
 SIAM REVIEW (1999 Society for Industrial and Applied Mathematics
 Vol. 41, No. 2, pp. 303-332

 Polynomial-Time Algorithms for

 Prime Factorization and

 Discrete Logarithms on a

 Quantum Computer*

 Peter W. Short

 Abstract. A digital computer is generally believed to be an efficient universal computing device; that

 is, it is believed to be able to simulate any physical computing device with an increase in
 computation time by at most a polyniomial factor. This may not be true when quaintum

 mechanics is taken into consideration. This paper considers factoring integers and finding

 discrete logarithms, two problems that are generally thought to be hard on classical com-

 puters and that have been used as the basis of several proposed cryptosystems. Efficient

 randomized algorithms are given for these two problems on a hypothetical quantum com-

 puter. These algorithms take a number of steps polynomial in the input size, for example,

 the number of digits of the integer to be factored.

 Key words. algorithmic number theory, prime factorization, discrete logarithms, Church's thesis,

 quantum computers, foundations of quantum mechanics, spin systems, Fourier trans-

 forms

 AMS subject classifications. 81P10, 11Y05, 68Q10, 03D10

 Pll. S0036144598347011

 1. Introduction. One of the first results in the mathematics of computation,

 which underlies the subsequent development of much of theoretical computer science,

 was the distinction between computable and noncomputable functions shown in the

 papers of Church [1936], Post [1936], and Turing [1936]. The observation that several
 apparently different definitions of what it meant for a function to be computable

 yielded the same set of computable functions led to the proposal of Church's thesis,

 which says that all computing devices can be simulated by a Turing machine. This

 thesis greatly simplifies the study of computation, since it reduces the potential field

 of study from any of an infinite number of potential computing devices to Turing
 machines. Church's thesis is not a mathematical theorem; to make it one would

 require a precise mathematical description of a computing device. Such a description,

 however, would leave open the possibility of some practical computing device that did

 not satisfy this precise mathematical description and thus would make the resulting

 theorem weaker than Church's original thesis.

 With the development of practical computers, it became apparent that the dis-

 tinction between computable and noncomputable functions was much too coarse; comn-

 *Published electronically April 23, 1999. This paper originally appeared in SIAM Journal on

 Computirng, Volume 26, Number 5, 1997, pages 1484 to 1509.

 http://www.siam.org/journals/sirev/41-2/34701.html

 tAT&T Labs-Research, Room C237, 180 Park Avenue, Florham Park, NJ 07932 (shor@k
 research.att.com).

 303

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 304 PETER W. SHOR

 puter scientists are now interested in the exact efficiency with which specific functions

 can be computed. This exact efficiency, on the other hand, was found to be too precise

 a quantity to work with easily. The generally accepted compromise between coarseness

 and precision distinguishes between efficiently and inefficiently computable functions

 by whether the length of the computation scales polynomially or superpolynomially

 with the input size. The class of problems that can be solved by algorithms having a

 number of steps polynomial in the input size is known as P.

 For this classification to make sense, it must be machine independent. That is, the

 question of whether a function is computable in polynomial time must be independent

 of the type of computing device used. This corresponds to the following quantitative

 version of Church's thesis, which has been called the "strong Church's thesis" by

 Vergis, Steiglitz, and Dickinson [1986] and which makes up half of the "invariance
 thesis" of van Emde Boas [1990].

 THESIS 1.1 (quantitative Church's thesis). Any physical computing device can be

 simTulated by a Turing machine in a number of steps polynomial in the resources used

 by the computing device.

 Readers who are not comfortable with Turing machines may think instead of

 digital computers that have an amount of memory that grows linearly with the length

 of the computation, as these two classes of computing machines can efficiently simulate

 each other. In statements of this thesis, the Turing machine is sometimes augmelnted

 with a random number generator, as it has not yet been determined whether there are

 pseudorandom number generators that can efficiently simulate truly random number

 generators for all purposes.

 There are two escape clauses in the above thesis. One of these is the word "phys-

 ical." Researchers have produced machine models that violate the above quantitative

 Church's thesis, but most of these have been ruled out by the fact that they are not
 physical, that is, they could not be built and made to work. The other escape clause

 in the above thesis is the word "resources," the meaning of which is not completely

 specified above. There are generally two resources that limit the ability of digital

 computers to solve large problems: time (computational steps) and space (memory).
 There are more resources pertinent to analog computation; some proposed analog

 machines that seem able to solve NP-complete problems in polynoomial time have re-

 quired exponentially precise parts or an exponential amount of energy. (See Vergis,
 Steiglitz, and Dickinson [1986] and Steiglitz [1988]; this issue is also implicit in the pa-

 pers of Canny and Reif [1987] and Choi, Sellen, and Yap [1995] oln three-dimensional
 shortest paths.)

 For quantum computation, in addition to space and time, there is also a third

 potentially important resource: precision. For a quantum computer to work, at least
 in any currently envisioned implemelntatioln, it must be able to make changes in the
 quantum states of objects (e.g., atoms, photons, or nuclear spins). These changes
 clearly cannot be perfectly accurate but must contain some small amount of inherelnt
 imprecision. If this imprecision is constant (i.e., it does not depend on the size of the
 input), then it is not known how to compute any functions in polynomial time on a

 quantum computer that cannot also be computed in polynomial time on a classical

 computer with a random number generator.1 However, if we let the precision grow
 polynomially in the input size (so the number of bits of precision grows logarithmically
 in the input size), we appear to obtain a more powerful type of computer. Allowing

 1This was true when this article was originally written. It is no longer true; see the discussion in

 section 8.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 305

 the same polynomial growth in precision does not appear to confer extra computing

 power to classical mechanics, although allowing exponential growth in precision may

 [Hartmanis and Simon, 1974; Vergis, Steiglitz, and Dickinson, 1986].

 As far as we know, the precision possible in quantum state manipulation is dic-

 tated not by fundamental physical laws but by the properties of the materials from

 which and the architecture with which a quantum computer is built. It is currently not

 clear which architectures, if any, will give high precision and what this precision will

 be. If the precisioln of a quantum computer is large enough to make it more powerful

 than a classical computer, then in order to understand its potential it is important to

 think of precision as a resource that can vary. Treating the precision as a large con-

 stant (even though it is almost certain to be constant for any given machine) would

 be comparable to treating a classical digital computer as a finite automaton: since

 any given computer has a fixed amount of memory, this view is technically correct;

 however, it is not particularly useful.

 Because of the remarkable effectiveness of our mathematical models of computa-

 tion, computer scientists have tended to forget that computation is dependent on the

 laws of physics. This can be seen in the statement of the quantitative Church's thesis

 in van Emde Boas [1990], where the word "physical" in the above phrasing is replaced

 by the word "reasonable." It is difficult to imagine any definition of "reasonable" in

 this context that does not mean "physically realizable," that is, that this computing

 machine could actually be built and would work.

 Computer scientists have become convinced of the truth of the quantitative

 Church's thesis through the failure of all proposed counterexamples. Most of these
 proposed counterexamples have been based on the laws of classical mechanics; how-

 ever, the universe is in reality quantum mechanical. Quantum mechanical objects

 often behave quite differently from how our intuition, based on classical mechanics,

 tells us they should. It thus seems plausible that the natural computing power of clas-

 sical mechanics corresponcds to that of Turing machines,2 while the natural computing
 power of quantum mechanics might be greater.

 The first person to look at the interaction between computation and quantum

 mechanics appears to have been Benioff [1980, 1982a, 1982b]. Although he did not
 ask whether quantum mechanics conferred extra power to computation, he showed

 that reversible unitary evolution was sufficient to realize the comnputational power
 of a Turing machine, thus showing that quantum mechanics is computationally at

 least as powerful as classical computers. This work was fundamental in making later

 investigationi of quantum computers possible.
 Feynman [1982, 1986] seems to have been the first to suggest that quantum me-

 chaniics might be computationally more powerful than Turing machines. He gave
 arguments as to why quantum mechanics is intrinsically computationally expensive

 to simulate on a classical computer. He also raised the possibility of using a computer

 based on quantum mechanical principles to avoid this problem, thus implicitly asking

 the converse question, "By using quantum mechanics in a computer can you compute

 more efficiently than on a classical computer?" The first to ask this question explicitly

 was Deutsch [1985, 1989]. In order to study this question, he defined both quantum
 Turing machines and quantum circuits and investigated some of their properties.

 2See Vergis, Steiglitz, and Dickinson [1986], Steiglitz [1988], and Rubel [1989]. I believe that
 this question has not yet been settled and is worthy of further investigation. In particular, tur-

 bulence seems a good candidate for a counterexample to the quantitative Church's thesis because

 the nontrivial dynanmics on many length scales appear to make it difficult to simulate on a classical

 computer.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 306 PETER W SHOR

 The question of whether using quantum mechanics in a computer allows one to

 obtain more computational power was more recently addressed by Deutsch and Jozsa

 [1992] and Berthiaumne and Brassard [1992, 1994]. These papers showed that there

 are problems that quantum computers can quickly solve exactly, but that classical

 computers can only solve quickly with high probability and the aid of a random

 number generator. However, these papers did not show how to solve any problem in

 quantum polynomial time that was not already known to be solvable in polynomial

 time with the aid of a random number generator, allowing a small probability of error;

 this is the characterization of the complexity class BPP (bounded-error probabilistic

 polynomial time), which is widely viewed as the class of efficiently solvable problems.
 Further work on this problem was stimulated by Bernstein and Vazirani [1993].

 One of the results contained in their paper was an oracle problem (that is, a problem

 involving a "black box" subroutine that the computer is allowed to perform but for

 which no code is accessible) that can be done in polynomial time on a quantum Turing
 machine but that requires superpolynomial time on a classical computer. This result

 was improved by Simon [1994], who gave a much simpler construction of an oracle
 problem that takes polynomial time on a quantum computer but requires exponential

 time on a classical computer. Indeed, while Bernstein and Vazirani's problem appears

 contrived, Simon's problem looks quite natural. Simon's algorithm inspired the work
 presented in this paper.

 Two number theory problems that have been studied extensively but for which no

 polynomial-time algorithms have yet been discovered are those of finding discrete log-

 arithms and factoring integers [Pomerance, 1987; Gordon, 1993; Lenstra and Lenstra,
 1993; Adleman and McCurley, 1994]. These problems are so widely believed to be
 hard that several cryptosystems based on their difficulty have been proposed, includ-

 ing the widely used RSA public key cryptosystem developed by Rivest, Shamir, and

 Adleman [1978]. We show that these problems can be solved in polynomial time on

 a quantum computer with a small probability of error.

 Currently, nobody knows how to build a quantum computer, although it seems as

 though it might be possible within the laws of quantum mechanics. Some suggestions
 have been made as to possible designs for such computers [Teich, Obermayer, and

 Mahler, 1988; Lloyd, 1993, 1994; Cirac and Zoller, 1995; DiVincenzo, 1995; Sleator
 and Weinftirter, 1995; Barenco et al., 1995b; Chuang and Yamamoto, 1995; Cory,
 Fahmy, and Havel, 1997; Gershenfeld and Chuang, 1997; Kane 1998], but there will
 be substantial difficulty in building any of these [Landauer, 1995, 1997; Unruh, 1995;
 Chuang et al., 1995; Palma, Suominen, and Ekert, 1996]. The most difficult obstacles
 appear to involve the decoherence of quantum superpositions through the interaction

 of the computer with the environment, and the implementation of quantum state
 transformations with enough precision to give accurate results after many computa-

 tion steps. Both of these obstacles become more difficult as the size of the computer

 grows, so it may turn out to be possible to build small quantum computers, while

 scaling up to machines large enough to do interesting computations may present fun-
 damental difficulties.

 Even if no useful quantum computer is ever built, this research does illuminate

 the problem of simulating quantum mechanics on a classical computer. Any method

 of doing this for an arbitrary Hamiltonian would necessarily be able to simulate a

 quantum computer. Thus, any general method for simulating quantum mechanics
 with at most a polynomial slowdown would lead to a polynomial-time algorithm for

 factoring.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 307

 The rest of this paper is organized as follows. In section 2, we introduce the model

 of quantum computation, the quantum gate array, that we use in the rest of the pa-

 per. In sections 3 and 4, we explain two subroutines that are used in our algorithms:

 reversible modular exponentiation in section 3 and quantum Fourier transforms in sec-

 tion 4. In section 5, we give our algorithm for prime factorization, and in section 6,

 we give our algorithm for extracting discrete logarithms. In section 7, we give a brief

 discussion of the practicality of quantum computation and suggest possible directions

 for ftirther work. Section 8 has been added to the original paper for this SIAM Review
 reprint. It briefly mentions some developments that happened after the original paper

 was written, and surveys some related work.

