contents of a message. Authentication
ensures authenticity and integrity of messages: it prevents a spy from

modifying the message or substituting a different message, pretending
to be Alice.

Several choices of symmetric encryption algorithms and MACs are
offered by https. Some of the MACs are built from ‘hash functions’. A hash
function maps strings of arbitrary length to strings of some fixed length
n: for example 256-bit strings. In this article, we consider only hash func-
tions designed to make the following operations computationally hard:
(1) given a value z in the image of h, find a pre-image, that is, a string m
with h(m) =​ z; (2) given a string m and h(m), find a second pre-image, that
is, a string m′​ ≠​ m with h(m) =​ h(m′​); and (3) find a collision, that is, strings
m ≠​ m′​ with h(m) =​ h(m′​). Hash functions provide compact fingerprints of
messages; a small change to the message produces a completely different
fingerprint. This property is used in constructions of MACs.

The description so far has left open how Alice and Bob arrived at
having a shared symmetric key. This part of the https connection uses
‘public-key cryptography’.

In public-key cryptography, each party has two keys: a public key and a
private key. The private key is known only to the party, whereas the public
key can be made public. Given Alice’s public encryption key, anybody
can encrypt a message to her, whereas only she is in possession of the
matching private key that she uses to decrypt.

In the https scenario, Alice is a web server and Bob is a browser. Bob
contacts Alice first to download the public key, then encrypts a one-time
symmetric key to it, and finally uses the symmetric key in the rest of the
communication for encryption and authentication as described above.
Alice decrypts Bob’s initial message to obtain the shared symmetric key
and then also uses that for the rest of the communication.

Another option in https is to use another public-key function, ‘key
exchange’, that is very close to what is described so far but uses different
mathematical functions. Instead of Bob encrypting a symmetric key
to Alice’s public key, Bob and Alice both do computations that jointly
generate a symmetric key.

There is still an important problem: how does Bob know that the public
key provided by Alice really belongs to her? In the case of https, this is
handled by browsers downloading and verifying ‘certificates’. The cryp-
tographic function used here is public-key ‘signatures’, which authenticate
messages with public-key cryptography.

In a signature system, Sam applies a signature algorithm using his
private signing key to a message m, producing a signature. Everybody
can verify this signature by applying a verification algorithm to m using
Sam’s public signing key. Internally, these algorithms typically apply a
hash function to the message, along with other mathematical operations
involving the keys.

Cryptography is essential for the security of online communication, cars and implanted medical devices. However,
many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum
cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum
cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes
in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building
cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for
cryptographic usability and flexibility without sacrificing confidence.

1Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA. 2Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
5612 AZ Eindhoven, The Netherlands.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature23461

Review INSIGHT

1 4 s e p te m b er 2 0 1 7 | V O L 5 4 9 | N A T U R E | 1 8 9

Like a MAC, a signature system ensures authenticity and integrity of
the message, but there are two important differences. First, a signature can
be verified by anybody using the public key, whereas an authentication
tag is between the parties sharing kauth. Second, only Sam has the private
key used to produce a valid signature, whereas an authentication tag from
Alice to Bob could have been computed by Alice or Bob.

In https, Sam is a well-known trusted party such as the Internet Security
Research Group; everyone knows Sam’s public key. The message signed
by Sam is a certificate linking Alice’s identity to Alice’s public key. Bob
verifies the signature from Sam and can then confidently use Alice’s public
key for encryption.

The devastating impact of Shor’s algorithm
In the popular RSA public-key system1, the public key is a product N =​ pq
of two secret prime numbers p and q. The security of RSA relies critically
on the difficulty of finding the factors p, q of N. However, in 1994, Shor2
introduced a fast quantum algorithm to find the prime factorization of
any positive integer N.

There has been some research into analysing and optimizing the
exact costs of Shor’s algorithm: in particular, the number of quantum
bits (qubits) required and the number of qubit operations required. For
example, a variant of Shor’s algorithm by Beauregard3 uses O(n3logn)
operations on 2n +​ 3 qubits if N =​ pq fits into n bits. One can reduce the
number of operations to n2 + o(1), at some expense in the number of qubits,
where o(1) means something that converges to 0 as n →​ ∞​. One can also
run many of those operations in parallel.

Internally, Shor’s algorithm evaluates a periodic function on a super-
position of all inputs within a wide range; applies a quantum Fourier
transform to obtain an approximate superposition of periods of the
function; and measures this superposition to find a random period. The
periodic function is �e a Nmode , where a is a random integer coprime
to N, the arrow indicates ‘maps to’, and the notation ‘mod N’ means the
remainder upon division by N. If N is not a power of a prime (an easy case
to recognize), then a random period reveals a factor of N with probability
high enough to be a security problem.

Shor introduced a similar algorithm to quickly find periods of the func-
tion �e f g h p, mode f , revealing k such that h =​ gk mod p. Replacing
multiplication mod p with addition of points on an elliptic curve mod p
breaks ECC, a popular alternative4,5 to RSA.

These algorithms, when applied to widely deployed public-key sizes
for RSA and ECC, require billions of operations on thousands of logical
qubits. Fault-tolerant6 attacks seem likely to require trillions of operations
on millions of physical qubits. Perhaps quantum computing will encounter
a fundamental obstacle that prevents it from ever scaling successfully to
such sizes. However, no such obstacles have been identified. Prudent risk
management requires defending against the possibility that these attacks
will be successful.

Grover’s algorithm
Many more cryptographic systems are affected by an algorithm that
Grover7 introduced in 1996. This algorithm is also the foundation for
most, although not all, of the positive applications that have been identi-
fied for quantum computing.

Grover originally described his algorithm as searching an unordered
database of size N using N quantum queries. This description begs the
question of why the database creator did not simply put the database into
order, allowing it to be searched using O(log N) queries. A closer look at
the details of Grover’s algorithm also raises difficult questions regarding
the physical cost of quantum database queries.

It is better to describe Grover’s algorithm as searching for roots of a
function f: that is, searching for solutions x to the equation f(x) =​ 0. If one
out of every N inputs is a root of f, then Grover’s algorithm finds a root
using only about N quantum evaluations of f on superpositions of
inputs. If f can be evaluated quickly by a small circuit, then quantum
evaluations of f do not use many qubit operations. This circuit condition
often holds for the functions f that appear in cryptography.

The ‘Advanced Encryption Standard’ (AES)8 is an example of a symmet-
ric encryption algorithm. Assume that a user is known to have encrypted
128-bit plaintexts ‘7’ and ‘8’ under a secret 128-bit AES key k, producing
a 256-bit ciphertext c =​ (AESk(7), AESk(8)) visible to the attacker. Define
f(x) =​ (AESx(7), AESx(8)) −​ c. This function f can be evaluated quickly
(about 20,000 bit operations) by a small circuit, and Grover’s algorithm
finds a root of f using only about 264 quantum evaluations of f (overall9
about 286 ‘T gates’ and a similar number of ‘Clifford gates’ applied to about
3,000 qubits). Presumably this root is k: unless AES is deeply flawed, there
will be at most a few pairs of distinct 128-bit keys x, k with collisions (AE
Sx(7), AESx(8)) =​ (AESk(7), AESk(8)), and the user will not have selected
one of those keys by chance.

Grover’s speed-up from N to N is not as devastating as Shor’s
speed-up. Furthermore, each of Grover’s N quantum evaluations must
wait for the previous evaluation to finish. To quantify this issue, define T
as the number of serial evaluations that can be carried out in the time
available: for example, if the quantum computer can evaluate f in a nano-
second, and if the attacker is prepared to run a computation lasting for a
year, then T ≈​ 255. If N exceeds T, then Grover’s algorithm cannot use
fewer than N/T evaluations spread across N/T2 parallel quantum
processors. This is a factor T better than pre-quantum techniques, but it
is possible that this improvement will be wiped out by the overhead of
qubit operations being more expensive than bit operations, making
Grover’s algorithm useless—even if scalable quantum computers are built
and run Shor’s algorithm successfully.

On the other hand, if qubit operations are small enough and fast
enough, then Grover’s algorithm will threaten many cryptographic
systems that aim for 2128 security, such as 128-bit AES keys. We recom-
mend simply switching to 256-bit AES keys: the extra costs are rarely
noticeable. ‘Information-theoretic’ MACs such as GMAC and Poly1305
already protect against quantum computers without any modifications:
their security analysis already assumes an attacker with unlimited com-
puting power.

Post-quantum cryptography
Table 1 summarizes the effects of Shor’s and Grover’s algorithms on
typical cryptosystems. The table gives the impression that the advent of
quantum computers destroys public-key cryptography, leaving only sym-
metric cryptography (with larger key sizes). Fortunately, RSA and ECC
are not the only public-key systems.

In the following five sections, we review details of five proposals that
have solidly resisted every suggested attack. In particular, nobody has

Table 1 | Examples of widely deployed cryptographic systems and
their conjectured security levels

Name Function
Pre-quantum
security level

Post-quantum
security level

Symmetric cryptography
AES-1288 Symmetric

encryption
128 64 (Grover)

AES-2568 Symmetric
encryption

256 128 (Grover)

Salsa2058 Symmetric
encryption

256 128 (Grover)

GMAC59 MAC 128 128 (no impact)
Poly130560 MAC 128 128 (no impact)
SHA-25661 Hash function 256 128 (Grover)
SHA3-25662 Hash function 256 128 (Grover)
Public-key cryptography
RSA-30721 Encryption 128 Broken (Shor)
RSA-30721 Signature 128 Broken (Shor)
DH-307242 Key exchange 128 Broken (Shor)
DSA-307263,64 Signature 128 Broken (Shor)
256-bit ECDH4–6 Key exchange 128 Broken (Shor)
256-bit ECDSA66,67 Signature 128 Broken (Shor)

Security levels shown are against the best pre-quantum and post-quantum attacks known.
Security level b means that the best attacks use approximately 2b operations. This optimization
ignores parallelization requirements; see text for discussion of the impact of such requirements.
For hash functions, ‘security’ in this table refers to pre-image security.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ReviewINSIGHT

1 9 0 | N A T U R E | V O L 5 4 9 | 1 4 s e p te m b er 2 0 1 7

been able to figure out any useful way to apply Shor’s algorithm and its
generalizations to these proposals.

Choosing secure key sizes for these proposals does require attention to
Grover’s algorithm, along with generalizations of Grover’s algorithm such
as quantum walks. Simply doubling the target security level is adequate
but generally imposes much more noticeable costs on public-key systems
than on AES; these costs motivate research aimed at understanding the
exact impact of Grover’s algorithm, so as to be able to use smaller key
sizes.

This is not a comprehensive list of proposals and attack ideas. We do
not describe isogeny-based cryptography10–12, for example, and we do not
discuss Kuperberg’s algorithm13. Our list is biased towards proposals that
have survived decades of study.

Code-based encryption
High-reliability computer equipment uses an ‘error-correcting code’ to
store 64 bits of logical data in 72 bits of physical memory. There is a
64 ×​ 72 ‘generator matrix’ G with each entry in the field F2 =​ {0, 1} of
integers modulo 2: in other words, a 64 ×​ 72 matrix of bits. This matrix
specifies each of the 72 physical bits as a sum, modulo 2, of some of the
64 logical bits. The code is F G2

64 , a 64-dimensional subspace of the vector
space F2

72, namely the subspace generated by the rows of G. The code is
designed so that any single error in the 72 bits (any change of a bit to its
opposite) can be reliably corrected, and any double error (changing any
two bits) can be reliably detected.

Error-correcting codes can be scaled up to correct more errors in longer
blocks of data. They are used in a wide range of applications, including hard
drives, satellite communication, and fault-tolerant quantum computation.

In 1978, early in the history of public-key cryptography, McEliece14
proposed using a generator matrix as a public key, and encrypting a code-
word (an element of the code) by adding a specified number of errors to
it. In formulas: the plaintext is a k-bit string m, the public key is a k ×​ n
matrix G, and the ciphertext is mG +​ e where e is an n-bit string with
w bits equal to 1. Examples of high-security parameters are n =​ 6,960,
k =​ 5,413, and w =​ 119. The receiver can find e and m given mG +​ e
because the receiver secretly generates the code as a random ‘Goppa code’
that can efficiently correct w errors. This structure is not obvious from
the generator matrix.

A simple but slow attack strategy against McEliece’s system is
‘information-set decoding’ (ISD). An information set is a collection
of codeword positions that determines the rest of the codeword. ISD
guesses an information set, hoping that the ciphertext is error-free in
those positions; uses linear algebra to (attempt to) determine the entire
codeword; and checks that the ciphertext has the specified number of
errors, in which case the codeword must be correct.

What makes ISD slow is that, for large matrices, the ciphertext is
extremely unlikely to be error-free on any particular information set.