 2. Quantum Computation. In this section we give a brief introduction to quan-

 tum computation, emphasizing the properties that we will use. We will describe only

 quantum gate arrays, or quantum acyclic circuits, which are analogous to acyclic cir-

 cuits in classical computer science. This model was originally studied by Yao [1993]

 and is closely related to the quantum computational networks discussed by Deutsch

 [1989]. For other models of quantum computers, see references on quantum Turing

 machines [Deutsch, 1985; Bernstein and Vazirani, 1993; Yao, 1993] anld quantum cel-
 lular automata [Feynman, 1986; Margolus, 1986, 1990; Lloyd, 1993; Biafore, 1994]. If
 they are allowed a small probability of error, quantum Turing machines and quantum

 gate arrays can compute the same functions in polynomial time [Yao, 1993]. This may
 also be true for the various models of quantum cellular automata, but it has not yet

 been proved. This gives evidence that the class of functions computable in quantum

 polynomial time with a small probability of error is robust in that it does not depend

 on the exact architecture of a quantum computer. By analogy with the classical class

 BPP, this class is called BQP (bounded error probability quantum polynomial time).

 Consider a system with n components, each of which can have two states. Whereas
 in classical physics, a complete description of the state of this system requires onlly ni

 bits, in quantum physics, a complete description of the state of this system requires

 2n - 1 complex numbers. To be more precise, the state of the quantum system is a

 point in a 2k-dimensional vector space. For each of the 2" possible classical positions
 of the components, there is a basis state of this vector space that we represent, for

 example, by 1011 ... 0), meaning that the first bit is 0, the second bit is 1, and so on.
 Here, the ket notatioln Ix) means that x is a (pure) quantum state. (Mixed states will
 not be discussed in this paper, and thus we do not define them; see a quantum theory

 book such as Peres [1993] for their definition.) The Hilbert space associated with this
 quantum system is the complex vector space with these 2n states as basis vectors,

 and the state of the system at any time is represented by a unit-length vector in this

 Hilbert space. Because multiplying this state vector by a unit-length complex phase

 does not change any behavior of the state, we need only 2n - 1 complex numbers to
 completely describe the state. We represent this superposition of states by

 211 1

 (2.1) E > ISi),
 i=o

 where the amplitudes ai are complex numbers such that El lat 2 = 1 and each ISi) is
 a basis vector of the Hilbert space. If the machine is measured (with respect to this

 basis) at any particular step, the probability of seeing basis state lSi) is jai 2; however,
 measuring the state of the mnachine projects this state to the observed basis vector

 ISi). Thus, looking at the machine during the computation will invalidate the rest

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 308 PETER W. SHOR

 of the computation. General quantum mechanical measurements, that is, POVMs
 (positive operator-valued measurements; see [Peres, 1993]), can be considerably more
 complicated than the case of projection onto the canonical basis to which we restrict

 ourselves in this paper. This does not greatly restrict our model of computation, since

 measurements in other reasonable bases, as well as other local measurements, can be

 simulated by first using quantum computation to perform a change of basis and then
 performing a measurement in the canonical basis.

 In order to use a physical system for computation, we must be able to change the

 state of the system. The laws of quantum mechanics permit only unitary transforma-

 tions of state vectors. A unitary matrix is one whose conjugate transpose is equal to

 its inverse, and requiring state transformatiolns to be represented by unitary matrices

 ensures that summing the probability over all possible outcomes yields 1. The defi-

 nition of quantum circuits (and quantum Turing machines) allows only local unitary
 transformations, that is, unitary transformations on a fixed number of bits. This is

 physically justified because, given a general unitary transformation on n bits, it is
 not clear how one could efficiently implement it physically, whereas two-bit transfor-

 mations can, at least in theory, be implemented by relatively simple physical systems

 [Cirac and Zoller, 1995; DiVincenzo, 1995; Sleator and Weinfurter, 1995; Chuang
 and Yamamoto, 1995]. While general n-bit transformations can always be built out
 of two-bit transformations [DiVincenzo, 1995; Sleator and Weinfurter, 1995; Lloyd,
 1995; Deutsch, Barenco, and Ekert, 1995], the number required will often be exponenl-

 tial in n2 [Barenco et al., 1995a]. Thus, the set of two-bit transformations forms a set of
 building blocks for quantum circuits in a manner analogous to the way a universal set

 of classical gates (such as the AND, OR, and NOT gates) forms a set of building blocks
 for classical circuits. In fact, for a universal set of quantum gates, it is sufficient to take
 all one-bit gates and a single type of two-bit gate, the controlled NOT gate (also called
 the XOR or parity gate), which negates the second bit if and only if the first bit is 1.

 Perhaps an example will be informative at this poilnt. A quantum gate can be
 expressed as a truth table: for each input basis vector we need to give the output of
 the gate. One such gate is

 ?00) - 00),
 (2.2) 101) > 101),

 10) I (1O) + 111)),

 11) 1 .(110) - 111)).

 Not all truth tables correspond to physically feasible quantum gates, as many truth

 tables will not give rise to unitary transformations.

 The same gate can also be represented as a matrix. The rows correspond to input

 basis vectors. The columns correspond to output basis vectors. The (i, j) entry gives,
 when the ith basis vector is input to the gate, the coefficient of the jth basis vector in
 the corresponding output of the gate. The truth table above would then correspond
 to the following matrix:

 100) 101) 110) 111)
 100) 1 0 0 0

 (2.3) 101) 0 1 0 0

 10) 0 0 1 1

 11) 0 0 1 1

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 309

 A quantum gate is feasible if and only if the corresponding matrix is unitary; that is,
 its inverse is its conjugate transpose.

 Suppose that our machine is in the superposition of states

 (2.4) $110) - 1 Jl1)

 and we apply the unitary transformation represented by (2.2) and (2.3) to this state.
 The resulting output will be the result of multiplying the vector (2.4) by the ma-

 trix (2.3). The machine will thus go to the superposition of states

 (2.5) 2 (110) + 111)) - (110) - 111)) = 111)-

 This example shows the potential effects of interference on quantum computation.

 Had we started with either the state 110) or the state 111), there would have been a

 chance of observing the state 110) after the application of the gate (2.3). However,
 when we start with a superposition of these two states, the probability amplitudes for

 the state I10) cancel, and we have no possibility of observing I10) after the application
 of the gate. Notice that the output of the gate would have been 110) instead of 111)
 had we started with the superposition of states

 (2.6) . 110) + 111),

 which has the same probabilities of being in any particular configuration if it is ob-

 served as does the superposition (2.4).

 If we apply a gate to only two bits of a longer vector (now our circuit must have
 more than two wires), for each basis vector we apply the transformation given by the
 gate's truth table to the two bits on which the gate is operating, and leave the other

 bits alone. This corresponds to multiplying the whole state by the tensor product of

 the gate matrix on those two bits with the identity matrix on the remaining bits. For

 example, applying the transformation represented by (2.2) and (2.3) to the first two

 bits of the basis vector 1110) yields the vector I (1100) - 1110)).
 A quantum gate array is a set of quantum gates with logical "wires" connecting

 their inputs and outputs. The input to the gate array, possibly along with extra
 work bits that are initially set to 0, is fed through a sequence of quantum gates. The

 values of the bits are observed after the last quantum gate, and these values are the

 output. This model is analogous to classical acyclic circuits in theoretical computer

 science, and was previously studied by Yao [1993]. As in the classical case, in order
 to compare quantum gate arrays with quantum Turing machines, we need to make

 the gate arrays a uniform complexity class. In other words, because we use a different

 gate array for each size of input, we need to keep the designer of the gate arrays from
 hiding noncomputable (or hard-to-compute) information in the arrangement of the
 gates. To make quantum gate arrays uniform, we must add two requirements to the

 definition of gate arrays. The first is the standard uniformity requirement that the
 design of the gate array be produced by a polynomial-time (classical) computation.
 The second uniformity requirement should be a standard part of the definition of

 analog complexity classes; however, since analog complexity classes have not been

 as widely studied, this requirement is not well known. The requirement is that the

 entries in the unitary matrices describing the gates must be computable numbers.

 Specifically, the first log n bits of each entry should be classically computable in time
 polynomial in n [Solovay, 1995]. This keeps noncomputable (or hard-to-compute)
 information from being hidden in the bits of the amplitudes of the quantum gates.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 3 10 PETER W. SHOR

 Table 3.1. Truth tables for Toffoli and Fredkin gates.

 Toffoli gate Fredkin gate

 INPUT OUTPUT INPUT OUTPUT

 0 00 000 000 00 0

 O 0 1 O 0 1 O 0 1 0 1 0
 0 1 0 0 1 0 0 1 0 O 0 1
 0 1 1 0 1 1 0 1 1 0 1 1

 1 0 0 1 0 0 1 0 0 1 0 0
 101 101 101 101
 1 10 1 1 1 1 10 1 10

 1 1 1 1 1 0 1 1 1 1 1 1

 3. Reversible Logic and Modular Exponentiation. The definition of quantum

 gate arrays gives rise to completely reversible computation. That is, knowing the

 quantum state on the wires leading out of a gate specifies uniquely what the quantum

 state must have been on the wires leading into that gate. This is a reflection of the

 fact that, despite the macroscopic arrow of time, the laws of physics appear to be

 completely reversible. This would seem to imply that anything built with the laws

 of physics must be completely reversible; however, classical computers get around

 this by dissipating energy and thus making their comnputations thermodynamically

 irreversible. This appears impossible to do for quantum computers because superpo-

 sitions of quantum states need to be maintained throughout the computation. Thus,

 quantum computers must use reversible computation. This imposes extra costs when

 doing classical computations on a quantum computer, which can be necessary in sub-

 routines of quantum computations.

 Because of the reversibility of quantum computation, a deterministic computation

 is performable on a quantum computer only if it is reversible. Luckily, it has already

 been shown that any deterministic computation can be made reversible [Lecerf, 1963;
 Bennett, 1973]. In fact, reversible classical gate arrays (or reversible acyclic circuits)

 have been studied. Much like the result that any classical computation can be done

 using NAND gates, there are also universal gates for reversible computation. Two of

 these are Toffoli gates [Toffoli, 1980] and Fredkin gates [Fredkin and Toffoli, 1982];
 these are illustrated in Table 3.1.

 The Toffoli gate is just a doubly controlled NOT; that is, the last bit is negated if

 and only if the first two bits are 1. In a Toffoli gate, if the third input bit is set to 1,

 then the third output bit is the NAND of the first two input bits. Since NAND is a

 universal gate for classical gate arrays, this shows that the Toffoli gate is universal.
 In a Fredkin gate, the last two bits are swapped if the first bit is 0, and left untouched

 if the first bit is 1. For a Fredkin gate, if the third input bit is set to 0, the second

 output bit is the AND of the first two input bits; and if the last two input bits are
 set to 0 and 1, respectively, the second output bit is the NOT of the first input bit.
 Thus, both AND and NOT gates are realizable using Fredkin gates, showing that the
 Fredkin gate is universal.

 From results on reversible computation [Lecerf, 1963; Bennett, 1973], we can
 efficiently compute any polynomial-time function F(x) as long as we keep the input
 x in the computer. We do this by adapting the method for computing the function F
 nonreversibly. These results can easily be extended to work for gate arrays [Toffoli,
 1980; Fredkin and Toffoli, 1982]. When AND, OR, or NOT gates are changed to
 Fredkin or Toffoli gates, one obtains both additional input bits, which must be preset

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 311

 Table 3.2. Bennett's method for making a computation reversible.

 INPUT ------ -

 INPUT OUTPUT RECORD(F) ------

 INPUT OUTPUT RECORD(F) OUTPUT

 INPUT ------ ------ OUTPUT

 INPUT INPUT RECORD(F-1) OUTPUT
 INPUT RECORD(F-1) OUTPUT
 ------ ------ ------ OUTPUT

 to specified values, and additional output bits, which contain the information needed

 to reverse the computation. While the additional input bits do not present difficulties

 in designing quantum computers, the additional output bits do, because unless they

 are all reset to 0, they will affect the interference patterns in quantum computation.