More precisely, the number of guesses is (c +​ o(1))w, where w is the
number of errors added and c >​ 1 is a constant that depends on the
selected ratio between the number of matrix rows and columns.

Dozens of attack papers against McEliece’s system have found many
improvements to ISD, but all of the pre-quantum attacks still take
time (c +​ o(1))w for the same c, a remarkably stable track record. There
have been some improvements within the o(1) but these have not had
much impact on security levels. McEliece’s original key sizes (with
n =​ 1,024, k =​ 524 and w =​ 50) were designed for 264 security, and our
successful attack against those key sizes 30 years later15 took more than
260 CPU cycles. All known algorithms to find the secret Goppa-code
structure take even more time. The only post-quantum change in c has
been a straightforward application16 of Grover’s algorithm, replacing
c with c .

Some modifications to McEliece’s original system are important for
improving security and performance. Rather than sending a message as
a codeword, one should encrypt a random codeword, using a hash of
the codeword as a secret key to authenticate and encrypt a message (see
the description of https above); this protects McEliece’s system against
‘chosen-ciphertext attacks’ in which an active attacker sees the results of
decrypting modified ciphertexts. Another improvement to McEliece’s
system, due to Niederreiter17, is to compress public keys to ‘systematic
form’. When k bits are encoded as n bits, ‘systematic form’ means that
the first k physical bits are exactly the k logical bits, so the first k ×​ k sub-
matrix of the generator matrix is the identity matrix, which need not be
transmitted. Yet another improvement, also due to Niederreiter, is to send
‘syndromes’ rather than erroneous codewords; this reduces the ciphertext
size to about 200 bytes at a high security level.

The main practical problem with these systems is the key size, roughly
a megabyte (in systematic form) at a high security level. Many newer
code-based systems put more structure into public keys to allow more
compression, but some of those proposals have been broken. The only
post-quantum public-key-encryption systems that have received enough
study for us to recommend are the original McEliece/Niederreiter
systems.

Lattice-based encryption
In the 1990s, Hoffstein, Pipher and Silverman18 introduced an encryption
system, ‘NTRU’, that has much smaller keys than McEliece’s system and
that remains unbroken today. This system works as follows.

The public key is a p-coefficient polynomial = + + +�h h h x0 1
−

−h xp
p

1
1, with each coefficient in the set {0, 1, …, q −​ 1}. A typical

choice is p =​ 743 and q =​ 2,048 =​ 211; then the public key has
743 ×​ 11 =​ 8,173 bits.

A ciphertext is another polynomial c in the same range. The sender
chooses two secret polynomials d, e with small (say −​1, 0, 1) coefficients,
and computes c =​ ((hd +​ e) mod xp −​ 1) mod q. The notation ‘mod xp −​ 1’
means that xp is replaced by 1, xp+1 is replaced by x, and so on.

Define L as the set of pairs (u, v) of p-coefficient polynomials with
integer coefficients such that 0 =​ ((hu −​ v) mod xp −​ 1) mod q. Then L is
a lattice in 2p-dimensional space, and it contains a point close to (0, c),
namely (d, c −​ e). The attacker’s problem of finding the secrets d, e given
the ciphertext c and public key h is thus an example of finding a lattice
point close to a given point. This problem is analogous to the decoding
problem for codes (see Fig. 1), except that here ‘close’ is interpreted as
every coefficient being small, whereas codes simply count the number
of non-zero coefficients.

NTRU, like McEliece’s system, secretly generates the public key
in a way that makes decoding efficient. Specifically, the receiver
starts with a short vector of the form (g, 3f  ), and uses a Euclidean
algorithm to find h such that the lattice contains this vector, that is, such
that 0 =​ ((hg −​ 3f  ) mod xp − 1) mod q. Then (cg mod xp − 1) mod q is
the same as ((3df +​ eg) mod xp − 1) mod q. An analysis of coefficient
sizes shows that (3df +​ eg) mod xp − 1 almost certainly has all coefficients
strictly between −​q/2 and q/2, and then it is an easy exercise to find (d, e)
given f and g.

Figure 1 | Perspective view of a 9 × 9 × 9 subset of a non-orthogonal
three-dimensional lattice. Lattice-based cryptography hides a point
in a high-dimensional lattice mod q by making small changes to all
coordinates. Code-based cryptography hides a point in a very-high-
dimensional lattice mod 2 by changing some coordinates.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Review INSIGHT

1 4 s e p te m b er 2 0 1 7 | V O L 5 4 9 | N A T U R E | 1 9 1

There are many potential attack avenues against NTRU and other
lattice-based cryptosystems (such as cryptosystems based on ‘ring
learning with errors’19). For example, very recently the ‘cyclotomic’
structure of xp − 1 has been used to break20–22 some lattice-based cryp-
tosystems by an extension of Shor’s algorithm. NTRU is not known to
be affected, but this attack avenue is new and has not been adequately
explored. We recommend23,24 replacing xp − 1 with xp −​ x − 1, avoiding
this structure. As another example, recent attacks25–27 that work for
arbitrary lattices, without exploiting any polynomial structure, have
smaller exponents than the best such attacks known just a few years ago;
such lattices are used in cryptosystems based on ‘learning with errors’28.
Much more research is required to gain confidence in the security of
lattice-based cryptography.

Lattice-based signatures
The first attempts29–31 to turn hard lattice problems into signature systems
were marred by attacks32,33, and surviving systems suffered from large
signature sizes. The most promising signature systems are based on
Lyubashevsky’s signature system34 from 2012. Despite its evident youth,
we decided to include it because the resulting signatures are relatively
short and fast to compute.

The system is most easily presented using integer matrices.
Implementations typically use polynomial rings and fast Fourier
transforms for compact representations and efficiency. Lyubashevsky’s
system uses several system parameters, namely integers k, m, n
determining the sizes of matrices, κ limiting the Hamming weight of
certain vectors, and q a modulus. Let A be an n ×​ m integer matrix
modulo q, that is, ∈ ×ZA q

n m; this matrix may be shared by all users of the
system but can also be chosen individually. The private key is a matrix
S ∈​ Z​m×k with small entries, where ‘small’ means much smaller than q
and is often restricted to {−​1, 0, 1}. The public key is the n ×​ k matrix
T =​ AS, where the entries are computed modulo q. If A is not shared then
it is also part of the public key.

The system uses a hash function × − →∗ZH : { 1,0,1} {0,1}q
n k, where the

output vectors additionally satisfy that no more than κ entries are non-
zero. It is easy to build H from a traditional hash function h by encoding
inputs and outputs appropriately.