 Bennett's method for resetting these bits to 0 is shown in the top half of Table 3.2.

 A nonreversible gate array may thus be turned into a reversible gate array as follows.

 First, duplicate the input bits as many times as necessary (since each input bit could be
 used more than once by the gate array). Next, keeping one copy of the input around,

 use Toffoli and Fredkin gates to simulate nonreversible gates, putting the extra output

 bits into the RECORD register. These extra output bits preserve enough of a record

 of the operations to enable the computation of the gate array to be reversed. Once

 the output F(x) has been computed, copy it into a register that has been preset to
 zero, and then undo the computation to erase both the first OUTPUT register and

 the RECORD register.

 To erase x and replace it with F(x), in addition to a polynomial-time algorithm
 for F, we also need a polynomial-time algorithm for computing x from F(x); i.e., we
 need F to be one-to-one and both F and F-1 to be polynomial-time computable.
 The method for this computation is given in the whole of Table 3.2. There are two

 stages to this computation. The first is the same as before: taking x to (x, F(x)).
 For the second stage, shown in the bottom half of Table 3.2, note that if we have

 a method to compute F-1 nonreversibly in polynomial time, we can use the same
 technique to reversibly map F(x) to (F(x), F- 1 (F(x))) = (F(x), x). However, since
 this is a reversible computation, we can reverse it to go from (x, F(x)) to F(x). Put
 together, these two stages take x to F(x).

 The above discussion shows that computations can be made reversible for only

 a constant factor cost in time, but the above method uses as much space as it does

 time. If the classical computation requires much less space than time, then making it
 reversible in this manner will result in a large increase in the space required. There are

 methods that do not use as much space, but use more time, to make computations

 reversible [Bennett, 1989; Levine and Sherman, 1990]. While there is no general
 method that does not cause an increase in either space or time, specific algorithms

 can sometimes be made reversible without paying a large penalty in either space or
 time; at the end of this section we will show how to do this for modular exponentiation,

 which is a subroutine necessary for quantum factoring.

 The bottleneck in the quantum factoring algorithm-that is, the piece of the

 factoring algorithm that consumes the most time and space is modular exponenti-

 ation. The modular exponentiation problem is, given n, x, and r, find xr (mod n).
 The best classical method for doing this is to repeatedly square x (mod n) to get

 x2 (mod n) for i < log2 r, and then to multiply a subset of these powers (mod n) to
 get xr (mod n). If we are working with i-bit numbers, this requires 0(I) squarings and

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 3 12 PETER W. SHOR

 multiplications of i-bit numbers (mod n). Asymptotically, the best classical result for
 gate arrays for multiplication is the Sch6nhage-Strassen algorithm [Sch6nhage and

 Strassen, 1971; Knuth, 1981; Schonhage, 1982]. This gives a gate array for integer

 multiplication that uses 0(1 log I log log 1) gates to multiply two i-bit numbers. Thus,

 asymptotically, modular exponentiation requires 0(12 log I log log 1) time. Making this
 reversible would naively cost the same amount in space; however, one can reuse the

 space used in the repeated squaring part of the algorithm, and thus reduce the amount

 of space needed to essentially that required for multiplying two i-bit numbers; one sim-
 ple method (although not the most versatile one) for reducing this space will be given

 later in this section. Thus, modular exponentiation can be done in 0(12 log I log log 1)

 time and 0 (I log I log log 1) space.

 While the Sch6nhage-Strassen algorithm is the best multiplication algorithm dis-

 covered to date for large 1, it does not scale well for small 1. For small numbers, the

 best gate arrays for multiplication essentially use elementary-school longhand multi-

 plication in binary. This method requires 0(12) time to multiply two i-bit numbers,
 and thus modular exponentiation requires 0(13) time with this method. These gate
 arrays can be made reversible, however, using only 0(l) space.

 We now give the method for constructing a reversible gate array that takes only

 0(l) space and 0(13) time to compute (a, Xa (mod n)) from a, where a, x, and n are 1-
 bit numbers and x and n are relatively prime. This case, where x and n are relatively

 prime, is sufficient for our factoring and discrete logarithm algorithms. A detailed

 analysis of what is essentially this method, giving an exact number of quantum gates

 sufficient for factoring, was performed by Beckman et al. [1996].
 The basic building block used is a gate array that takes b as input and outputs

 b + c (mod n). Note that here b is the gate array's input but c and n are built into
 the structure of the gate array. Since addition (mod n) is computable in 0 (log n)
 time classically, this reversible gate array can be made with only 0 (log n) gates and
 0(log n) work bits using the techniques explained earlier in this section.

 The technique we use for computing Xa (mod n) is essentially the same as the

 classical method. First, by repeated squaring, we compute x2 (mod n) for all i < l.
 Then, to obtain Xa (mod n), we multiply the powers x2 (mod n), where 2' appears
 in the binary expansion of a. In our algorithm for factoring n, we need only compute

 xa (mod n), where a is in a superposition of states but x is some fixed integer. This
 makes things much easier, because we can use a reversible gate array where a is input

 but where x and n are built into the structure of the gate array. Thus, we can use

 the algorithm described by the following pseudocode; here ai represents the Zth bit of
 a in binary, where the bits are indexed from right to left and the rightmost bit of a

 is ao.

 power 1

 for Z - 0 to I-1
 if (ai 1) then

 power := power * x2 (mod n)
 endif

 endf or

 The variable a is left unchanged by the code and Xa (mod n) is output as the variable
 power. Thus, this code takes the pair of values (a, 1) to (a, Xa (mod n)).

 This pseudocode can easily be turned into a gate array; the only hard part of this
 is the fourth line, where we multiply the variable power by x2 (mod n); to do this we

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 313

 need to use a fairly complicated gate array as a subroutine. Recall that x2 (mod n)
 can be computed classically and then built into the structure of the gate array. Thus,

 to implement this line, we need a reversible gate array that takes b as input and gives

 bc (mod n) as output, where the structure of the gate array can depend on c and n.

 Of course, this step can only be reversible if gcd(c, n) = 1-that is, if c and n have
 no common factors-because otherwise two distinct values of b will be mapped to the

 same value of bc (mod n). Fortunately, x and n being relatively prime in modular
 exponentiation implies that c and n are relatively prime in this subroutine.

 We will show how to build this gate array in two stages. The first stage is directly
 analogous to exponentiation by repeated multiplication; we obtain multiplication from

 repeated addition (mod n). The pseudocode for this stage is as follows.

 result 0

 for i - 0 to I-1

 if (bi == 1) then
 result := result + 22c (mod n)

 endif

 endf or

 Again, 22c (mod n) can be precomputed and built into the structure of the gate array.
 The above pseudocode takes b as input and gives (b, bc (mod n)) as output. To

 get the desired result, we now need to erase b. Recall that gcd(c, n) = 1, so there is
 a c-1 (mod n) with cc-1 1 (mod n). Multiplication by this c-1 could be used to
 reversibly take bc (mod n) to (bc (mod n), bcc-1 (mod n)) = (bc (mod n), b). This is

 just the reverse of the operation we want, and since we are working with reversible

 computing, we can turn this operation around to erase b. The pseudocode for this
 follows.

 for i = 0 to I-1

 if (resudlti = 1) then
 b b - 22c-1 (mod n)

 endif

 endf or

 As before, resulti is the ith bit of result.
 Note that at this stage of the computation, b should be 0. However, we did not

 set b directly to zero, as this would not have been a reversible operation and thus

 would not have been possible on a quantum computer, but instead we did a relatively

 complicated sequence of operations that ended with b = 0 and that in fact depended
 on multiplication being a group (mod n). At this point, then, we could do something
 somewhat sneaky: we could measure b to see if it actually is 0. If it is not, we

 know that there has been an error somewhere in the quantum computation, that is,

 that the results are worthless and we should stop the computer and start over again.
 However, if we do find that b is 0, then we know (because we just observed it) that it
 is now exactly 0. This measurement thus may bring the quantum computation back

 on track in that any amplitude that b had for being nonzero has been eliminated.

 Further, because the probability that we observe a state is proportional to the square

 of the amplitude of that state, doing the modular exponentiation and measuring b
 every time that we know it should be 0 may result in a higher probability of overall

 success than we would have with the same computation done without the repeated
 measurements of b. This is the qutantutm watchdog (or qutantutm Zeno) effect [Peres,

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 3 14 PETER W. SHOR

 1993], and whether it is applicable in this setting depends on the error model for

 our quantum circuits. The argument above does not actually show that repeated

 measurement of b is indeed beneficial, because there is a cost (in time, if nothing else)

 of measuring b. Before this is implemented, then, it should be checked with analysis

 or experiment that the benefit of such measurements exceeds their cost. In general, I

 believe that partial measurements such as this one are a promising way of trying to

 stabilize quantum computations.

 Currently, Sch6nhage-Strassen is the algorithm of choice for multiplying very

 large numbers, and longhand multiplication is the algorithm of choice for small num-

 bers. There are also multiplication algorithms that have asymptotic efficiencies be-

 tween these two algorithms and that are superior for intermediate-length numbers

 [Karatsuba and Ofman, 1962; Knuth, 1981; Sch6nhage, Grotefeld, and Vetter, 1994].

 It is not clear which algorithms are best for which size numbers. While this is known

 to some extent for classical computation [Sch6nhage, Grotefeld, and Vetter, 1994],

 using data on which algorithms work better on classical computers could be mislead-

 ing for two reasons. First, classical computers need not be reversible, and the cost of

 making an algorithm reversible depends on the algorithm. Second, existing comput-

 ers generally have multiplication for 32- or 64-bit numbers built into their hardware,

 and this tends to increase the optimal changeover points. To further confuse matters,

 some multiplication algorithms can take better advantage of hardwired multiplication

 than others. In order to program quantum computers most efficiently, work thus

 needs to be done on the best way of implementing elementary arithmetic operations

 on quantum computers. One tantalizing fact is that the Sch6nhage-Strassen fast

 multiplication algorithm uses the fast Fourier transform, which is also the basis for

 all the fast algorithms on quantum computers discovered to date. It is thus tempt-

 ing to speculate that integer multiplication itself might be speeded up by a quantum

 algorithm; if possible, this would result in a somewhat faster asymptotic bound for

 factoring on a quantum computer, and indeed could even make breaking RSA on a

 quantum computer asymptotically faster than encrypting with RSA on a classical

 computer.

 4. Quantum Fourier Transforms. Since quantum computation deals with uni-
 tary transformations, it is helpftil to know how to build certain useful unitary trans-
 formations. In this section we give a technique for constructing in polynomial time

 on quantum computers one particular unitary transformation, which is essentially a
 discrete Fourier transform. This transformation will be given as a matrix, with both

 rows and columns indexed by states. These states correspond to binary representa-

 tions of integers on the computer; in particular, the rows and columns will be indexed

 beginning with 0 unless otherwise specified.

 This transformation is as follows. Consider a number a with 0 < a < q for some

 q. We will perform the transformation that takes the state la) to the state

 1 q-1
 (4.1) q1/2 E c) exp(27riac/q).

 c=O

 That is, we apply the unitary matrix whose (a, c) entry is q212 exp(27riac/q). This
 Fourier transform is at the heart of our algorithms, and we call this matrix Aq,

 In our factoring and discrete logarithm algorithms, we will use Aq for q of expo-

 nenitial size (i.e., the number of bits of q grows polynomially with the length of our
 input). We must thus show how this transformation can be done in time polynomial

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 3 15

 in the number of bits of q. In this paper, we give a simple construction for Aq when q

 is a power of 2 that was discovered independently by Coppersmith [1994] and Deutsch

 [see Ekert and Jozsa, 1996]. This construction is essentially the standard fast Fourier

 transform (FFT) algorithm [Knuth, 1981] adapted for a quantum computer; the fol-

 lowing description of it follows that of Ekert and Jozsa [1996]. In the earlier version

 of this paper [Shor, 1994], we gave a construction for Aq when q was in the special

 class of smooth numbers having only small prime power factors. In fact, Cleve [1994]

 has shown how to construct Aq for all smooth numbers q whose prime factors are at

 most 0 (log n).

 Take q - 21, and let us represent an integer a in binary as jai-lala2 ... ao). For
 the quantum Fourier transform Aq, we need only use two types of quantum gates.

 These gates are Rj, which operates on the jth bit of the quantum computer:

 10) 11)
 (4.2) Rj = 0) |

 11) 1 1

 and Sj,k, which operates on the bits in positions j and k with j < k:

 100) 101) 110) 111)
 100) 1 0 0 0

 (4-3) Sj,k 101) 0 1 0 0
 10) 0 0 1 0

 111) 0 0 0 ei0k,-j

 where Ok-j = w/2k-i. To perform a quantum Fourier transform, we apply the matri-

 ces in the order (from left to right)

 (4.4) R11I S1_2,1-1 R1-2 S1_3,1-1 S1_3,1_2 R1-3 ... R1 So,,-, So,_12 ... SO,2 So,j Ro;

 that is, we apply the gates Rj in reverse order from Rl-l to Ro, and between Rj+I and
 Rj we apply all the gates Sj,k where k > j. For example, on three bits, the matrices
 would be applied in the order R2S1,2R1S0,2So,1Ro. To take the Fourier transform Aq
 when q 21, we thus need to use 1(1 - 1)/2 quantum gates.

 Applying this sequence of transformations will result in a quantum state

 1

 q1/2 E exp (27riac/q) I b),
 ql2b

 where b is the bit-reversal of c, that is, the binary number obtained by reading the

 bits of c from right to left. Thus, to obtain the actual quantum Fourier transform,

 we need either to do further computation to reverse the bits of lb) to obtain 1c), or to
 leave these bits in place and read them in reverse order; either alternative is easy to

 implement.

 To show that this operation actually performs a quantum Fourier transform,

 consider the amplitude of going from la) = jai-, ... ao) to lb) = lb,-, ... bo). First,
 the factors of 1/ 2 in the R matrices multiply to produce a factor of 1/q1/2 overall;
 thus we need only worry about the exp(27riac/q) phase factor in the expression (4.1).

 The matrices Sj,k do not change the values of any bits, but merely change their phases.
 There is thus only one way to switch the jth bit from a4 to b4, and that is to use

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 3 16 PETER W. SHOR

 the appropriate entry in the matrix Rj. This entry adds 7r to the phase if the bits aj
 and bj are both 1, and leaves it unchanged otherwise. Further, the matrix Sj,k adds
 7r/2k-j to the phase if aj and bk are both 1 and leaves it unchanged otherwise. Thus,
 the phase on the path from la) to lb) is

 (4.5) 7rajbj + 5 2F 3abk
 O<j<l O<j<k<l

 This expression can be rewritten as

 (4.6) S 2kj aJbk.
 O<j<k<l

 Since c is the bit-reversal of b, this expression can be further rewritten as

 (4E7) S ajQ-I-k-
 O<j<k<l

 Making the substitution I - k - 1 for k in this sum, we obtain

 E 23 2k
 (4.8) 2wr 21 aj Ck -

 O<j+k<l

 Now, since adding multiples of 2wr does not affect the phase, we obtain the same phase
 if we sum over all j and k less than 1, obtaining

 (4.9) ~~~~1-1 2 w k 21- - (4.9) 5 2w 21 ajck =21 52aj S2kck,
 j_k=o j=O k=O

 where the last equality follows from the distributive law of multiplication. Now, q - 21
 and

 1-i 1-1

 (4.10) a =E 2i aj, c = 2kck,
 j=O k=O

 so the expression (4.9) is equal to 2wrac/q, which is the phase for the amplitude

 la) -? c) in the transformation (4.1).
 When k - j is large in the gate Sj,k in (4.3), we are multiplying by a very small

 phase factor. This would be very difficult to do accurately physically, and thus it

 would be somewhat disturbing if this were necessary for quantum computation. In

 fact, Coppersmith [1994] has shown that one can use an approximate Fourier trans-
 form that ignores these tiny phase factors but that approximates the Fourier transform

 closely enough that it can also be used for factoring. In fact, this technique reduces

 the number of quantum gates needed for the (approximate) Fourier transform con-

 siderably, as it leaves out most of the gates Sj,k.
 Recently, Griffiths and Niu [1996] have shown that this Fourier transform can be

 carried out using only one-bit gates and measurements of single bits. Both of these

 operations are potentially easier to implement in a physical system than two-bit gates.
 The use of two-bit gates, however, is still required during the modular exponentiation

 step of the factoring and discrete logarithm algorithms.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 3 17

 5. Prime Factorization. It has been known since before Euclid that every integer

 n is uniquely decomposable into a product of primes. For nearly as long, mathemati-

 cians have been interested in the question of how to factor a number into this product

 of primes. It was only in the 1970s, however, that researchers applied the paradigms of

 theoretical computer science to number theory and looked at the asymptotic running

 times of factoring algorithms [Adleman, 1994]. This has resulted in a great improve-

 ment in the efficiency of factoring algorithms. Currently, the best factoring algorithm,

 both asymptotically and in practice, is the number field sieve [Lenstra et al., 1990;

 Lenstra and Lenstra, 1993], which in order to factor an integer n takes asymptotic
 running time exp(c(logn)1/3(loglogn)2/3) for some constant c. Since the input n is

 only log n bits in length, this algorithm is an exponential-time algorithm. Our quan-

 tum factoring algorithm takes asymptotically O((log n)2 (log log n) (log log log n)) steps

 on a quantum computer, along with a polynomial (in logn) amount of postprocess-
 ing time on a classical computer that is used to convert the output of the quantum

 computer to factors of n. While this postprocessing could in principle be done on a

 quantum computer, there is no reason not to use a classical computer for this step.

 Instead of giving a quantum computer algorithm for factoring n directly, we give

 a quantum computer algorithm for finding the order r of an element x in the multi-

 plicative group (mod n); that is, the least integer r such that xr =1 (mod n). It is
 known that using randomization, factorization can be reduced to finding the order of

 an element [Miller, 1976]; we now briefly give this reduction.
 To find a factor of an odd number n, given a method for computing the order r

 of x, choose a random x (mod n), find its order r, and compute gcd(xr/2 -1, n). Here,
 gcd(a, b) is the greatest common divisor of a and b, that is, the largest integer that
 divides both a and b. The Euclidean algorithm [Knuth, 1981] can be used to compute
 gcd(a, b) in polynomial time. Since (Xr/2 - 1)(xr/2 + 1) - x' 1 _ 0 (mod n), the
 numbers gcd(xr/2 + 1, n) and gcd(xr/2 - 1, n) will be two factors of n. This procedure

 fails only if r is odd, in which case r/2 is not integral, or if xr/2 _-1 (mod n), in
 which case the procedure yields the trivial factors 1 and n. Using this criterion, it

 can be shown that this procedure, when applied to a random x (mod n), yields a
 nontrivial factor of n with probability at least 1 - 1/2k-1, where k is the number of
 distinct odd prime factors of n. A brief sketch of the proof of this result follows.

 Suppose that n = Hk>, p"i is the prime factorization of n. Let ri be the order of
 x (mod p"i). Then r is the least common multiple of all the ri's. Consider the largest

 power of 2 dividing each ri. The algorithm only fails if all of these powers of 2 agree:
 if they are all 1, then r is odd and r/2 does not exist; if they are all equal and larger
 than 1, then Xr/2- _-1 (mod p"i) for every i, so Xr/2 _ -1 (mod n). By the Chinese
 remainder theorem [Knuth, 1981; Hardy and Wright, 1979, Theorem 121], choosing

 an x (mod n) at random is the same as choosing for each i a number xi (mod pii)
 at random, where x _ xi (mod pii). The multiplicative group (mod p') for any odd
 prime power pa is cyclic [Knuth, 1981], so for the odd prime power p", the probability
 is at most 1 of choosing an xi having a particular power of 2 as the largest divisor of 2

 its order ri. Thus each of these powers of 2 has at most a 50% probability of agreeing
 with the previous ones, so all k of them agree with probability at most 1/2k-1. There
 is thus at least a 1 - 1/2k-1 probability that the x we choose is good. This argument
 shows the scheme will work as long as n is odd and not a prime power; finding a factor

 of even numbers and of prime powers can be done efficiently with classical methods.

 We now describe the algorithm for finding the order of x (mod n) on a quantum
 computer. This algorithm will use two quantum registers that hold integers repre-

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 3 18 PETER W. SHOR

 sented in binary. There will also be some amount of workspace. This workspace gets

 reset to 0 after each subroutine of our algorithm, so we will not include it when we

 write down the state of our machine.

 Given x and n, to find the order of x, that is, the least r such that xr- 1 (mod n),

 we do the following. First, we find q, the power of 2 with n2 < q < 2n2. We will not

 include n, x, or q when we write down the state of our machine, because we never

 change these values. In a quantum gate array we need not even keep these values in

 memory, as they can be built into the structure of the gate array.

 Next, we put the first register in the uniform superposition of states representing

 numbers a (mod q). This leaves our machine in state

 1q-1
 (5.1) q1/2 S a) I).

 This step is relatively easy, since all it entails is putting each bit in the first register

 into the superposition 1 (10) + 11)).
 Next, we compute xa (mod n) in the second register as described in section 3.

 Since we keep a in the first register this can be done reversibly. This leaves our

 machine in the state

 q-1

 (5.2) q1/2 5 a) I xa (mod n)).

 We then perform our Fourier transform Aq on the first register, as described
 in section 4, mapping a) to

 q-1

 (5.3) --/2 E exp(27riac/q) lC).

 That is, we apply the unitary matrix with the (a, c) entry equal to q/2 exp(2wFiac/q).
 This leaves our machine in state

 q-1 q-1

 (5.4) ? 5 exp(27riac/q) I c) lxa (mod n)).
 q a=O c=O

 Finally, we observe the machine. It would be sufficient to observe solely the value

 of Ic) in the first register, but for clarity we will assume that we observe both Ic) and
 ixa (mod n)). We now compute the probability that our machine ends in a particular
 state c, xk (mod n)), where we may assume 0 < k < r. Summing over all possible

 ways to reach the state Ic, xk (mod n)), we find that this probability is
 2

 (5.5) 1 exp(2wFiac/q)
 q a: Xa=Xk

 where the sum is over all a, 0 < a < q, such that xa xk (mod n). Because the order
 of x is r, this sum is over all a satisfying a k (mod r). Writing a = br + k, we find
 that the above probability is

 L(q-k-l)/rj 2
 (5.6) _ E exp(27ri(br + k)c/q)

 q b=O

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 3 19

 We can ignore the term of exp(2wFikc/q), as it can be factored out of the sum and has

 magnitude 1. We can also replace rc with {rC}q, where {rC}q is the residue that is

 congruent to rc (mod q) and is in the range -q/2 < {rC}q < q/2. This leaves us with

 the expression

 l(q-k-1) /rj 2

 (5.7) - exp(2'ib{rc}q/q)
 q b=O

 We will now show that if {rC}q is small enough, all the amplitudes in this sum will

 be in nearly the same direction, that is, have close to the same phase, and thus make

 the sum large. Turning the sum into an integral, we obtain

 (5.8)

 q j exp(2rib{rc}q/q)db + 0 (qL(q-kq1)/rj (exp(2wi{rc}q/q) - 1)

 f If{rc4q I < r/2, the error term in the above expression is easily seen to be bounded
 by O(1/q). We now show that if l{rC}ql < r/2, the above integral is large, so the
 probability of obtaining a state 1c,xk (mod n)) is large. Note that this condition
 depends only on c and is independent of k. Substituting u = rb/q in the above

 integral, we get

 1 rL(q-k-l)/r] r/q { rc}\
 (5.9) 1 j exp 2wri ?) du.

 Since k < r, approximating the upper limit of integration by 1 results in only an

 O(1/q) error in the above expression. If we do this, we obtain the integral

 (5.10) ? j1 exp (27ri {rc}qu du.

 1

 Letting {rC}q/r vary between - and 2, the absolute magnitude of the integral (5.10)
 is easily seen to be minimized when {rC}q/r =2, in which case the absolute value

 of expression (5.10) is 2/(wFr). The square of this quantity is a lower bound on the

 probability that we see any particular state Ic, xk (mod n)) with {rC}q < r/2; this
 probability is thus asymptotically bounded below by 4/(7r2r2), and so is at least 1/3r2
 for sufficiently large n.

 The probability of seeing a given state Ic, xk (mod n)) will thus be at least 1/3r2
 if

 (5.11) < {rc}q < -
 22

 that is, if there is a d such that

 r
 (5.12) < rc - dq < -.