The signer starts by picking y from an m-dimensional distribution,
typically a discrete Gaussian distribution. (A discrete Gaussian distri-
bution is a distribution obtained by considering only integer values of
the regular Gaussian distribution and normalizing appropriately.) The
signer then computes c =​ H(Ay mod q, μ), where μ is the message, and
z =​ Sc +​ y. The signature is the pair (c, z). To avoid leaking information
about the private key S through the distribution of (c, z), Lyubashevsky
uses ‘rejection sampling’ to force an S-independent distribution. This
means that the process is restarted with probability depending on (c, z).

The signature is accepted as valid if c and z are sufficiently small and
if H(Az −​ Tc mod q, μ) =​ c. The latter holds for valid signatures because
Az −​ Tc ≡​ A(Sc +​ y) −​ ASc ≡​ Ay mod q.

Later proposals such as BLISS35 improve the running time by reducing
the frequency of rejection in the last step. A ring version with k =​ n and
m =​ 2n signs in under half a millisecond and verifies about 10 times faster.
Public keys and signatures each are between 5 and 7 kilobits, not much
larger than RSA signatures.

Ongoing challenges include (1) generating the distribution in a way that
does not leak36 information on S through ‘side channels’ (see below) and
(2) analysing the security of the underlying algorithmic problem, namely the
problem of finding short integer solutions to a system of equations modulo q.

Multivariate-quadratic-equation signatures
Matsumoto and Imai37 introduced a new signature system, ‘C*​’, in 1988.
Patarin38 broke the C*​ system in 1995 but the next year39 introduced a
stronger system, ‘HFEv−​’, that remains unbroken today.

The HFEv− public key is a sequence of polynomials p1, …, pm in the
n-variable polynomial ring F2[x1, …, xn] over the field F2, with m ≤​ n.
The polynomials are limited to quadratics and have no squared terms:

each polynomial pi has the form +∑ +∑ <a b x c x xi j i j j j k i j k j k, , , with
∈Fa b c, ,i i j i j k, , , 2. The coefficients have no obvious public structure.

A signature of a message is an n-bit string … ∈Fs s(, ,)n
n

1 2 such that the
m-bit string … … … ∈Fp s s p s s((, ,), , (, ,))n m n

m
1 1 1 2 equals a standard m-bit

hash (h1, …, hm) of the message. An example of a reasonable parameter
choice (including the internal parameters v, q described below) is (m, n,
v, q) =​ (240, 272, 16, 2256); then a signature is just 34 bytes. These very
short signatures are an attractive feature of this signature system.

The signer chooses the polynomials with a secret structure that allows
the signer to solve the simultaneous quadratic equations p1(s1, …, sn) =​ 
h1, …, pm(s1, …, sn) =​ hm. Specifically, HFEv− exploits the fact that there
are general methods to solve polynomial equations of degree d over finite
fields Fq in time (dlogq)O(1) if the equations are in just one variable. We
now explain how the multivariate polynomials p1, …, pm are secretly
related to a univariate polynomial.

The signer views an n-bit signature (s1, …, sn) as a randomly chosen v-bit
string … ∈Fr r(, ,)v

v
1 2 , where v ≤​ n −​ m, together with an (n −​ v)-bit

element S ∈​ Fq, where q =​ 2n−v. This view is secret: v and q can be stand-
ardized, but before the signature is partitioned into (r, S) it is passed through
a secret invertible n ×​ n matrix chosen by the signer. This means that S is
some linear function of s1, …, sn, but not a public linear function.

The signer similarly views an m-bit hash value, together with a
randomly chosen (n −​ v −​ m)-bit string, as an element H ∈​ Fq. This view
is also not standardized: it is obscured by another secret matrix. Here
is the overall signing process, starting from the hash value: choose the
v +​ (n −​ v −​ m) =​ n −​ m random bits mentioned above; construct H; try
to solve for S as explained below (or, if no solution S exists, start over with
another choice of random bits); and construct the resulting n-bit signature.

There is one more secret: a degree-d polynomial ∈ …FP x y y[, , ,]q v1
of the form +∑ +∑ +∑ +∑ +>

+A B x C x D y E y xj j j k j k j j j j k j k j
2

,
2 2

, ,
2j j k k

∑ > F y yj k j k j k, . This polynomial specifies a secret equation connecting
S and H, namely P(S, r1, …, rv) =​ H. To convert this equation into the
public quadratic polynomials, the signer writes each bit of S2 j

 as a linear
combination of s1, …, sn. To solve the equation for any particular
signature, the signer simply observes that this is a univariate equation in
S for any particular choice of random bits r1, …, rv.

For comparison, C*​ takes q =​ 2m =​ 2n; takes the polynomial P as a
monomial +x2 1j with exponent coprime to 2q −​ 1; and solves the equation

=+S H2 1j by computing S =​ He, where e is the reciprocal of
2j +​ 1 mod 2q −​ 1. The core idea of Patarin’s attack is that the bilinear
equation =S H H S2 2j j2

 is equivalent to a secret bilinear equation E on
the bits of hashes and signatures. Each hash–signature pair produces
a linear equation for the secret coefficients of E, and after enough signa-
tures the attacker simply solves for those coefficients, at which point sig-
nature forgery is easy. HFEv− blocks this attack by including more
monomials in P.

There is a vast literature on other multivariate-quadratic signature
systems and on algorithms to attack these systems. For HFEv− in

X1 X2 X3 X4 X5 X6 X7 X8

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y9 = h(Y1, Y2) Y10 = h(Y3, Y4) Y11 = h(Y5, Y6) Y12 = h(Y7, Y8)

Y13 = h(Y9, Y10) Y14 = h(Y11, Y12)

Y15 = h(Y13, Y14)

Figure 2 | Merkle tree with public key Y15 to sign eight messages. The
boxes highlight the values constituting the sixth signature. This signature
reveals parts of X6, the secret key of Lamport’s one-time signature. It also
includes the matching Lamport public key Y6, along with Y5, Y12 and Y13.
The verifier computes Y15 and checks it against the Merkle public key.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ReviewINSIGHT

1 9 2 | N A T U R E | V O L 5 4 9 | 1 4 s e p te m b er 2 0 1 7

particular, all known attacks take time exponential in approximately
− +  n m d n(log)log2 2 , where the ceiling function  x denotes the smallest

integer greater than or equal to the real number x. The same type of
analysis used for recent pre-quantum parameter choices40 indicates that
m =​ 240, n −​ v =​ 256 and n =​ 272 provide high post-quantum security
against known attacks even if d is quite small.