 2 2

 Dividing by rq and rearranging the terms give

 c d 1
 (5.13) q - <2q

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 320 PETER W. SHOR

 0 .1 2

 0.10 -

 P 0.064

 0.0 0 - 1~ 1~

 0 32 64 96 128 160 192 224 256
 C

 Fig. 5.1 The probability P of observing values of c between 0 and 255, given q = 256 and r= 10.

 We know c and q. Because q > n2, there is at most one fraction d/r with r < n that
 satisfies the above inequality. Thus, we can obtain the fraction d/r in lowest terms
 by rounding c/q to the nearest fraction having a denominator smaller than n. This

 fraction can be found in polynomial time by using a continued fraction expansion of

 c/q, which finds all the best approximations of c/q by fractions [Knuth, 1981; Hardy
 and Wright, 1979, Chapter X].

 The exact probabilities as given by (5.7) for an example case with r = 10 and
 q = 256 are plotted in Figure 5.1. For example, the value r = 10 could occur when

 factoring 33 if x were chosen to be 5. Here q is taken smaller than 332 so as to
 make the values of c in the plot distinguishable; this does not change the functional

 structure of P(c). Note that with high probability the observed value of c is near an
 integral multiple of q/r = 256/10.

 If we have the fraction d/r in lowest terms, and if d happens to be relatively prime

 to r, this will give us r. We will now count the number of states Ic, xk (mod n)) which
 enable us to compute r in this way. There are 0(r) possible values of d relatively
 prime to r, where ? is Euler's totient function [Knuth, 1981; Hardy and Wright, 1979,

 section 5.5]. Each of these fractions d/r is close to one fraction c/q with Ic/q - d/rI <
 1/2q. There are also r possible values for xk, since r is the order of x. Thus, there are

 rq(r) states Ic, xk (mod n)) which would enable us to obtain r. Since each of these
 states occurs with probability at least 1/3r2, we obtain r with probability at least

 q(r)/3r. Using the theorem that 0(r)/r > 6/ log log r for some constant 6 [Hardy and
 Wright, 1979, Theorem 328], this shows that we find r at least a 6/log log r fraction
 of the time, so by repeating this experiment only O(log log r) times, we are assured
 of a high probability of success.

 In practice, assuming that quantum computation is more expensive than classical

 computation, it would be worthwhile to alter the above algorithm so as to perform

 less quantum computation and more postprocessing. First, if the observed state is

 Ic), it would be wise to also try numbers close to c such as c ? 1, c ? 2, .. ., since these
 also have a reasonable chance of being close to a fraction qd/r. Second, if c/q - d/r,
 where d and r have a common factor, this factor is likely to be small. Thus, if the

 observed value of c/q is rounded off to d'/r' in lowest terms, for a candidate r one
 should consider not only r' but also its small multiples 2r', 3',..., to see if these
 are the actual order of x. Although the first technique will only reduce the expected

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 321

 number of trials required to find r by a constant factor, the second technique will

 reduce the expected number of trials for the hardest n from O(loglogn-) to 0(1) if

 the first (logn)r+? multiples of r' are considered [Odlyzko, 1995]. A third technique,
 if two candidates for r-say, r1 and r2 have been found, is to test the least common

 multiple of r1 and r2 as a candidate r. This third technique is also able to reduce

 the expected number of trials to a constant [Knill, 1995] and will work in some cases

 where the first two techniques fail.

 Note that in this algorithm for determining the order of an element, we did not use

 many of the properties of multiplication (mod n). In fact, if we have a permutation

 f mapping the set {0, 1, 2, ... , n- 1} into itself such that its kth iterate, f(k) (a), is
 computable in time polynomial in log n and log k, the same algorithm will be able to

 find the order of an element a under f, that is, the minimum r such that f(r) (a) = a.

 6. Discrete Logarithms. For every prime p, the multiplicative group (mod p)

 is cyclic, that is, there are generators g such that 1,g, g2,... gp-2 comprise all the
 nonzero residues (mod p) [Hardy and Wright, 1979, Theorem 111; Knuth, 1981].

 Suppose that we are given a prime p and such a generator g. The discrete logarithm
 of a number x with respect to p and g is the integer r with 0 < r < p - 1 such that

 9r x (mod p). The fastest algorithm known for finding discrete logarithms modulo
 arbitrary primes p is Gordon's [1993] adaptation of the number field sieve, which runs

 in time exp(O(logp)1/3(loglogp)2/3). We show how to find discrete logarithms on

 a quantum computer usinig two modular exponentiationls and two quantum Fourier
 transforms.

 This algorithm will use three quantum registers. We first find q, a power of 2,

 such that q is close to p, that is, with p < q < 2p. Next, we put the first two registers

 in our quantum computer in the uniform superposition of all la) and lb) (mod p - 1).
 One way to do this in quanltum polynomial time is to put the register in a uniform
 superposition of all the numbers from 0 to q - 1, use quantum computation to test

 whether the number is less than p, and restart the algorithm if the results of this test

 are unfavorable. We next compute gax-b (mod p) in the third register. This leaves
 our machine in the state

 p-2 p-2

 (6.1) 1 EEla,b,gax-b (mod p))
 a=O b=O

 As before, we use the Fourier transform Aq to send la) -c) and lb) I d) with
 probability amplitude (1/q) exp(27ri(ac + bd)/q). That is, we take the state la, b) to
 the state

 (6.2) - E exp 2i (ac+bd)) c,d).
 qc=O d=O q/

 This leaves our quantum computer in the state

 (6.3) (1 q E E exp q(ac+bd)) c,d,gaxb (mod p)).
 - we o r a,b=O c,d=O

 Finally, we observe the state of the quantum computer.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 322 PETER W. SHOR

 The probability of observing a state Ic, d, y) with y gk (mod p) is

 2

 (6.4) (1) S exp 2-i (ac + bd))
 a-rb-k

 where the sum is over all (a, b) such that a - rb -k (mod p - 1). Note that we now
 have two moduli to deal with, p - 1 anld q. While this makes keeping track of things

 more confusing, it does not pose serious problems. We now use the relation

 (6.5) a = br + k-(p-1) L + k

 and substitute (6.5) in the expression (6.4) to obtain the amplitude on Ic, d, 9k (mod p)),
 which is

 (6.6) E (2i (brc+kc+bd-c(p-1) 1 (p -l)qZexP q\ q

 The square of the absolute value of this amplitude is the probability of observing

 the state Ic, d, gk (mod p)). We will now analyze the expression (6.6). First, a factor
 of exp(27rikc/q) can be taken out of all the terms and ignored, because it does not
 change the probability. Next, we split the exponent into two parts and factor out b

 to obtain

 (6-7) 1 (:exp bT) exp(V (p -1)qZ exp= q)e PqJ

 where

 (6.8) T = rc + d- f {c(p1-)}q,

 and

 (6.9) V (- Lp_J) {C(p-l)}q.

 Here, by {Z}q, we mean the residue of z (mod q) with -q/2 < {Z}q < q/2, as in (5.7).
 We now classify possible outputs (observed states) of the quantum computer as

 "good" or "bad." We will show that if we get enough good outputs, then we will
 likely be able to deduce r, and that furthermore, the chance of getting a good output
 is constant. The idea is that if

 r ~~~~~~~1
 (6.10) |{T}q| = rc +d- _{c(p- 1)}q -jq < -

 where j is the closest integer to T/q, then as b varies between 0 and p - 2, the phase
 of the first exponential term in (6.7) only varies over at most half of the unit circle.
 Further, if

 (6.11) {c(p - 1)}q, < q/12,

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 323

 then IVI is always at most q/12, so the phase of the second exponential term in
 (6.7) is never farther than exp(-Fi/6) from 1. If conditions (6.10) and (6.11) both
 hold, we will say that an output is good. We will show that if both conditions hold,
 then the contribution to the probability from the corresponding term is significant.
 Furthermore, both conditions will hold with constant probability, and a reasonable
 sample of c's for which condition (6.10) holds will allow us to deduce r.

 We now give a lower bound on the probability of each good output, that is, an
 output that satisfies conditions (6.10) and (6.11). We know that as b ranges from 0
 to p - 2, the phase of exp(27ribT/q) ranges from 0 to 2wFiW, where

 (6.12) w P (rc + d- {c(p-l)}qljq).

 It follows from (6.10) that IWI < (p - 2)/(2q) < 1 Thus, the component of the
 amplitude of the first exponential in the summand of (6.7) in the direction

 (6.13) exp (wFiW)

 is at least cos(2-r(W/2 - Wb/(p - 2))), where 27r(W/2 - Wb/(p - 2)) is between -
 and 2. By condition (6.11), the phase can vary by at most 7ri/6 due to the second
 exponential exp(27riV/q). Applying this variation in the manner that minimizes the

 component in the direction (6.13), we get that the component in this direction is at
 least

 (6.14) cos (27r W/2 - Wb/(p - 2)1 +

 Thus we get that the absolute value of the amplitude (6.7) is at least

 p-2

 (6.15) (pI)qZcos (27F IW/2 - Wb/(p - 2)1 +)

 Replacing this sum with an integral, we get that the absolute value of this amplitude
 is at least

 (6.16) j 1 cos (+27rlWlz)du + O

 From condition (6.10), IWI < 1, so the error term is 0(1). As W varies between 2 ~~~~~~~pq

 -2 and 1, the integral (6.16) is minimized when IW 2 Thus, the probability of 2 2 1

 arriving at a state Ic, d, y) that satisfies both conditions (6.10) and (6.11) is at least

 (6.17) (j2 cosu du)

 or at least .054/q2 > 1/(20q2).
 We will now count the number of pairs (c, d) satisfying conditions (6.10) and (6.11).

 The number of pairs (c, d) such that (6.10) holds is exactly the number of possible
 c's, since for every c there is exactly one d such that (6.10) holds. Unless gcd(p - 1, q)
 is large, the number of c's for which (6.11) holds is approximately q/6, and even if
 it is large, this number is at least q/12. Thus, there are at least q/12 pairs (c, d)

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 324 PETER W. SHOR

 satisfying both conditions. Multiplying by p - 1, which is the number of possible y's,

 gives approximately pq/12 good states lc, d, y). Combining this calculation with the
 lower bound 1/(20q2) on the probability of observing each good state gives us that the
 probability of observing some good state is at least p/(240q), or at least 1/480 (since

 q < 2p). Note that each good c has a probability of at least (p - 1)/(20q2) > 1/(40q)
 of being observed, since there are p - 1 values of y and one value of d with which c

 can make a good state Ic, d, y).
 We now want to recover r from a pair c, d such that

 (6.18) -I <d - (1) ()}q< (mod 1),

 where this equation was obtained from condition (6.10) by dividing by q. The first
 thing to notice is that the multiplier on r is a fraction with denominator p - 1, since q

 evenly divides c(p - 1) - {c(p - 1)}q. Thus, we need only round d/q off to the nearest
 multiple of 1/(p - 1) and divide (mod p - 1) by the integer

 (6.19) c c(p - 1) - {c(p - 1)}q
 q

 to find a candidate r. To show that the quantum calculation need only be repeated

 a polynomial number of times to find the correct r requires only a few more details.

 The problem is that we cannot divide by a number c' that is not relatively prime to
 p - 1.

 For the discrete log algorithm, we do not know that all possible values of c' are
 generated with reasonable likelihood; we only know this about one-twelfth of them.

 This additional difficulty makes the next step harder than the corresponding step in

 the algorithm for factoring. If we knew the remainder of r modulo all prime powers

 dividing p -1, we could use the Chinese remainder theorem to recover r in polynomial

 time. We will only be able to prove that we can find this remainder for primes larger

 than 18, but with a little extra work we will still be able to recover r.