Hash-based signatures
One of the design goals mentioned earlier for hash functions is that
finding a pre-image for a given output string is computationally hard.
In 1975, Lamport realized that this could be used to build a one-time
signature system41,42.

Lamport’s one-time signatures work as follows. To generate his key pair,
Sam chooses two random strings x0 and x1; these constitute his secret key.
His public key is (h(x0), h(x1)), where h is a hash function which is known
to everybody. If he wants to sign 0 he reveals x0; the verifier recomputes
h(x0) and checks the result against the first half of the public key. To sign 1,
Sam reveals x1. More generally, to sign an m-bit message, Sam takes 2m
strings as the secret key X =​ (x10, x11, x20, x21, …, xm0, xm1) and their hash
values as public key Y =​ (h(x10), h(x11), h(x20), h(x21), …, h(xm0), h(xm1)).
The signature of, for example, 10110… is (x11, x20, x31, x41, x50, …).
Security rapidly degrades if Sam signs more than one message under
the same key.

To overcome the problems of large public keys that could be used only
once, Merkle proposed43,44 to combine 2k public keys into one which can
then be used to verify all 2k signatures. For that, create 2k key pairs for
Lamport’s one-time signature and arrange the public keys …Y Y Y, , ,1 2 2k as
the leaves of a binary tree with k +​ 1 levels. A binary tree is one in which
each node has exactly three edges, two going to a level closer to the leaves
and one going closer to the root, except for the leaf nodes having only one
and the root node having only two edges. Figure 2 shows an example of
a Merkle tree with 23 =​ 8 leaves. To compute the public key combining
these 2k keys, start from the leaves and compute the hash of each pair of
public keys connected by edges in the tree, starting with =+Y h Y Y(,)2 1 1 2k ;
continue iteratively through the levels, ending by computing the root

=− − −+ + +Y h Y Y(,)2 1 2 3 2 2k k k1 1 1 . The value −+Y2 1k 1 at the root node is the
public key of the system.

The public key is now a single hash value, but the signatures need to
include more information to make it possible to check them. As before,
a signature using secret key Xi reveals the xij matching the bit pattern
of the message to be signed; in addition, the matching public key Yi is
included so that the Lamport signature can be verified. The signature
also includes all siblings to the nodes encountered on the path from Yi
to the root; signature verification links Yi to the public key by computing
all hash values towards the root and comparing the value at the root with
the public key.

Hash functions appear in all signature systems. Standard hash func-
tions are affected only by Grover’s attack, not by Shor’s attack. This makes
Merkle’s very simple signatures excellent candidates for post-quantum
signatures: they have a clear security track record, and computing hash
functions is very fast.

Various improvements exist: using better one-time signatures45,46
to decrease the signature size, for example, or building trees of trees to
reduce key-generation time. A system based on XMSS47,48 is currently
in the final steps of adoption for internet protocols by the Internet

Research Task Force (IRTF). The US National Institute for Standards and
Technology (NIST) has indicated that they will fast-track a hash-based
signature system.

It is important to never reuse a secret key Xi: each Xi is usable only
one time. This means that the system described so far is ‘stateful’: the
signer needs to remember which keys have been used. This might sound
easy but has been described as a “huge foot-cannon”49: it poses prob-
lems for environments that use, for example, virtual machines or shared
signing keys. For such applications, ‘stateless’ systems exist50, but this
feature comes at the expense of longer signatures and longer signature-
generation time.

Integration into the real world
Deploying a cryptographic system incurs physical costs: the time and
energy consumed by cryptographic computations and by communication
of keys, signatures, and so forth. Today’s deployment of cryptography
for billions of users relies on the fact that cryptography fits the users’
budget. For comparison, some of the simplest goals of cryptography might
also be achieved by couriers transporting locked briefcases, but this is so
expensive that very few users can afford it.

Deploying a cryptographic system also raises questions of whether the
real world matches the system’s mathematical models of user capabilities
and attacker capabilities. The most important examples are ‘side-channel
attacks’, in which the attacker learns extra information by observing
physical effects such as timing51 or power consumption52. Another
example is the problem of statefulness mentioned above.

A large part of cryptographic research is aimed at finding the maximum
real-world security achievable under various constraints on real-world
costs. For example, side-channel attacks against cryptography are the
largest topic at the immensely popular ‘Cryptographic Hardware and
Embedded Systems’ conference series, whereas there seems to have
been far less public analysis of, for example, the power of side-channel
attacks against locked briefcases. As a final example, a state-of-the-
art implementation53 of McEliece’s code-based system takes even less
processing time than ECC; the only serious obstacle to wide deployment
of this system is its key size.

Standardization
Several standardization bodies have recognized the urgency of switching
to cryptosystems that remain secure against attacks by quantum
computers. This is an important development because many applica-
tions of cryptography require all parties to use the same cryptographic
system: standardization is thus a prerequisite for widespread deployment.
Sometimes de facto standards are set without standardization bodies,
but formal standardization processes are widely viewed as reducing
cryptographic risks.

The Internet Engineering Task Force (IETF) and its research
branch IRTF are leading with having almost finalized standardization
of a hash-based signature system. NIST has opened a call for sub-
missions of candidates for standardization; the submission deadline
is November 2017, and evaluation is expected to run for 3–5 years.
This call should result in the recommendation of a small portfolio
of systems for encryption, signatures and possibly other key-
exchange mechanisms. Other standardization bodies with post-
quantum cryptography on the agenda are ETSI, with their ‘quantum-safe’

Table 2 | Qualitative overview of the described post-quantum systems

Approach Advantages Disadvantages

Code-based encryption (using Goppa codes) High confidence in security; very fast encryption; short
ciphertexts

Large public keys

Lattice-based encryption (using NTRU or related) Short ciphertexts and keys; very fast encryption Require more security analysis
Lattice-based signatures Short keys and signatures; fast Require more security analysis; side-channel

attacks on discrete Gaussians
Multivariate-quadratic-equation signatures Very short signatures Require more security analysis
Hash-based signatures (stateful version) High confidence; simple description Management of state
Hash-based signatures (stateless version) High confidence; simple description Large signatures

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Review INSIGHT

1 4 s e p te m b er 2 0 1 7 | V O L 5 4 9 | N A T U R E | 1 9 3

working group; ISO, with SC27 WG2; and OASIS, with the KMIP
standard.

One of the big European players in post-quantum cryptography is
the EU Horizon 2020 PQCRYPTO project. The logo of the project is a
Galapagos tortoise, illustrating the state of post-quantum cryptography
at the start of that project: confidence-inspiring proposals of long-lived
systems are too big or too slow for casual deployment. This project has
already released recommendations54 of such confidence-inspiring systems
for users who can afford them, such as AES-256, McEliece’s code-based
cryptosystem and hash-based signatures.

Even without standardization, there are already experiments with wide-
scale deployment of post-quantum cryptography. A notable example is
Google’s recent experiment55 with the recent ‘New Hope’56 lattice-based
cryptosystem: an update to the Google Chrome browser automati-
cally encrypted data with New Hope (and with ECC) for a fraction of
all Chrome users connecting to Google websites. This experiment
concluded57 that there were “no reported problems” and that quick
deployment of this cryptosystem is practical. Whether the cryptosystem
is secure is a different question.

Ongoing and future work
These are exciting times for post-quantum cryptography. Researchers
have identified many different ways to provide critical functions such
as public-key encryption and public-key signatures: see Table 2 for
illustrative examples. Some of these proposals have survived many years
of scrutiny, but these proposals incur serious costs, especially in network
traffic. Other proposals are more attractive for deployment, but their
security is less clear, and it is likely that some of those proposals will be
broken.

We expect that most of the systems sketched in this review will stand
the test of time but probably with different parameters. We expect an
increased uptake in research in post-quantum cryptography motivated
by NIST’s competition—more designs, more optimizations and imple-
mentations, and also more attacks. An important part of progress in
cryptography is to understand what not to do—that is, what systems are
vulnerable to attacks. Only once systems are sufficiently well studied to be
considered secure does it make sense to establish practicality. Much more
work is needed to build post-quantum systems that are widely deployable
while at the same time inspiring confidence.

received 28 February; accepted 30 June 2017.

1.	 Rivest, R. L., Shamir, A. & Adleman, L. M. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21, 120–126
(1978)

2.	 Shor, P. W. Algorithms for quantum computation: discrete logarithms and
factoring. In Proc. 35th Ann. Symp. on Foundations of Computer Science
(FOCS ’94) 124–134 (IEEE, 1994).

3.	 Beauregard, S. Circuit for Shor’s algorithm using 2n +​ 3 qubits. Quantum Inf.
Comput. 3, 175–185 (2003).

4.	 Miller, V. S. Use of elliptic curves in cryptography. In Advances in Cryptology,
Proc. CRYPTO ’85 (ed. Williams, H. C.) 417–426 (Springer, 1985).

5.	 Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987).
6.	 Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal

quantum computation. Nature http://dx.doi.org/10.1038/nature23460 (2017).
7.	 Grover, L. K. A fast quantum mechanical algorithm for database search. In

Proc. 28th Ann. ACM Symp. on Theory of Computing (ed. Miller, G. L.) 212–219
(ACM, 1996).

8.	 Daemen, J. & Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption
Standard (Springer, 2002).

9.	 Grassl, M., Langenberg, B., Roetteler, M. & Steinwandt, R. Applying Grover’s
algorithm to AES: quantum resource estimates. In Post-Quantum Cryptography,
Proc. 7th International Workshop (PQCRYPTO 2016) (ed. Takagi, T.) 29–43
(Springer, 2016).

10.	 Rostovtsev, A. & Stolbunov, A. Public-key cryptosystem based on isogenies.
Preprint at https://eprint.iacr.org/2006/145 (2006).

11.	 Couveignes, J.-M. Hard homogeneous spaces (2006). Preprint at https://
eprint.iacr.org/2006/291.

12.	 Jao, D. & de Feo, L. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Post-Quantum Cryptography, Proc.
4th International Workshop (PQCRYPTO 2011) (ed. Yang, B.-Y.) 19–34
(Springer, 2011).

13.	 Kuperberg, G. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005).

14.	 McEliece, R. J. A Public-Key Cryptosystem based on Algebraic Coding Theory.
Deep Space Network Progress Report 42–44 http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF (1978).

15.	 Bernstein, D. J., Lange, T. & Peters, C. Attacking and defending the McEliece
cryptosystem. In Post-Quantum Cryptography, Proc. 2nd International Workshop
(PQCRYPTO 2008) (eds Buchmann, J. A. & Ding, J.) 31–46 (Springer, 2008).

16.	 Bernstein, D. J. Grover vs. McEliece. In Post-Quantum Cryptography, Proc.
3rd International Workshop (PQCRYPTO 2010) (ed. Sendrier, N.) 73–80
(Springer, 2010).

17.	 Niederreiter, H. Knapsack-type cryptosystems and algebraic coding theory.
Probl. Control Inform. 15, 159–166 (1986).

18.	 Hoffstein, J., Pipher, J. & Silverman, J. H. NTRU: a ring-based public key
cryptosystem. In Algorithmic Number Theory, Proc. 3rd International Symp.
(ANTS-III) (ed. Buhler, J.) 267–288 (Springer, 1998).

19.	 Lyubashevsky, V., Peikert, C. & Regev, O. On ideal lattices and learning with
errors over rings. J. ACM 60, 43:1–43:35 (2013).

20.	 Campbell, P., Groves, M. & Shepherd, D. Soliloquy: a cautionary tale. http://
docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_
Attacks/S07_Groves_Annex.pdf (2014).

21.	 Biasse, J.-F. & Song, F. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In Proc. 27th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2016)
(ed. Krauthgamer, R.) 893–902 (SIAM, 2016).
An extension of Shor’s algorithm breaks some lattice-based systems.

22.	 Cramer, R., Ducas, L. & Wesolowski, B. Short Stickelberger class relations and
application to Ideal-SVP. In Advances in Cryptology, Proc. Ann. International Conf.
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2017)
324–348 (Springer, 2017).

23.	 Bernstein, D. J. A subfield-logarithm attack against ideal lattices. The cr.yp.to
blog https://blog.cr.yp.to/20140213-ideal.html (2014).

24.	 Bernstein, D. J., Chuengsatiansup, C., Lange, T. & van Vredendaal, C. NTRU
Prime. Preprint at https://eprint.iacr.org/2016/461 (2016).

25.	 Laarhoven, T. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Advances in Cryptology, Proc. 35th Ann. Cryptology
Conf. (CRYPTO 2015) (eds Gennaro, R. & Robshaw, M.) 3–22 (Springer, 2015).