 Recall that each good (c, d) pair is generated with probability at least 1/(20q2),
 and that at least one-twelfth of the possible c's are in a good (c, d) pair. From (6.19),
 it follows that these c's are mapped from c/q to c'/(p - 1) by rounding to the nearest
 integral multiple of 1/(p - 1). Further, the good c's are exactly those in which c/q is
 close to c'/(p - 1). Thus, each good c corresponds with exactly one c'. We would like
 to show that for any prime power p"% dividing p - 1, a random good c' is unlikely to
 contain pi. If we are willing to accept a large constant for our algorithm, we can just
 ignore the prime powers under 18; if we know r modulo all prime powers over 18, we

 can try all possible residues for primes under 18 with only a (large) constant factor
 increase in running time. Because at least one-twelfth of the c's were in a good (c, d)

 pair, at least one-twelfth of the c"s are good. Thus, for a prime power p", a random
 good c' is divisible by p"a with probability at most 12/p"a. If we have t good c"s, the
 probability of having a prime power over 18 that divides all of them is therefore at
 most

 (6.20) z (12)t

 18 < pci I (p- l)

 where alb means that a evenly divides b, so the sum is over all prime powers greater
 than 18 that divide p - 1. This sum (over all integers > 18) converges for t = 2, and

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 325

 goes down by at least a factor of 2/3 for each further increase of t by 1; thus, for some

 constant t, it is less than 2.

 Recall that each good c' is obtained with probability at least 1/(40q) from any

 experiment. Since there are q/12 good c"s, after 480t experiments, we are likely to

 obtain a sample of t good c"s chosen equally likely from all good c"s. Thus, we will be
 able to find a set of c"s such that all prime powers pai > 20 dividing p-I are relatively

 prime to at least one of these c"s. To obtain a polynomial-time algorithm, all one need
 do is try all possible sets of c"s of size t; in practice, one would use an algorithm to

 find sets of c"s with large common factors. This set gives the residue of r for all primes

 larger than 18. For each prime pi less than 18, we have at most 18 possibilities for the
 residue modulo p"i, where ci is the exponent on prime Pi in the prime factorization
 of p - 1. We can thus try all possibilities for residues modulo powers of primes less

 than 18: for each possibility, we can calculate the corresponding r using the Chinese

 remainder theorem and then check to see whether it is the desired discrete logarithm.

 If one were to actually program this algorithm, there would be many ways in

 which the efficiency could be increased over the efficiency shown in this paper. For

 example, the estimate for the number of good c"s is probably too low, especially
 since weaker conditions than (6.10) and (6.11) should suffice. This means that the
 number of times the experiment needs to be run could be reduced. It also seems

 improbable that the distribution of bad values of c' would have any relationship to

 primes under 18; if this is true, we need not treat small prime powers separately.

 This algorithm does not use very many properties of Zp, so we can use the same
 algorithm to find discrete logarithms over other fields such as Zp., as long as the field
 has a cyclic multiplicative group. All we need is to know the order of the generator

 and to be able to multiply and take inverses of elements in polynomial time. The

 order of the generator could in fact be computed using the quantum order-finding

 algorithm given in section 5 of this paper. Boneh and Lipton [1995] have generalized
 the algorithm so as to be able to find discrete logarithms when the group is abelian

 but not cyclic.

 7. Comments and Open Problems. It is currently believed that the most diffi-

 cult aspect of building an actual quantum computer will be dealing with the problems

 of imprecision and decoherence. It was shown by Bernstein and Vazirani [1993] that
 the quantum gates need only have precision O(1/t) in order to have a reasonable
 probability of completing t steps of quantum computation; that is, there is a c such

 that if the amplitudes in the unitary matrices representing the quantum gates are all

 perturbed by at most c/t, the quantum computer will still have a reasonable chance

 of producing the desired output. Similarly, the decoherence needs to be only poly-

 nomially small in t in order to have a reasonable probability of completing t steps

 of computation successfully. This holds not only for the simple model of decoher-
 ence where each bit has a fixed probability of decohering at each time step, but
 also for more complicated models of decoherence that are derived from fundamen-

 tal quantum mechanical considerations [Unruh, 1995; Palma, Suominen, and Ekert,

 1996; Chuang et al., 1995]. However, building quantum computers with high enough
 precision and low enough decoherence to accurately perform long computations may

 present formidable difficulties to experimental physicists. In classical computers, error
 probabilities can be reduced not only through hardware but also through software,

 by the use of redundancy and error-correcting codes. The most obvious method of

 using redundancy in quantum computers is ruled out by the theorem that quantum

 bits cannot be cloned [Peres, 1993, section 9-4], but this argument does not rule out

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 326 PETER W. SHOR

 more complicated ways of reducing inaccuracy or decoherence using software. In the

 original version of this paper, I cited several papers that hinted that fault-tolerant

 quantum computing might be possible [Bennett et al., 1996; Berthiaume, Deutsch,

 and Jozsa, 1994; Shor, 1995]. This hope has now indeed been realized, and we know
 now that quantum computations can be faithfully carried out using noisy quantum

 bits and noisy quantum gates, provided that the level of noise is not too large. This

 will be discussed further in the next section.

 Discrete logarithms and factoring are not in themselves widely useful problems.

 They have become useful only because they have been found to be crucial for public-

 key cryptography, and this application is in turn possible only because they have been

 presumed to be difficult. This is also true of the generalizations of these algorithms by

 Boneh and Lipton [1995]. If the only uses of quantum computation remain discrete

 logarithms and factoring, it will likely become a special-purpose technique whose only

 raison d'etre is to thwart public-key cryptosystems. However, there may be other

 hard problems that could be solved asymptotically faster with quantunm computers.

 In particular, of interesting problems not known to be NP-complete, the problem of

 finding a short vector in a lattice [Adleman, 1994; Adleman and McCurley, 1994]

 seems as if it might potentially be amenable to solution by a quantum computer.

 In the history of computer science, however, most important problems have turned

 out to be either in polynomial time or NP-complete. Thus quantum computers are not

 likely to become widely useful unless they can solve NP-complete problems. Solving

 NP-complete problems efficiently is a "holy grail" of theoretical computer science that

 very few people expect to be possible on a classical computer. Finding polynomial-

 time algorithms for solving these problems on a quantum computer would be a mo-

 mentous discovery. There are some weak indications that quantum computers are not

 powerftil enough to solve NP-complete problems [Bennett et al., 1997], but I do not
 believe that this potentiality should be ruled out as yet.

 8. Recent Developments and Related Areas. This section updates develop-

 ments that occurred after the original version of the paper was written, and also

 discusses areas related to quantum computing. It was adapted from a similar section

 in another of my papers [Shor, 1998]. It is not intended to be a complete survey, but is

 a somewhat idiosyncratic view concentrating on results I find interesting. I have tried
 to mention survey articles when they exist, so the interested reader can find pointers

 to the literature. One excellent resource is the Los Alamos National Laboratory quan-

 tum physics (quant-ph) preprint archive, at http://xxx.lanl.gov/, containing preprints
 of many recent research articles in this field. Another excellent resource available on

 the Web is the notes for a course on quantum computing recently taught by Preskill

 [1998a].
 As Feynman [1982] suggested, it appears that quantum computing is indeed good

 at computing simulations of quantum mechanical dynamics. Some work has already

 been done showing this [Abrarns and Lloyd, 1997, Lloyd, 1996, Zalka, 1998], but much
 remains to be done. In particular, if small quantum computers are actually built, it

 will be very important to figure out the most efficient methods for simulating quantum

 mechanics; this issue could use much more study.

 The most significant algorithm in quantum computing discovered after the factor-

 ing algorithm is Grover's search algorithm, which permits one to search an unordered

 list of N items (or the range of an efficiently computable function) for a specific item
 in time 0(vN), an improvement on the optimal classical algorithm, which must look
 at N/2 items on average before finding a specific item [Grover, 1997]. The technique

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 327

 used in this algorithm can also be applied to a variety of different problems to obtain

 a square root speed-up. Many of these results have recently been unified [Grover,

 1998].

 Two of the most difficult facets of actually building a quantum computer are

 building gates that transform quantum states accurately enough to prevent errors,

 and avoiding the effects of decoherence. Both of these tasks have been made substan-

 tially simpler by the development of quantum error-correcting codes and fault-tolerant

 quantum computing. Quantum error-correcting codes were discovered independently

 by Steane [1996a] and myself [Shor, 1995]. These encode a quantum state on k qubits
 by mapping it into the Hilbert space of n qubits (n > k), in such a way as to per-

 mit recovery of the original state after an arbitrary physical corruption of some t of

 the n qubits. Before these discoveries, it had been suggested that quantum error-

 correcting codes were impossible, as they appeared incompatible with the theorem of

 quantum mechanics that an unknown quantum state cannot be duplicated. The way

 that quantum error-correcting codes get around this theorem is by ensuring that mea-

 surement of any t or fewer qubits of the n qubits encoding a quantum state reveals no

 information about the encoded state. Thus, corruption of t or fewer qubits leaks no

 information about the state to the environment, permitting all the state information

 to be retained in the encoding qubits.

 After the original papers showing that quantum error-correcting codes were pos-

 sible appeared, a veritable avalanche of subsequent papers about them followed. More

 general methods for constructing codes were discovered [Calderbank and Shor, 1996;
 Steane, 1996b; Gottesman, 1996; Calderbank et al., 1997; Calderbank et al., 1998]
 and a general theory of quantum error-correcting codes was developed [Ekert and
 Macchiavello, 1996; Knill and Laflamme, 1997]. More information on these topics can
 be found in Steane [1999] and in Calderbank et al. [1998].

 By themselves, quantum error-correcting codes are not sufficient to yield fault-

 tolerant quantum computing. It is still necessary to show how to correct errors on

 encoded states using noisy gates without introducing more errors than are corrected,

 and how to compute on encoded states using noisy gates without introducing more

 errors than can be corrected. In particular, it is not possible to decode the states

 in order to perform computation, as this exposes them to error; it is necessary to

 design fault-tolerant circuits that implement quantum gates on encoded states without

 requiring that the states be decoded. The first results on this increased the allowable

 error per gate for an n-gate computation from 1/n to c/logf4n [Shor, 1996]. This
 was quickly followed by several papers improving the permissible error to a constant

 [Aharonov and Ben-Or, 1997; Kitaev, 1997; Knill, LaFlamme, and Zurek, 1998]. The
 best lower bound on the permissible error is currently around 10-4. These results can
 be found in much more detail in two surveys of fault-tolerant quantum computing
 [Kitaev, 1997; Preskill, 1999].

 One of the earliest applications of quantum mechanics to areas related to comput-
 ing is quantum cryptography, more specifically, quantum key distribution. Consider

 two people trying to share some secret information that they can then use as a key

 for a cryptosystem. If they can only communicate over a phone line possibly open
 to eavesdroppers, they have no choice but to use public-key cryptography [Rivest,
 Shamir, and Adleman, 1978], which may be open to attack by a quantum computer
 or (say) by discovery by a fast factoring algorithm on a classical computer. However,
 if they in addition have access to an optical fiber that they can use to transmit quan-

 tum states, they can use quantum cryptography [Bennett and Brassard, 1984]. One
 of them (the sender) transmits states chosen at random from a set of nonorthogonal

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 328 PETER W. SHOR

 quantum states (e.g., 0), 1), .(0) + 1)), .(I0) - 1)). The receiver then reads
 the states in either the basis { 0), I1)} or the basis { 0(0) i 1))}, again chosen at
 random. Communicating over a classical channel using a special protocol, they can

 figure out the states for which they used the same measurement basis; this should be

 about half the states, each of which supplies a bit toward a secret key. If eavesdroppers

 were listening, they could not gain too much information: since they would not know

 in which basis the states were transmitted, any information they gain would cause a

 disturbance in the states, which the sender and receiver could detect by measuring

 some of their states instead of usinlg them for the secret key. The sender and receiver
 can also further sacrifice some of their bits to ensure that eavesdroppers gain virtually

 no information about the remaining bits of their key, and that the sender and receiver

 agree on all the bits of this key.

 Since the original quantum cryptography papers appeared, there have been many

 articles either proposing other schemes or working towards rigorous proofs that the

 scheme is secure against all possible quantum attacks (i.e., when eavesdroppers have
 access to a quantum computer). It appears that at least some versions of quantum
 cryptography have now rigorously been shown to be secure [Mayers, 1998; Mayers

 and Yao, 1998]. A good bibliography on quantum cryptography is Brassard [1993].
 Quantum cryptography is but one aspect of a rapidly burgeoning subject: quan-

 tum information theory. A startling early result in this field, which helped contribute

 to its rapid growth, was the discovery of quantum teleportation [Bennett et al., 1993].
 It is not possible to transmit an unknown quantum state using only classical informa-

 tion (say, over a telephone line) because any measurement of the state must necessarily
 yield incomplete information. The situation changes if the sender and receiver share

 an EPR pair (named after Einstein, Podolsky, and Rosen, who investigated some of
 the strange properties of quantum entanglement). If two people share an EPR pair,

 such as the quantum state (101) - 110)), with the sender holding the first qubit and
 the receiver holding the second, this enables them to transmit an unknown quantum

 bit using both a classical channel and the EPR pair. The sender performs a combined

 measurement on the unknown state and the EPR pair, and transmits the classical

 two-bit outcome to the receiver, who then uses this information to reconstruct the

 unknown state from his or her half of the EPR pair. The act of teleportation thus

 uses up the resource of entanglement between the sender and the receiver, which is

 present in the EPR pair. One research direction in quantum information theory is

 then quantifying the amount of entanglement in a quantum state. Another direc-
 tion is calculating the classical and the quantum capacities of a quantum channel.

 More information on quantum information theory can be found in Preskill's course

 notes [Preskill, 19981 and in a survey article by Bennett and Shor [1998].
 Another recent development is the study of quantum communication complex-

 ity. If two people share quantum entanglement, as well as a classical communications

 channel, this permits them to send each other qubits, but does not reduce the num-
 ber of bits required for transmission of classical information. However, if they both
 have some classical data, and they wish to compute some classical function of this

 data, shared quantum entanglement may help reduce the amount of purely classical

 communication required to compute this function. This was first shown by Cleve and

 Buhrman [Cleve and Buhrman, 1997]. More results on communication complexity
 have since been shown, and some of these were recently used to give lower bounds on

 the power of quantum computers in the black-box (oracle) model [Buhrman, Cleve,

 and Wigderson, 19981.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 329

 Acknowledgments. I would like to thank Jeff Lagarias for finding and fixing

 a critical error in the first version of the discrete log algorithm. I would also like

 to thank him, David Applegate, Charlie Bennett, Gilles Brassard, David Johnson,
 Andrew Odlyzko, Dan Simon, Bob Solovay, Umesh Vazirani, and correspondents too

 numerous to list, for productive discussions, for corrections to and improvements of

 early drafts of this paper, and for pointers to the literature.

 REFERENCES

 D. S. ABRAMS AND S. LLOYD (1997), Simulation of many-body Fermi systems on a universal quantum
 computer, Phys. Rev. Lett., 79, pp. 2586-2589.

 L. M. ADLEMAN (1994), Algorithmic number theory-The complexity contribution, in Proc. 35th
 Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los

 Alamitos, CA, pp. 88-113.

 L. M. ADLEMAN AND K. S. MCCURLEY (1994), Open problems in number-theoretic complexity II, in
 Algorithmic Number Theory, Proc. 1994 Algorithmic Number Theory Symposium, Ithaca, NY,

 Lecture Notes in Comput. Sci. 877, L. M. Adleman and M.-D. Huang, eds., Springer-Verlag,

 Berlin, pp. 291-322.

 D. AHARONOV AND M. BEN-OR (1997), Fault tolerant quantum computation with constant error in
 Proc. 29th Annual ACM Symposium on Theory of Computing, ACM, New York, pp. 176-188.

 A. BARENCO, C. H. BENNETT, R. CLEVE, D. P. DIVINCENZO, N. MARGOLUS, P. SHOR, T. SLEATOR,

 J. A. SMOLIN, AND H. WEINFURTER (1995a), Elementary gates for quantum computation, Phys.
 Rev. A, 52, pp. 3457-3467.

 A. BARENCO, D. DEUTSCH, A. EKERT, AND R. JOZSA (1995b), Conditiotnal quantum dynamics and
 logic gates, Phys. Rev. Lett., 74, pp. 4083-4086.

 D. BECKMAN, A. N. CHARI, S. DEVABHAKTUNI, AND J. PRESKILL (1996), Efficient networks for
 quantum factorirng, Phys. Rev. A, 54, pp. 1034-1063.

 P. BENIOFF (1980), The computer as a physical system: A microscopic quantum mechanrical Hamil-
 toni an model of computers as represented by Tutring machirnes, J. Statist. Phys., 22, pp. 563-591.

 P. BENIOFF (1982a), Quantum mechanical Hamiltonrian models of Turing machirnes, J. Statist. Phys.,
 29, pp. 515-546.

 P. BENIOFF (1982b), Quantum mechanical Hamiltonian models of Tutring machirnes that dissipate
 no energy, Phys. Rev. Lett., 48, pp. 1581-1585.

 C. H. BENNETT (1973), Logical reversibility of computation, IBM J. Res. Develop., 17, pp. 525-532.

 C. H. BENNETT (1989), Time/space trade-offs for reversible computation, SIAM J. Comput., 18,
 pp. 766-776.

 C. H. BENNETT, E. BERNSTEIN, G. BRASSARD, AND U. VAZIRANI (1997), Strengths and weaknesses

 of quantum computing, SIAM J. Comput., 26, pp. 1510-1523.

 C. H. BENNETT AND G. BRASSARD (1984), Quanttum cryptography: Public key distribution and coin
 tossing, in Proc. IEEE International Conference on Computers, Systems and Signal Processing,
 Bangalore, India, pp. 175-179.

 C. H. BENNETT, G. BRASSARD, C. CREPEAU, R. JOZSA, A. PERES, AND W. K. WOOTTERS (1993),

 Teleportirng an unknown quantum state via dual classical and Einsteirn-Podolsky-Rosen channels
 Phys. Rev. Lett., 70, pp. 1895-1898.

 C. H. BENNETT, G. BRASSARD, S. POPESCU, B. SCHUMACHER, J. A. SMOLIN, AND W. K. WOOTERS

 (1996), Purification of noisy entanglement and faithful teleportation via nroisy channels, Phys.
 Rev. Lett., 76, pp. 722-725.

 C. H. BENNETT AND P. W. SHOR (1998), Quantum information theory, IEEE Trans. Inform. Theory,
 44, pp. 2724-2742

 E. BERNSTEIN AND U. VAZIRANI (1993), Quantum complexity theory, in Proc. 25th Annual ACM
 Symposium on Theory of Computing, ACM, New York, pp. 11-20; SIAM J. Comput., 26 (1997),
 pp. 1411-1473.

 A. BERTHIAUME AND G. BRASSARD (1992), The quantum challenge to structural complexity theory,
 in Proc. 7th Annual Structure in Complexity Theory Conference, IEEE Computer Society Press,

 Los Alamitos, CA, pp. 132-137.

 A. BERTHIAUME AND G. BRASSARD (1994), Oracle quantum computing, J. Modern Opt., 41, pp.
 2521-2535.

 A. BERTHIAUME, D. DEUTSCH, AND R. JOZSA (1994), The stabilisation of quantum computations,
 in Proc. Workshop on Physics of Computation: PhysComp '94, IEEE Computer Society Press,
 Los Alamitos, CA, pp. 60-62.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 330 PETER W. SHOR

 M. BIAFORE (1994), Can quantum computers have simple Hamiltonrians, in Proc. Workshop on
 Physics of Computation: PhysComp '94, IEEE Computer Society Press, Los Alamitos, CA,

 pp. 63-68.

 D. BONEH AND R. J. LIPTON (1995), Quantum cryptanalysis of hidden linear functions, Advances
 in Cryptology-CRYPTO '95, Proc. 15th Annual International Cryptology Conference, Santa

 Barbara, CA, D. Coppersmith, ed., Springer-Verlag, Berlin, pp. 424-437.

 G. BRASSARD (1993), Quantum cryptography: A bibliography, SIGACT News, 24:3, pp. 16-20; more
 recent version is available online from: http://www.iro.umontreal.ca/-crepeau/Biblio-QC.html.

 H. BUHRMAN, R. CLEVE, AND A. WIGDERSON (1998), Quantum vs. classical communication and
 computation, in Proc. 30th Annual ACM Symposium on Theory of Computing, ACM Press,

 New York, pp. 63-69.

 A. R. CALDERBANK, E. M. RAINS, P. W. SHOR, AND N. J. A. SLOANE (1997), Quantum error

 correction via orthogonal geometry, Phys. Rev. Lett., 78, pp. 405-408.

 A. R. CALDERBANK, E. M. RAINS, P. W. SHOR, AND N. J. A. SLOANE (1998), Quantum error

 correction via codes over GF(4), IEEE Trans. Inform. Theory, 44, pp. 1369-1387.

 A. R. CALDERBANK AND P. W. SHOR (1996), Good quantum error-correcting codes exist, Phys. Rev.
 A, 54, pp. 1098-1106.

 J. F. CANNY AND J. REIF (1987), New lower bound technriques for robot motion planning problems,
 in Proc. 28th Annual Symposium on Foundations of Computer Science, IEEE Computer Society

 Press, Los Alamitos, CA, pp. 49-60.

 J. CHOI, J. SELLEN, AND C.-K. YAP (1995), Precision-sensitive Euclidean shortest path in 3-space,
 in Proc. 11th Annual Symposium on Computational Geometry, ACM, New York, pp. 350-359.

 I. L. CHUANG, R. LAFLAMME, P. W. SHOR, AND W. H. ZUREK (1995), Quantum computers, factoring

 and decoherence, Science, 270, pp. 1633-1635.

 I. L. CHUANG AND Y. YAMAMOTO (1995), A simple quantum computer, Phys. Rev. A, 52, pp. 3489-
 3496.

 A. CHURCH (1936), An unsolvable problem of elementary number theory, Amer. J. Math., 58, pp. 345-
 363.

 J. I. CIRAC AND P. ZOLLER (1995), Quantum computations with cold trapped ions, Phys. Rev. Lett.,
 74, pp. 4091-4094.

 R. CLEVE (1994), A Note on Computing Fourier Transforms by Quantum Programs, preprint.
 R. CLEVE AND H. BUHRMAN (1997), Substituting quantum entanglement for communrication, Phys.

 Rev. A, 56, pp. 1201-1204.
 D. COPPERSMITH (1994), An Approximate Fourier Transform Useful irn Quantum Factoring, IBM

 Research Report RC 19642, T. J. Watson Laboratory, Yorktown Heights, NY.
 D. G. CORY, A. F. FAHMY, AND T. F. HAVEL (1997), Ensemble quantum computing by nuclear

 magnetic resonance spectroscopy, Proc. Nat. Acad. Sci., 94, pp. 1634-1639.
 D. DEUTSCH (1985), Quantum theory, the Church-Turirng principle and the unriversal quantum com-

 puter, Proc. Roy. Soc. London Ser. A, 400, pp. 96-117.
 D. DEUTSCH (1989), Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425, pp. 73-

 90.

 D. DEUTSCH, A. BARENCO, AND A. EKERT (1995), Universality of quantum computation, Proc. Roy.
 Soc. London Ser. A, 449, pp. 669-677.

 D. DEUTSCH AND R. JOZSA (1992), Rapid solution of problems by quantum computation, Proc. Roy.
 Soc. London Ser. A, 439, pp. 553-558.

 D. P. DIVINCENZO (1995), Two-bit gates are universal for quantum computation, Phys. Rev. A, 51,
 pp. 1015-1022.

 A. EKERT AND R. JOZSA (1996), Shor's quantum algorithm for factorisiing numbers, Rev. Mod.
 Phys., 68, pp. 733-753.

 A. EKERT AND C. MACCHIAVELLO (1996), Error correction in quantum communication, Phys. Rev.
 Lett., 77, pp. 2585-2588.

 R. FEYNMAN (1982), Simulating physics with computers, Internat. J. Theoret. Phys., 21, pp. 467-488.
 R. FEYNMAN (1986), Quantum mechanical computers, Found. Phys., 16, pp. 507-531; originally

 published in Optics News, February 1985, pp. 11-20.
 E. FREDKIN AND T. TOFFOLI (1982), Conservative logic, Internat. J. Theoret. Phys., 21, pp. 219-253.
 N. A. GERSHENFELD AND I. L. CHUANG (1997), Bulk spin resonance quantum computation, Science,

 275, pp. 350-356.

 D. M. GORDON (1993), Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete
 Math., 6, pp. 124-138.

 D. GOTTESMAN (1996), A class of quantum error-correcting codes saturating the quantum Hamming
 bound, Phys. Rev. A, 54, pp. 1862-1868.