26.	 Laarhoven, T. & de Weger, B. Faster sieving for shortest lattice vectors using
spherical locality-sensitive hashing. In Progress in Cryptology, Proc.
4th International Conf. on Cryptology and Information Security in Latin America
(LATINCRYPT 2015) (eds Lauter, K. E. & Rodríguez-Henríquez, F.) 101–118
(Springer, 2015).

27.	 Becker, A., Ducas, L., Gama, N. & Laarhoven, T. New directions in nearest
neighbor searching with applications to lattice sieving. In Proc. 27th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA 2016) (ed. Krauthgamer, R.)
10–24 (SIAM, 2016).

28.	 Regev, O. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56, 34:1–34:40 (2009).

29.	 Goldreich, O., Goldwasser, S. & Halevi, S. Public-key cryptosystems from
lattice reduction problems. In Advances in Cryptology, Proc. 17th Ann.
International Cryptology Conf. (CRYPTO’97) (ed. Kaliski, B. S. Jr) 112–131
(Springer, 1997).

30.	 Hoffstein, J., Pipher, J. & Silverman, J. H. NSS: an NTRU lattice-based signature
scheme. In Advances in Cryptology, Proc. International Conf. on the Theory and
Application of Cryptographic Techniques (EUROCRYPT 2001) (ed. Pfitzmann, B.)
211–228 (Springer, 2001).

31.	 Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J. H. & Whyte, W.
NTRUSIGN: digital signatures using the NTRU lattice. In Topics in Cryptology,
Proc. Cryptographers’ Track at the RSA Conf. 2003 (CT-RSA 2003) (ed. Joye, M.)
122–140 (Springer, 2003).

32.	 Nguyen, P. Q. & Regev, O. Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In Advances in Cryptology, Proc. 25th Ann. International Conf.
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2006)
(ed. Vaudenay, S.) 271–288 (Springer, 2006).

33.	 Ducas, L. & Nguyen, P. Q. Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In Advances in Cryptology, Proc. 18th
International Conf. on the Theory and Application of Cryptology and Information
Security (ASIACRYPT 2012) (eds Wang, X. & Sako, K.) 433–450 (Springer,
2012).

34.	 Lyubashevsky, V. Lattice signatures without trapdoors. In Advances in
Cryptology, Proc. 31st Ann. International Conf. on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2012) (eds Pointcheval, D. &
Johansson, T.) 738–755 (Springer, 2012).

35.	 Ducas, L., Durmus, A., Lepoint, T. & Lyubashevsky, V. Lattice signatures and
bimodal Gaussians. In Advances in Cryptology, Proc. 33rd Ann. Cryptology Conf.
(CRYPTO 2013) (eds Canetti, R. & Garay, J. A.) 40–56 (Springer, 2013).

36.	 Groot Bruinderink, L., Hülsing, A., Lange, T. & Yarom, Y. Flush, Gauss, and
reload: a cache attack on the BLISS lattice-based signature scheme. In
Cryptographic Hardware and Embedded Systems, Proc. 18th International
Conf. (CHES 2016) (eds Gierlichs, B. & Poschmann, A. Y.) 323–345 (Springer,
2016).
First successful side-channel attacks against lattice-based signatures.

37.	 Matsumoto, T. & Imai, H. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In Advances in Cryptology,
Proc. Workshop on the Theory and Application of Cryptographic Techniques
(EUROCRYPT’88) (ed. Günther, C. G.) 419–453 (Springer, 1988).

38.	 Patarin, J. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In Advances in Cryptology, Proc. 15th Ann. International Cryptology
Conf. (CRYPTO’95) (ed. Coppersmith, D.) 248–261 (Springer, 1995).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nature23460
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://blog.cr.yp.to/20140213-ideal.html
https://eprint.iacr.org/2016/461

ReviewINSIGHT

1 9 4 | N A T U R E | V O L 5 4 9 | 1 4 s e p te m b er 2 0 1 7

39.	 Patarin, J. Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In Advances in Cryptology,
Proc. International Conf. on the Theory and Application of Cryptographic
Techniques (EUROCRYPT’96) (ed. Maurer, U. M.) 33–48 (Springer,
1996).

40.	 Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C. & Ding, J. Design principles for
HFEv-based multivariate signature schemes. In Advances in Cryptology, Proc.
21st International Conf. on the Theory and Application of Cryptology and
Information Security (ASIACRYPT 2015) (eds Iwata, T. & Cheon, J. H.) 311–334
(Springer, 2015).
Optimizes conservative multivariate-quadratic signatures.

41.	 Lamport, L. Constructing Digital Signatures from a One Way Function. Technical
Report No. SRI-CSL-98 (SRI International Computer Science Laboratory,
1979); available at http://lamport.azurewebsites.net/pubs/pubs.html#dig-sig

42.	 Diffie, W. & Hellman, M. E. New directions in cryptography. IEEE Trans. Inf.
Theory 22, 644–654 (1976).

43.	 Merkle, R. C. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford Univ., http://www.merkle.com/papers/Thesis1979.pdf
(1979).

44.	 Merkle, R. C. A certified digital signature. In Advances in Cryptology, Proc. 9th
Ann. International Cryptology Conf. (CRYPTO ’89) (ed. Brassard, G.) 218–238
(Springer, 1989).

45.	 Dods, C., Smart, N. P. & Stam, M. Hash based digital signature schemes. In
Cryptography and Coding, Proc. 10th IMA International Conf. (ed. Smart, N. P.)
96–115 (Springer, 2005).

46.	 Hülsing, A. W-OTS+—shorter signatures for hash-based signature schemes. In
Progress in Cryptology, Proc. 6th International Conf. on Cryptology in Africa
(AFRICACRYPT 2013) (eds Youssef, A., Nitaj, A. & Hassanien, A. E.) 173–188
(Springer, 2013).

47.	 Buchmann, J. A., Dahmen, E. & Hülsing, A. XMSS—a practical forward secure
signature scheme based on minimal security assumptions. In Post-Quantum
Cryptography, Proc. 4th International Workshop (PQCRYPTO 2011)
(ed. Yang, B.-Y.) 117–129 (Springer, 2011).
Conservative stateful hash-based signatures are small and fast.

48.	 Hülsing, A., Rausch, L. & Buchmann, J. A. Optimal parameters for XMSSMT.
In Security Engineering and Intelligence Informatics, Proc. CD-ARES 2013
Workshops: MoCrySEn and SeCIHD (eds Cuzzocrea, A. et al.) 194–208 (Springer,
2013).

49.	 Langley, A. Hash based signatures. Imperial Violet https://www.imperialviolet.
org/2013/07/18/hashsig.html (2013).

50.	 Bernstein, D. J. et al. SPHINCS: practical stateless hash-based signatures.
In Advances in Cryptology, Proc. 34th Ann. International Conf. on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT 2015) (eds Oswald, E. &
Fischlin, M.) 368–397 (Springer, 2015).
Conservative stateless hash-based signatures are practical.

51.	 Kocher, P. C. Timing attacks on implementations of Diffie–Hellman, RSA,
DSS, and other systems. In Advances in Cryptology, Proc. 16th Ann.
International Cryptology Conf. (CRYPTO ’96) (ed. Koblitz, N.) 104–113
(Springer, 1996).

52.	 Kocher, P. C., Jaffe, J. & Jun, B. Differential power analysis. In Advances in
Cryptology, Proc. 19th Ann. International Cryptology Conf. (CRYPTO ’99)
(ed. Wiener, M. J.) 388–397 (Springer, 1999).

53.	 Bernstein, D. J., Chou, T. & Schwabe, P. McBits: fast constant-time code-based
cryptography. In Cryptographic Hardware and Embedded Systems, Proc. 15th
International Workshop (CHES 2013) (eds Bertoni, G. & Coron, J.-S.) 250–272
(Springer, 2013).
Conservative code-based encryption is faster than ECC.

54.	 PQCRYPTO Project. Initial Recommendations of Long-Term Secure Post-
Quantum Systems. https://pqcrypto.eu.org/docs/initial-recommendations.pdf
(2015).

55.	 Braithwaite, M. Experimenting with post-quantum cryptography. Google
Security Blog. https://security.googleblog.com/2016/07/experimenting-with-
post-quantum.html (2016).

56.	 Alkim, E., Ducas, L., Pöppelmann, T. & Schwabe, P. Post-quantum key
exchange—a new hope. In 25th USENIX Security Symp. (USENIX Security 16)
(eds Holz, T. & Savage, S.) 327–343 (USENIX Association, 2016).

57.	 Langley, A. CECPQ1 results. Imperial Violet https://www.imperialviolet.
org/2016/11/28/cecpq1.html (2016).

58.	 Bernstein, D. J. The Salsa20 family of stream ciphers. In New Stream Cipher
Designs: The eSTREAM Finalists (eds Robshaw, M. J. B. & Billet, O.) 84–97
(Springer, 2008).

59.	 McGrew, D. A. & Viega, J. The security and performance of the Galois/counter
mode (GCM) of operation. In Progress in Cryptology, Proc. 5th International Conf.
on Cryptology in India (INDOCRYPT 2004) (eds Canteaut, A. & Viswanathan, K.)
343–355 (Springer, 2004).

60.	 Bernstein, D. J. The Poly1305-AES message-authentication code.
In Fast Software Encryption, Proc. 12th International Workshop (FSE 2005)
(eds Gilbert, H. & Handschuh, H.) 32–49 (Springer, 2005).

61.	 NIST Information Technology Laboratory. Secure Hash Standard (SHS). Federal
Information Processing Standards Publication 180-4, http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.180–4.pdf (NIST, 2012).

62.	 Bertoni, G., Daemen, J., Peeters, M. & Assche, G. V. Keccak. In Advances in
Cryptology, Proc. 32nd Ann. International Conf. on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2013) (eds Johansson, T. &
Nguyen, P. Q.) 313–314 (Springer, 2013).

63.	 ElGamal, T. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, Proc. CRYPTO ’84 (eds
Blakley, G. R. & Chaum, D.) 10–18 (Springer, 1984).

64.	 Schnorr, C.-P. Efficient identification and signatures for smart cards. In
Advances in Cryptology, Proc. 9th Ann. International Cryptology Conf.
(CRYPTO ’89) (ed. Brassard, G.) 239–252 (Springer, 1989).

65.	 Bernstein, D. J. Curve25519: new Diffie–Hellman speed records. In Public Key
Cryptography, Proc. 9th International Conf. on Theory and Practice of Public-Key
Cryptography (PKC 2006) (eds Yung, M. et al.) 207–228 (Springer, 2006).

66.	 Johnson, D., Menezes, A. & Vanstone, S. A. The elliptic curve digital signature
algorithm (ECDSA). Int. J. Inf. Sec. 1, 36–63 (2001).

67.	 Bernstein, D. J., Duif, N., Lange, T., Schwabe, P. & Yang, B.-Y. High-speed
high-security signatures. J. Cryptographic Eng. 2, 77–89 (2012).

Acknowledgements We thank A. Hülsing and B.-Y. Yang for their comments.
Author list is in alphabetical order; see https://www.ams.org/profession/
leaders/culture/CultureStatement04.pdf. This work was supported by
the European Commission under Contract ICT-645622 PQCRYPTO;
by the Netherlands Organisation for Scientific Research (NWO) under
grant 639.073.005; and by the US National Science Foundation under
grant 1314919. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation (or other
funding agencies).

Author Contributions D.J.B. and T.L. jointly inventoried the space of
cryptographic systems, selected specific systems and quantum algorithms to
cover, decided on the organization, and wrote text. No new experiments were
performed.

Author Information Reprints and permissions information is available
at www.nature.com/reprints. The authors declare no competing financial
interests. Readers are welcome to comment on the online version of the
paper. Publisher’s note: Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.
Correspondence should be addressed to T.L. (tanja@hyperelliptic.org).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://lamport.azurewebsites.net/pubs/pubs.html#dig-sig
http://www.merkle.com/papers/Thesis1979.pdf
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180�4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180�4.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature23461
http://www.nature.com/doifinder/10.1038/nature23461
mailto:tanja@hyperelliptic.org

	Post-quantum cryptography

	Authors
	Abstract
	Introduction to cryptography

	The devastating impact of Shor’s algorithm

	Grover’s algorithm

	Post-quantum cryptography

	Code-based encryption

	Lattice-based encryption

	Lattice-based signatures

	Multivariate-quadratic-equation signatures

	Hash-based signatures

	Integration into the real world

	Standardization

	Ongoing and future work

	References
	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿ Perspective view of a 9 × 9 × 9 subset of a non-orthogonal three-dimensional lattice.
	﻿Figure 2﻿﻿ Merkle tree with public key Y15 to sign eight messages.
	﻿Table 1﻿﻿Examples of widely deployed cryptographic systems and their conjectured security levels.
	﻿Table 2﻿﻿Qualitative overview of the described post-quantum systems.