 R. B. GRIFFITHS AND C.-S. Niu (1996), Semiclassical Fourier transform for quantum computation,
 Phys. Rev. Lett., 76, pp. 3228-3231.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 PRIME FACTORIZATION ON A QUANTUM COMPUTER 331

 L. K. GROVER (1997), Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev.
 Lett., 78, pp. 325-328.

 L. K. GROVER (1998), A framework for fast quanttum mechanical algorithms, in Proc. 30th Annual
 ACM Symposium on Theory of Computing, ACM Press, New York, pp. 53-62.

 G. H. HARDY AND E. M. WRIGHT (1979), An Introduction to the Theory of Numbers, 5th ed., Oxford
 University Press, New York.

 J. HARTMANIS AND J. SIMON (1974), On the power of multiplication in random access machines, in
 Proc. 15th Annual Symposium on Switching and Automata Theory, IEEE Computer Society,

 Long Beach, CA, pp. 13-23.

 B. E. KANE (1998), A silicon-based nuclear spin quantum computer, Nature, 393, pp. 133-137.
 A. KARATSUBA AND Yu. OFMAN (1962), Multiplication of multidigit numbers on automata, Dokl.

 Akad. Nauk SSSR, 145, pp. 293-294 (in Russian); Sov. Phys. Dokl., 7 (1963), pp. 595-596
 (English translation).

 A. KITAEV (1997), Quantum computations: Algorithms and error correction, Uspekhi Mat. Nauk
 52, pp. 53-112 (in Russian). English translation in Russian Math. Surveys 52, pp. 1191-1249.

 E. KNILL (1995), personal communication.
 E. KNILL AND R. LAFLAMME (1997), A theory of qatantum error-correcting codes, Phys. Rev. A, 55,

 pp. 900-911.

 E. KNILL, R. LAFLAMME, AND W. H. ZUREK (1998), Resiliarnt quantum computation, Science, 279,
 pp. 342-345.

 D. E. KNUTH (1981), The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd
 ed., Addison-Wesley, Reading, MA.

 R. LANDAUER (1995), Is quantum mechanrics useful?, Philos. Trans. Roy. Soc. London Ser. A, 353,
 pp. 367-376.

 R. LANDAUER (1997), Is quantum mechanrically coherent computation useful?, in Proc. Drexel-4
 Symposium on Quantum Nonintegrability-Quantum Classical Correspondence, D. H. Feng and
 B. L. Hu, eds., International Press, Cambridge, MA.

 Y. LECERF (1963), Machines de Turing r6versibles. R6cursive insolubilit6 en n e N de l'6quation
 u = 0"u, o~L 0 est un isomorphisme de codes, C. R. Acad. Francaise Sci., 257, pp. 2597-2600.

 A. K. LENSTRA AND H. W. LENSTRA, JR., EDS. (1993), The Development of the Number Field Sieve,
 Lecture Notes in Math. 1554, Springer-Verlag, Berlin.

 A. K. LENSTRA, H. W. LENSTRA, JR., M. S. MANASSE, AND J. M. POLLARD (1990), The number

 field sieve, in Proc. 22nd Annual ACM Symposium on Theory of Computing, ACM, New York,
 pp. 564-572; expanded version appears in Lenstra and Lenstra [1993, pp. 11-42].

 R. Y. LEVINE AND A. T. SHERMAN (1990), A note on Bennett's time-space tradeoff for reversible
 computation, SIAM J. Comput., 19, pp. 673-677.

 S. LLOYD (1993), A potenttially realizable quantum computer, Science, 261, pp. 1569-1571.
 S. LLOYD (1994), Envisioning a quantum supercomputer, Science, 263, p. 695.
 S. LLOYD (1995), Almost any quantum logic gate is universal, Phys. Rev. Lett., 75, pp. 346-349.
 S. LLOYD (1996), Universal quantum simulators, Science, 273, pp. 1073-1078.
 N. MARGOLUS (1986), Quantum computation, Ann. New York Acad. Sci., 480, pp. 487-497.
 N. MARGOLUS (1990), Parallel quantum computation, in Complexity, Entropy and the Physics of

 Information, Santa Fe Institute Studies in the Sciences of Complexity VIII, W. H. Zurek, ed.,
 Addison-Wesley, Reading, MA, pp. 273-287.

 D. MAYERS (1998), Unconditional Security in Quantum Cryptography, manuscript, LANL e-print
 quant-ph/9802025.

 D. MAYERS AND A. C.-C. YAO (1998), Quantum cryptography with imperfect apparatus, in Proc.
 39th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press,
 Los Alamitos, CA, pp. 503-509.

 G. L. MILLER (1976), Riemann's hypothesis and tests for primality, J. Comput. System Sci., 13,
 pp. 300-317.

 A. M. ODLYZKO (1995), personal communication.

 G. M. PALMA, K.-A. SUOMINEN, AND A. K. EKERT (1996), Quantum computers and dissipation,
 Proc. Roy. Soc. London Ser. A, 452, pp. 567-584.

 A. PERES (1993), Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht,
 The Netherlands.

 C. POMERANCE (1987), Fast, rigorous factorization and discrete logarithm algorithms, in Discrete
 Algorithms and Complexity, Proc. Japan-US Joint Seminar, 1986, Kyoto, D. S. Johnson, T.
 Nishizeki, A. Nozaki, and H. S. Wilf, eds., Academic Press, New York, pp. 119-143.

 E. POST (1936), Fitnite combirnatory processes. Formulation I, J. Symbolic Logic, 1, pp. 103-105.
 J. PRESIKILL (1998), Lecture notes for Physics 229, California Institute of Technology, available online

 at http://www.theory.caltech.edu/people/preskill/ph229/.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

 332 PETER W. SHOR

 J. PRESKILL (1999), Fault-tolerant quantum computation, in Introduction to Quantum Computation,
 H.-K. Lo, S. Popescu, and T. P. Spiller, eds., World Scientific, to appear. Also LANL e-print

 quant-ph/9712048.

 R. L. RIVEST, A. SHAMIR, AND L. ADLEMAN (1978), A method of obtaining digital signatures and
 public-key cryptosystems, Comm. Assoc. Comput. Mach., 21, pp. 120-126.

 L. A. RUBEL (1989), Digital simulation of analog computation and Church's thesis, J. Symbolic
 Logic, 54, pp. 1011-1017.

 A. SCH6NHAGE (1982), Asymptotically fast algorithms for the numerical multiplication and division

 of polynomials with complex coefficients, in Computer Algebra EUROCAM '82, Lecture Notes
 in Comput. Sci. 144, J. Calmet, ed., Springer-Verlag, Berlin, pp. 3-15.

 A. SCH6NHAGE, A. F. W. GROTEFELD, AND E. VETTER (1994), Fast Algorithms: A Multitape Turing
 Machine Implementation, B. I. Wissenschaftsverlag, Mannheim, Germany.

 A. SCH6NHAGE AND V. STRASSEN (1971), Schnelle Mtultiplikation grosser Zahlen, Computing, 7,
 pp. 281-292.

 P. W. SHOR (1994), Algorithms for quantum computation: Discrete logarithms and factoring, in
 Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society

 Press, Los Alamitos, CA, pp. 124-134.

 P. W. SHOR (1995), Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A,
 52, pp. 2493-2496.

 P. W. SHOR (1996), Fault-tolerant quantum computation, in Proc. 37th Annual Symposium on
 Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 56-65.

 P. W. SHOR (1998), Quantum computing, Doc. Math., (Extra Volume, Proceedings ICM), I, pp.

 305-324.

 D. SIMON (1994), On the power of quantum computation, in Proc. 35th Annual Symposium on
 Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 116-
 123; SIAM J. Comput., 26 (1997), pp. 1474-1483.

 T. SLEATOR AND H. WEINFURTER (1995), Realizable universal quantum logic gates, Phys. Rev. Lett.,
 74, pp. 4087-4090.

 R. SOLOVAY (1995), personal communication.
 A. STEANE (1996a), Error correcting codes in quantum theory, Phys. Rev. Lett., 77, pp. 793-796.
 A. STEANE (1996b), Multiple particle interference and quantum error correction, Proc. Roy. Soc.

 London Ser. A, 452, pp. 2551-2577.
 A. STEANE (1999), Quantum error correction, in Introduction to Quantum Computation, H.-K. Lo,

 S. Popescu, and T. P. Spiller, eds., World Scientific, River Edge, NJ; also available as LANL
 e-print quant-ph/9712048.

 K. STEIGLITZ (1988), Two non-standard paradigms for computation: Analog machines and cellular
 automata, in Performance Limits in Communication Theory and Practice, Proc. NATO Ad-

 vanced Study Institute, Il Ciocco, Castelvecchio Pascoli, Tuscany, Italy, 1986, J. K. Skwirzynski,
 ed., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 173-192.

 W. G. TEICH, K. OBERMAYER, AND G. MAHLER (1988), Structural basis of multistationary qulantum
 systems II: Effective few-particle dynamics, Phys. Rev. B, 37, pp. 8111-8121.

 T. TOFFOLI (1980), Reversible computing, in Automata, Languages and Programming, 7th Collo-
 quium, Lecture Notes in Comput. Sci. 84, J. W. de Bakker and J. van Leeuwen, eds., Springer-

 Verlag, Berlin, pp. 632-644.
 A. M. TURING (1936), On computable numbers, with an application to the Entscheidungsproblem,

 in Proc. London Math. Soc. (2), 42, pp. 230-265; corrections in Proc. London Math. Soc. (2),
 43 (1937), pp. 544-546.

 W. G. UNRUH (1995), Maintaining coherence in qutantum computers, Phys. Rev. A, 51, pp. 992-997.
 P. VAN EMDE BOAS (1990), Machine models and simulations, in Handbook of Theoretical Computer

 Science A, J. van Leeuwen, ed., Elsevier, Amsterdam, The Netherlands, pp. 1-66.
 A. VERGIS, K. STEIGLITZ, AND B. DICKINSON (1986), The complexity of analog computation, Math.

 Comput. Simulation, 28, pp. 91-113.
 A. YAO (1993), Quantum circuit complexity, in Proc. 34th Annual Symposium on Foundations of

 Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 352-361.
 C. ZALKA (1998), Efficient simulation of quantum systems by quantum computers, Proc. Roy. Soc.

 London Ser. A, 454, pp. 313-322.

This content downloaded from 161.111.32.2 on Thu, 14 Mar 2019 10:26:14 UTC
All use subject to https://about.jstor.org/terms

	Contents
	p. 303
	p. 304
	p. 305
	p. 306
	p. 307
	p. 308
	p. 309
	p. 310
	p. 311
	p. 312
	p. 313
	p. 314
	p. 315
	p. 316
	p. 317
	p. 318
	p. 319
	p. 320
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332

	Issue Table of Contents
	SIAM Review, Vol. 41, No. 2 (Jun., 1999) pp. i-viii+197-413
	Front Matter [pp. i-viii]
	Survey and Review
	Introduction [pp. 197]
	Fast Marching Methods [pp. 199-235]
	The Riemann Zeros and Eigenvalue Asymptotics [pp. 236-266]

	Problems and Techniques
	Introduction [pp. 267-268]
	On the Approximate and Null Controllability of the Navier-Stokes Equations [pp. 269-277]
	Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs [pp. 278-300]

	Sigest
	Introduction [pp. 301]
	Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer [pp. 303-332]

	Education
	Introduction [pp. 333]
	Matrices, Vector Spaces, and Information Retrieval [pp. 335-362]
	Bubbles in Wet, Gummed Wine Labels [pp. 363-372]

	Book Reviews
	Introduction [pp. 373]
	Featured Review: So You Have Been Asked to Give a Lecture Course on the Applications of Nonlinear Dynamics... [pp. 375-382]
	Review: untitled [pp. 382-383]
	Review: untitled [pp. 383-384]
	Review: untitled [pp. 384-386]
	Review: untitled [pp. 386-387]
	Review: untitled [pp. 387-389]
	Review: untitled [pp. 389-391]
	Review: untitled [pp. 391]
	Review: untitled [pp. 392-393]
	Review: untitled [pp. 393-395]
	Review: untitled [pp. 395-398]
	Review: untitled [pp. 398-399]
	Review: untitled [pp. 399-400]
	Review: untitled [pp. 400-401]
	Review: untitled [pp. 401-403]
	Review: untitled [pp. 403-405]
	Review: untitled [pp. 405-407]
	Review: untitled [pp. 407-409]
	Review: untitled [pp. 409-411]
	Selected Collections [pp. 411-413]
	Later Editions [pp. 413]

	Back Matter

